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1 Introduction
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Figure 1: The difference between interpolation and approximation
for data with any irregularity

Consider a problem where we have a
number of data points and we want to
obtain a function which represents those
points, and possibly even derivatives of
such a function. There are two main ap-
proaches that we can take. One isinter-
polation, finding a function that passes
through all data points. The other isap-
proximation, obtaining a function that
passes through the assembly of the data
points, approximating them in a least-
squares sense such that the parameters
of that function, for example the coef-
ficients in a polynomial, minimise the
sum of the squares of the differences be-
tween the function and the data points.
Figure 1 shows that, in general, approxi-
mation of point data is to be preferred to
interpolation. Later in this work we will
develop a method which can almost do both operations, depending on the number of degrees of freedom
of the approximating function. In the limit as that number approaches the number of data points, we call
it quasi-interpolation.

In this document below we first consider some of the problems of global representation and how they
can be overcome by using piecewise-continuous polynomialssuch as quadratic or cubic splines. Then
we present a theory of approximating splines, not to interpolate as is usual, but to approximate data
which might be scattered. A number of practical considerations are described, then the results of several
applications of the program are shown. Finally, in an appendix, the files necessary to use the program
are described.

In conventional global approximation, the end result mightbe a polynomial which could be written as
a single equation. The output of the present program, however, includes the boundary points of a series
of intervals, say 3-7, or even 20 in one application described, with 3 or 4 spline coefficients for each.
The results here are not expected to be encapsulated in a single formula, but are output to a file, some
of which could be used as a data file for other software, while others are the approximating values and
derivatives at a number of points which could be used for plotting.

1.1 Problems of global representation

Often a singleglobal function is used for either interpolation and approximation, such as a polynomial
composed of a number of monomialsxm, which is valid over the whole interval[xmin,xmax], required to
represent the data points(xi,yi) for i = 1,2, . . . ,N, say:

f (x) =
M

∑
m=0

amxm = a0+a1x+a2x2+ . . .+aMxM . (1)

This global formulation has some problems which can destroythe accuracy of interpolation or approxi-
mation. Two aspects are:
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Apparent similarity of basis functions leading to poor conditioning of results: Figure 2 shows the
behaviour of three monomials of first, second, and third degree for two different intervals inx. In part
(a) of the figure, on the interval[1000,1200], the monomials apparently show a similar behaviour to
each other – they look almost like straight lines. This means, to approximate a function or data with
curvature, the coefficientsam in equation (1) have to be large, such that there is poor convergence in
the degreeM of the polynomial, and high accuracy is necessary in specifying and using the coefficients.
On the other hand, part (b) of the figure shows that over the interval [−1,1] the monomialsx, x2, x3

show diverse behaviour and are better able, with smaller coefficients, to interpolate or approximate a
function that varies arbitrarily. Hence, in global representation it is always a good idea to scale the
independent variable to[−1,+1] or possibly[0,1] and to use that in calculations. Not doing this can
have severe consequences, as shown by Fenton (1994), especially in civil engineering problems, where
the numerical values ofx might be huge, corresponding to distances along a road, railway or river, or as
the author has seen, where a river height is specified in centimetres. Even better for higher degrees of
approximation, when the monomials on[−1,+1] also begin to look alike, would be to use Chebyshev
polynomials, which have a strong orthogonal nature, each having different properties from the others.

1000 1050 1100 1150 1200
x

(a) Interval [1000,1200]

x/1000
(x/1000)2

(x/1000)3
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x

(b) Interval [−1,+1]

x
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Figure 2: Comparison of variation of mononomials on the interval [1000,1200] and
on [−1,1], showing the greater diversity of behaviour in the latter case, with
a better ability to represent data or functions

It is worth mentioning here that this problem of poor conditioning of a polynomial formulation can be
almost accidentally invoked. There is a facility in the spreadsheetExcel by which ”trendlines” can be
very simply added to sets of experimental points, which are none other than approximations to data
using a relatively low-degree function. Generally the program is very robust, and the plotted curves are
accurate. Various functions are available, in terms of onlytwo or three coefficients, but for polynomial
approximation as many as 6 coefficients are possible, which is more useful. Often one needs the actual
function whichExcel has obtained, and that can be displayed on the figure as well. However, that facility
has a flaw, in that however robustly the program internally calculates the approximating function, quite
possibly using a scaled interval as mentioned above, it displays the formula in expanded form such as
equation (1), with the problems that entails, so that round-off errors might be large. One can change the
number of digits shown, but the problem remains.

Region(s) of rapid variation: Another problem for global approximation by a function suchas a poly-
nomial is that if the data to be interpolated or approximatedhas a region of rapid variation, then because
the global function has to approximate that region, and elsewhere, the interpolation or approximation
can be poor. This is known asRunge’s phenomenon, and the consequences can be very serious and sur-
prising, such that increasing the degree of approximation can simply make the problem worse. Figure
3(a) shows this dramatically for the global polynomial approximation of a function 1/(1+ 25x2) (on
the previously recommended interval of[−1,+1]!) devised by Runge to show that the region of rapid
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Figure 3: Interpolation of Runge’s function 1/(1+25x2) with a sharp crest using 21
data points. For the spline case, a data point atx =−0.5 was raised slightly
– the effects are quite localised.

variation near the crest has destroyed the accuracy in the slowly-varying region away from the crest. A
series of Chebyshev polynomials would be no solution to the problem, because they would give exactly
the same results. We now consider the method whose much better results are shown in part (b) of the
figure.

1.2 Piecewise-continuous interpolation – cubic splines

It is well-known that for interpolation, piecewise-continuous splines can be used to overcome both prob-
lems described in the previous section. They are a sequence of low-degree polynomials, with a high
degree of continuity of function and derivatives at data points, but not complete continuity. Using them
it is no longer necessary to scale the independent variable,and the effects of rapid variation are more
limited to the region in which it occurs. Figure 3(b) shows the results for Runge’s problem using cubic
spline interpolation. The results are excellent, even in the region of high curvature near the crest. To
further demonstrate the power of the method, a data point atx = −0.5 was raised by 10% to make the
data slightly irregular. It can be seen that the effects are highly localised, reflecting the largely local
nature of the spline interpolation.

The method is described in many books (for example, Conte andde Boor, 1980, and de Boor, 2001) and
included in software packages. The physical interpretation and the name of cubic splines is familiar to
civil engineers, for it comes from a draughtsperson’s flexible strip or ”spline” which can be used to fair
smooth curves between points. If the strip is held in position at various points by pins, then between
any two of those pins there are no lateral forces acting so that the shear force in the strip is constant, the
bending moment varies at most linearly, and hence by beam theory (for sufficiently small deflections) the
strip takes on a cubic variation between the two points. As the variation of moment is different between
other points, other cubics will apply there. However, because the shear force and bending moment
are continuous across each pin, then the first and second derivatives are continuous across the pins, or
interpolation points. With four unknown coefficients for the cubic in between each pair of points, and
the requirement that each of the two cubics, to left and rightof each interpolation point, must interpolate
at that point and must have the same first and second derivatives, almost enough equations are obtained
for all the four coefficients of each cubic.

It is necessary, however, to specify two more conditions. This may be by specifying the slope at the
two end points, as in Conte and de Boor (1980, Section 6.7), orby arbitrarily specifying that the second
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derivative at both the end points be zero. This ”moment-free” end condition gives the so-called ”natu-
ral spline” approximation, which is the method traditionally adopted. In general, however, there is no
particular reason at all why the first or the second derivative of the interpolating spline should be zero at
the ends, and in almost all presentations and software, withthe exception of de Boor (2001), the method
suffers from this disadvantage and is not as accurate at the ends as it might be.

A better way to obtain the two extra conditions is to use the ”not-a-knot” condition at the first and last
interior points (de Boor 2001), where it is required, in addition to the first and second derivatives agreeing
to left and right of the interpolation point, that also the third derivatives agree. The physical significance
of this is simply that a single cubic interpolates over the first two intervals and another over the last two
intervals. No arbitrary assumptions have been introduced,and it can be shown that the error is much
less than for ”natural” splines. The manner in which the fluctuations of the interpolating polynomial
are held down has made cubic splines popular as a means of interpolating and obtaining derivatives
numerically.

2 Piecewise-continuous approximation – quadratic and cubic
splines

2.1 Introduction

Here we extend the use of splines from interpolation to approximation in a least-squares sense with
a finite number of specifiable knot/node points, across whichthe function and some of its derivatives
will be continuous, but where the functions are primarily determined by least-squares approximation.
The node points can be spaced more closely where the data varies more rapidly. It is expected that not
many such intervals will be necessary. We will call this method that ofApproximating Splines, using
low-degree spline functions and least squares approximation.

The method is a quite obvious one. However, the author has spent some effort searching for presen-
tations and applications. It is mentioned enigmatically and briefly in obvious places on the Internet.
There are a number of papers available, but the author has notfound any with a presentation of the
theory and method and an exploration of practical aspects ofapplying them. Many papers use the
term Regression Splines, following statistical terminology. These all seem to accept that the method
is obvious and then to pursue abstract and arcane areas of theoretical statistics, with no presentation of
method or results for practical problems. Of papers that usethe word ”approximation” rather than ”re-
gression”, there are some with source code versions available in C, Fortran and MatLab, for example
http://people.sc.fsu.edu/∼ jburkardt/msrc/spline/spline.html. But nowhere is the method explained or its
performance described.

There is one variant of piecewise polynomial approximationwhich is described elsewhere, and that is
Smoothing Splines (de Boor 2001, pp207–214). That approach is where no two values of the independent
variablexi are the same, one fits a spline over every interval[xi,xi+1], i = 1. . .N, and calculates the error
e as the sum of squares of errors at every data point, but adds a ”roughness” term to the quantitye
to be minimised, which is the integral of the curvature, the second derivative of the splines, over the
whole interval. For many data approximation problems the requirement that no twoxi be the same is an
important limitation, and we will not consider it further.

When the author began this work, he also included a roughnessterm, minimising total curvature, but
found that it was not necessary, and the Approximating Splines described here seem to have a natural
tendency to minimise total integrated curvature.

If one pursues some statistical papers, one encounters muchpreoccupation with homoscedasticity, or the
requirement that the variance of the points about the fitted curve be constant over the whole domain.
Otherwise, it seems that the Gauss-Markov theorem shows that least squares as we use it will result
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in bias of the results. We are going to going to ignore such considerations. Amongst others, we will
consider a problem where there is more than a thousand-fold variation of the dependent variable, and
presumably variance changes by a similar ratio. Excellent results are obtained for that problem and for
all others we have considered. We will simply approximate ina least-squares sense.

2.2 Method

y

xX j−1 X j X j+1

Pj−1 = Pj

P′
j−1 = P′

j
(

P′′
j−1 = P′′

j

)

y = Pj−1(x)

y = Pj(x)

Figure 4: Spline approximation of scattered points – the vertical position of the knots, shown by open circles, is
calculated by the program

Consider the scattered data such as shown in Figure 4 comprising a number of data pairs(xi,yi) with
i = 1,2, . . .. Let the data interval[xmin,xmax] be subdivided intoJ intervals byJ + 1 points, whose co-
ordinates arex = X j for j = 1. . .J +1. We expect that these will be placed roughly in accordance with
the rapidity of variation of the data. TheX j, however, are separate and ordered, such thatX j+1 > X j for
all the j. The points are to be approximated by a number of low-degree polynomials such as quadratics or
cubics,P1(x), P2(x), . . ., PJ(x), where the number indicates the interval over which the polynomialPj(x)
is valid, between knot or node points atx = X j andx = X j+1. Over each interval we have a polynomial
of degreeM, such that at over the intervalj, X j 6 x 6 X j+1:

Pj(x) = c j,0+ c j,1 (x−X j)+c j,2 (x−X j)
2+ . . .=

M

∑
m=0

c j,m(x−X j)
m, (2)

where in this case,M is expected to be only 2 or 3, giving quadratic or cubic functions. These are the
same as the functions used in spline interpolation. It is notnecessary to scale thex as we recommended
in §1 as it only appears as the local shifted valuex−X j and the degree of the polynomial is low.

The spline nature of our approximation now requires us to satisfy across each interior node the continuity
of function value plus all derivatives up toM−1. Hence for allj = 1. . .J −1 we have

Pj−1(X j) = Pj (X j) , (3a)

P′
j−1(X j) = P′

j (X j) , and if M = 3, (3b)

P′′
j−1(X j) = P′′

j (X j) . (3c)

From equation (2) at left and right, and usingδ j = X j+1 −X j for the interval length, the continuity
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conditions become

c j+1,0 =
M

∑
m=0

c j,mδ m
j =c j,0+ c j,1δ j+ . . .+ c j,Mδ M

j , (4a)

c j+1,1 =
M

∑
m=1

mc j,mδ m−1
j =c j,1+ . . .+Mc j,Mδ M−1

j , and if M = 3, (4b)

2c j+1,2 =
3

∑
m=2

m(m−1)c j,mδ m−2
j = 2c j,2+6c j,3δ j. (4c)

Now, unlike Interpolating or Smoothing Splines, we do not use the conditions that the knot points are
data points,X j = x j. Neither do we require, like Interpolating Splines, that each spline passes through
the corresponding data pointPj(X j) = y j. Instead, we seek to approximate the data points such that the
sum of the squares of the errors over all the points is minimised. We write this as a sum over all the
intervals of all the contributory points in each interval, and where each data point is assigned a weight of
wi:

e =
J

∑
j=1

∑
i∈I j

wi (Pj(xi)− yi)
2 , (5)

where we have used the mathematical notationi ∈ I j whereI j is the set of points which are in intervalj,
I j = {i : X j 6 xi < X j+1} which simply means taking all the pointsi which are in intervalj. This means
that the contribution to the total errore of a data point is only given by the spline function on the interval
in which it falls. Nevertheless it will affect the overall result by the continuity conditions at the ends of
that interval.

We writee using the polynomial as given in equation (2) as

e =
J

∑
j=1

∑
i∈I j

wi

(

M

∑
m=0

c j,m(xi−X j)
m − yi

)2

. (6)

Convenient aspects of this formulation are:

• Thexi can be in any order

• There can be multiple points with the samexi, and

• The weightswi can be assigned arbitrarily so as to attach less or more importance to a point or,
with a large weight, to force the spline to go through or near that point.

We calculate how many unknowns we have. For each intervalj = 1. . .J we haveM + 1 values of the
c j,m giving J (M+1) unknowns or degrees of freedom. However, equations (4) enable us to eliminate
M unknowns at each interior knot pointj = 1. . .J−1 giving a total ofM (J −1) such unknowns so that
the net number of unknowns isJ+M. To be specific, these are allM+1 coefficients in the first interval:
c1,0, . . .c1,M plus theMth degree coefficients at each of theJ −1 internal pointsc2,M , . . .cJ,M .

The problem is now to find all thec j,m such thate is minimised. We have two ways of proceeding. We
could set up theNormal Equations by differentiating equation (6) with respect to each unknown c j,m

and setting equal to zero for an extremum, which gives the same number of equations as unknowns.
For global approximation such as a polynomial, the equations are famously poorly conditioned, and
numerical solution can be quite difficult and not so accurate. While the spline formulation would lead to
a diagonally-dominant matrix form, which would be more robust, here we adopt a rather more modern
method and avoid the Normal Equations altogether, where we just use optimisation software to minimise
e and determine the values of the coefficients. Such software is widely available, including the Solver
module in spreadsheets. This method is rather simpler and more easily implemented.
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3 Practical considerations and computer program

We have written computer programs to implement the Spline Approximation method, one in MAPLE,
and one in C, giving an executable fileApproximating-splines.exe. The detailed use of that program,
available at http://johndfenton.com/Approximating-splines/ is described in Appendix A.

3.1 Modes of operation, number of intervalsJ, and placement of knots

There are different applications of the program, however they form something of a continuum, whether
the number of intervals is very much less than the number of points, J ≪ N, whether there might be not
such a big difference between the two, or in the limit asJ → N, which we callquasi-interpolation:

Approximation of scattered data,J ≪ N: one has to have enough intervals so as to be able to describe
the local variation adequately, but in general the fewer thenumber of intervals the better so that
there are more data points in each interval to better define the local quadratic or cubic.

The program does a very good job of approximating whatever itis given, but sometimes this is
too good, for example when in one interval there might be as few as 2 or 3 data points, the local
quadratic/cubic obligingly tries to interpolate them, passing through or close to each point. This is
not necessarily what one wants with scattered data, so that it is desirable to have a number of data
points in each interval.

It is recommended for the first application of ApproximatingSplines to a problem that the default
option be chosen, where the program places the knots automatically such that there are equal
numbers of data points in each interval. Then, visual examination of the results might suggest
the clustering of knots in regions of rapid variation, from which a*.knots file could be prepared
with values of theX j modified by hand. In typical applications described below, values ofJ =
3,4,5,6,7, . . . intervals have been found to be usually satisfactory.

Near the ends of the data set, where there might be more-or-less isolated points, the program
also tends to agree closely with the data, which in this case is a pleasant property, especially for
stream-gauging data, where there may only be one or two points at the upper end.

Smoothed interpolation and differentiation: here we consider an application of the program where
one might have a number of discrete data points lying almost on a continuous curve, such as
if they had been scanned and digitised, or if we wanted to differentiate the data, when numerical
differentiation would give irregular results. We approximate the points to give a smooth continuous
curve that can be used for plotting, calculation of functionvalues, or even differentiation. The
process is not quite interpolation, it is not quite approximation, but a combination of the two, for
which we have given it the name ”Smoothed interpolation”. Ofcourse, it is not really different
from the approximation problem, just that the data is not as scattered. In this case it is probably
necessary to have a larger number of intervals so that approximation is more precise.

Quasi-interpolation, J 6 N −3: The question arises, what happens if we let every data point be a knot
such thatJ = N − 1? Can we use the program to interpolate a set of data points? The answer
is ”no”, for now there are too many degrees of freedom. It would be analogous to using a con-
ventional spline interpolation program but without the twoextra equations required, as described
above. In fact, the present program almost works in that under-specified manner, except over the
last two or three intervals. It could be modified to include extra continuity conditions. However,
as we are mainly concerned with approximation we will not do this. Instead, if we simply use two
fewer knots than data points, that is, we chooseJ = N −3, or slightly fewer than that, the program
seems to work well. Figure 10 below shows an example –almost interpolating every data point,
including the two we have chosen not to be knots.
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3.2 Performance

The program has worked remarkably well in all the examples the author has considered. It has never
failed badly. Sometimes adjustment of the knot positions isnecessary to describe regions of high curva-
ture or to avoid having too few points in an interval.

3.3 Quadratic or cubic

It does not seem to matter very much whether quadratic or cubic splines are used. The method is quite
robust, with a minimal tendency for oscillations to develop. One may as well use quadratic splines, as
there are fewer unknowns and computation time is shorter.

3.4 Computation time

On a personal computer built in 2011, using the Windows operating system, approximating the Nikuradse
data in§4.1 withN = 232 data points, using quadratic splines andJ = 7 intervals, with results shown in
Figure 5, computation time was 0.1s, and forJ = 20, 0.9s (the results for the latter were not as good as
for J = 7, as with fewer data points in an interval, as described previously, the splines do a faithful job of
approximating them to the point of almost interpolating them, and this gave irregularities in the result).
These times were typical for other problems too.

The author often uses cubic spline interpolation to processthe results of time-stepping solutions of
partial differential equations, so as to be able to plot results at every few steps and possibly obtain
derivatives. For such applications, with hundreds of interpolations necessary, the present approximation
method would be too slow. Fortunately in those problems withsmooth data, conventional spline interpo-
lation works well. For the stand-alone problems we study in this document, computer time was never a
problem.

3.5 Imposing conditions

There is a simple way of requiring the approximating spline to pass through (or near) a particular point,
by adding that point to the data file and giving it a large weight, such as 10. Conversely, of course, the
importance of any data points can be minimised by reducing the weight of that point or giving it a zero
weight. If weights are not specified, they are assumed to be 1.There seems to be no simple way of using
the present program to include information about first or second derivatives at any point.

4 Examples of applications

4.1 Nikuradse’s results for resistance in pipes with uniform boundary
roughness

Figure 5 shows Nikuradse’s 1933 results (English translation: Nikuradse 1950) for resistance in pipes
with uniform boundary roughness. The present author has scanned and digitised the data from figure 11
in that work, as there are errors in that table 7. For the abcissa the logarithm of the grain Reynolds number
log10R∗ is used, whereR∗ = log(u∗d/ν), u∗ is the shear velocityu∗ =

√

τ/ρ, in whichτ is the boundary
shear stress andρ is the fluid density,d is the grain diameter andν is the kinematic coefficient of vis-
cosity. The ordinate is the quantity introduced by Colebrook and White,F = 2.0log10(3.7/ε)−1/

√
λ ,

whereε = d/D is the relative roughness, in whichD is pipe diameter, andλ is the Darcy-Weisbach

9



-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

F

log10R∗

Nikuradse
Approximating splines
Spline knots
Smooth pipe

Figure 5: Nikuradse’s results forF as a function of the logarithm of the grain Reynolds number
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Figure 6: The results re-plotted in terms of the inverse of the grain Reynolds number
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flows
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resistance coefficient. For fully-rough conditionsR∗ → ∞, Nikuradse concluded that a quantity likeF
approached a constant value. Colebrook and White introduced the definition here such that in the fully
rough limit F ≈ 0, as suggested by the figure. The figure here shows that the spline approximation using
J = 6 intervals and quadratic splinesM = 2 works well.

To further examine that limit we try to do something different from conventional practice, where even
using log10R∗ is difficult in the limit of infinite Reynolds number, and the use of the logarithm has
no real physical justification. It makes sense to use anotherabcissa, and an obvious choice is 1/R∗,
as this goes to zero in the large Reynolds number limit, whichis of rather more interest for hydraulic
engineering. Possibly of greater importance, it has a physical significance, in that it is a dimensionless
viscosity number, directly representing the importance ofviscosity, asR−1

∗ = ν/(u∗d) . It would have
been better had the Reynolds number itself originally been defined in this way.

The results are shown on Figure 6, and we get a very different appreciation – the region of small viscosity,
typical of civil engineering flows, is really very small. It can be seen that the approximating quadratic
splines seem to work well, with 7 intervals specified by a separate knots file as described above. Initially
we tried using automatic allocation of knots, placing knotssuch that each interval had the same number
of data points, but the results were not quite as good. At the sharp dip in the curve, the approximation
is not completely satisfactory. We tried including more knot points there, but that just led to a small
oscillation in the approximation as there were fewer data points in each interval.

To examine the limit of large grain Reynolds number further,we plot an enlarged version of the left of
the figure, for small 1/R∗, in Figure 7. The results are now more revealing, for it can beseen thatF does
not go to 0 but seems to go to about 0.01 in the fully-rough limit, as suggested in Figure 5, although that
only went as far as logR∗ ≈ 3.

There is quite a scatter, of about±0.03 on Figure 7, however this large Reynolds number limit is suf-
ficiently important that we present the formula obtained by the program for the first interval. Here,
however, we are going to be a little bit naughty, and in spite of warnings above against extrapolating and
against expanding polynomials with shifted origins, we expand and assume that we can extrapolate to
1/R∗ = 0 beyond the minimum experimental value of 1/R∗ = 0.00098 (it is a very small amount) so that
we write

For 1/R∗ < 0.02, that is,R∗ > 50, F = 2.0log10

(

3.7
ε

)

− 1√
λ

≈ 0.0135− 0.0453
R∗

− 222
R2∗

. (7)

This raises a question, however, as to whether we should haveimposed a zero derivative on the approx-
imation in the limit as 1/R∗ → 0. That is, in the limit of infinite Reynolds number, should the function
be independent of Reynolds number? Our program cannot actually do that, in any case. However the
second term on the right of equation (7) is so small in the range 0< 1/R∗ < 0.02 that it suggests we can
omit it and write

For 1/R∗ < 0.02, that is,R∗ > 50, F = 2.0log10

(

3.7
ε

)

− 1√
λ

≈ 0.0135− 222
R2∗

. (8)

4.2 Rating curves in river hydraulics

The original stimulus for the development of ApproximatingSplines came from an important problem
in river hydraulics, of approximating rating data for a gauging station. Relatively infrequently, hydro-
graphers measure the flow velocities across a river and integrate them to give the dischargeQ, while
the water surface elevationh is also measured. With the results from many such stream-gaugings, one
would like to establish a relationship betweenQ andh. From this, daily, hourly, or even more frequent
automatic measurements of the surface height are then used to give the discharge at that station corre-
sponding to each reading. Current practice in obtaining therelationship shows a surprising prevalence of
arbitrary and laborious hand/screen methods. It is hoped that the present approach might give a means
of automating the task.
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Figure 8: Results for the 1970s for Gauging Station 02448500on the Noxubee River near Geiger, Alabama, USA

As an example, Figure 8 shows all data, roughly 100 points, from the 10 years of the 1970s for United
States Geological Survey Station 02448500 on the Noxubee River near Geiger, Alabama. The approxi-
mating spline method was applied to giveQ as a function ofh, not by approximating data pairs(hi,Qi)
but instead taking the square root of the discharges,

(

hi,
√

Qi
)

and approximating. As the relationship be-
tweenQ andh for small flows often looks approximately likeQ ∼ (h−hmin)

2 this makes the description
of small flows more accurate. In all three parts of Figure 8 theresults are shown, characteristically for all
such rating curves, with the independent variableh or logh plotted vertically, and the dependent variable
Q or logQ plotted horizontally. Figure 8(a) shows the results for lowflows using natural scales; part
(b) shows all the results on natural scales; while part (c) shows the results on log-log axes, commonly
used in practice. It can be seen that the spline approximation is highly satisfactory, and is capable of
approximating over the whole range of flows from 2m3s−1 to 3500m3s−1, something that is required in
practice. Only 5 intervals were necessary, despite the morethan thousand-fold variation in the depen-
dent variable, the discharge. It was found that using the logarithms ofh andQ to actually perform the
approximation gave results which were no better. The methodworks surprisingly well. The author has a
paper in preparation describing in detail the application of Approximating Splines to such rating data.
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4.3 A different application – Smoothed interpolation
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Figure 9: Example of the use of approximating splines to interpolate and smooth data – using scanned and digitised
results from Batchelor (2000, p341) for the variation of drag coefficient with Reynolds number of a
smooth circular cylinder

The situation here is where one has a set of discrete points that might have been digitised or measured by
hand, which might have small deviations from a smooth curve for plotting because of the imperfections
of the digitising process or using straight lines between data points.

As an example we consider the data set obtained by the author when he scanned and digitised figure
5.11.6 on page 341 of Batchelor (2000), for the variation of the drag coefficientCD of a smooth circular
cylinder as a function of Reynolds number. This includes thewell-known sudden drop inCD as the
boundary layer goes from laminar to turbulent, making interpolation/approximation by global methods
very difficult, and which was the reason the author chose thisproblem as a demanding test.

Here the author tried to approximate the problem as simply aspossible, without giving an extra knots
file, the default option being simply to allow the program to space knots such that there are the same
number of data points in each interval. Results were highly satisfactory, as shown in Figure 9, with the
smooth continuous line of the output of the program and the points of the author’s digitisation. The
results shown are forJ = 20 intervals with cubic functions,M = 3, using values of the logarithm of the
Reynolds number for thexi, i.e. using the co-ordinates in which the figure is plotted.

4.4 A quasi-interpolation example

We consider the limit whenJ is equal toN − 3 or just less than that, as has been mentioned above,
giving a near-interpolation of the data. Figure 10 shows a sine wave defined by 21 points and the near-
or quasi-interpolation using 19 knots or 18 intervals. The missing two points can be identified on closer
examination. The results are good. This is a way of using splines for quasi-, or almost-interpolation
using the program described in the Appendix. It can be simplyimplemented by taking the data file, for
exampleFilename.dat, copying to fileFilename.knots and deleting any two or more lines (the second
column of numbers in the knots file is not read and could stay there).
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Figure 10: Example of ”quasi-interpolation” where there are two fewer knot points
than data points

4.5 Numerical differentiation

It is well-known that numerical differentiation is an operation which may give quite poor results, whether
from natural variability in the data, or where the data has been truncated to too few significant figures.
Using the present program is one way to obtain smoother and possibly more-reliable results. The deriva-
tives are easily obtained from equation (2), and have been used in equations (3) and (4). The output of
the program includes for a large number of points output, thedefault value being 20 over each spline
interval, the function value at the point, first and second derivatives there and third derivatives if cubic
splinesM = 3 are used.

4.6 Numerical integration

This is, of course, relatively simple and robust anyway, even with noisy data, nevertheless we present the
expressions from Approximating Splines, trivially obtained. Within a single interval, the integral is

∫ x

X j

Pj(x)dx = c j,0 (x−X j)+
1
2c j,1 (x−X j)

2+ 1
3 c j,2 (x−X j)

3+ 1
4 c j,3 (x−X j)

4 ,

where for quadratic splines the last term is dropped. The integral of the spline over the whole interval of
approximation, from the first knot pointX1 to the lastXJ+1, is

J

∑
j=1

∫ X j+1

X j

Pj(x)dx =
J

∑
j=1

(

c j,0δ j +
1
2c j,1δ 2

j +
1
3 c j,2δ 3

j +
1
4 c j,3δ 4

j

)

,

whereδ j is the length of intervalj, as defined previously.

4.7 Calculation of envelopes to data points

Another application of the present approximation method isto the calculation of anenvelope above or
below data points. The approach suggested is first to calculate the approximating spline to all the points,
and to delete those points which lie above or those below the approximation approximate the remaining
points, and repeat as many times as necessary. The procedureis simple using the accompanying program
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Figure 11: Calculation of envelope by systematic deletion of points above or below
approximation

and is described in the Appendix. Figure 11 shows results from table 3 of Fenton & Abbott (1977) and
plotted in their figure 5. The ordinate is the dimensionless threshold shear stressθ0 = τ0/(ρg(G−1)d),
whereτ0 is the bed shear stress at which particle movement occurred,ρ is fluid density,g is gravitational
acceleration,G is specific gravity of the bed grain, andd is grain diameter. The protrusionp is the amount
by which the particle protruded into the flow above the otherwise co-planar bed grains. The figure shows
how the threshold bed shear stress on a bed particle, that which entrains the particle into the flow, depends
on how much that particle protrudes into the flow. Because of the experimental arrangement with a finite
time of exposing each particle at a particular elevation, itwas theminimum shear stress which was
important, and so it was desired to plot the envelope below the points.

The process of successive approximations, neglecting all points above the curve each time, gave a good
result for the envelope to the points. As approximately halfthe data points are lost with each pass, the
number of passes is limited. In the figure shown, and the standard in the accompanying program, the
two data points with the smallest and largest values of independent variablep/d, were always retained
to ensure that the final envelope would extend from the smallest to largest values ofp/d. Cubic splines
with M = 3 were used – but with onlyJ = 2 intervals. Another pass of the program gave poor results,
where the envelope passed near to the outlying points below the others, and with oscillations. There is
still a certain amount of arbitrary judgement necessary in applying the method.

Also plotted is the original envelope curve sketched by Fenton & Abbott (scanned and smoothed with
the present program). It can be seen that the calculation of the envelope by the present program agrees
surprisingly closely. At the left of the figure, one might saythat the present program has shown greater
courage and judgement than the original authors, who truncated their envelope curve as shown.

The result of this figure was of some interest, for it confirmedBagnold’s conjecture that the Shields
diagram for incipient motion of bed particles is misleading. For large grain Reynolds numberR∗ the
dimensionless threshold stress for incipient motion was believed to beθ0 ≈ 0.03 to 0.06, almost certainly
obtained from experiments on large bed material which was artificially levelled in laboratories such that
p ≈ 0. In a natural bed, however, particles can project above their neighbours with a finite value of
p/D and, according to the figure, a correspondingly smaller value of θ0 ≈ 0.01 for large grain Reynolds
numbers.
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Appendix

A Program package

A.1 Approximating splines program files

The program files are available from http://johndfenton.com/Approximating-splines/.

The following looks complicated, but use of the package is really quite simple: one needs the program file
Approximating-splines.exe, a fileControl.dat in the same directory, whose first line contains information
where to find a third filePath/Filename.dat containing the data, and which columns of that file to use. A
fourth file Path/Filename.knots may be later necessary to adjust the spline knot points.

Approximating-splines.exe – the program file.

Control.dat – in the same directory as the program, directs it to the working directory where the data
is stored, which is where a results file of the same name, but with *.res extender will be created.
This file has all the computational parameters on the same line. The program only reads the first
line, so that the file can contain many lines of information, each for a different problem, which can
be brought to the first line when required.

Data directory path/ Filename mx my mw mcolumns M J Comment/Remark

The entries are:

• The path where the data is (it can be anywhere on the computer –e.g. C:/Hydraulics/Pipelines/
– and can be specified relative to where the executable file ise.g. ../Thesis/Chapter 1/ ). It is
also where output will be. It must terminate with /.

• The second entry is the name of the example or data set file,without extender, which is the
common name of one or two data files (Filename.dat and possiblyFilename.knots) which
will be used to produce a results fileFilename.res.

• mx: column number in the data fileFilename.dat for thexi

• my: column number foryi

• mw: column number for weightswi. If there is no column for thewi, this number is 0, and
the program setswi = 1 for all i

• mcolumns: Total number of data columns in file, however annotations can follow on any data
line

• M: the degree of the splines, 2 or 3.

• J: the number of spline intervals. IfJ 6 0, a data fileFilename.knots must be provided.

• After this a comment is possible

Example

./Examples/ Scattered 1 2 0 2 2 3 Experiment with no. of intervals: 3, 10

./Examples/ Batchelor341 2 3 0 3 3 20 Scanned figure from Batchelor

./Examples/ Cubic 1 2 0 2 3 6 Trivial example of a cubic to test
C:/Pipelines/ Nikuradse 4 5 0 5 2 0 No weights, needs knots file

Computational-parameters.dat – this file may never have to be examined or modified. After a header
line it contains five numbers, one on each line possibly followed by a comment:
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• The number of equally-spaced results points to be printed out for each spline interval. If your
resulting figure is not sufficiently continuous, the defaultvalue of 20 could be increased.

• The number of significant figures for output, default 5

• The convergence criterion for the optimisation, default 1.e-16

• Is an envelope curve to be calculated? If 0 no, if an integer< 0 (> 0), the envelope below
(above) the data will be calculated after repeated runs, described below.

• The maximum number of data pairs that the program allows, default 2000. This is included
such that with data that is not precisely as expected by the program, it does not go into an
infinite loop. If you have more data pairs than this, the program will print out an instruction
for you to increase the number in this file and will then exit.

In the directory C:/Data directory path/ specified inControl.dat – one or two data files are to be placed,
each with the leading name given, for example,Filename.

Filename.dat – containing the actual data. There is a header line, then possibly a blank line, then
any number of lines withmcolumns numbers, plus if necessary, any annotation of the data.
Thexi are in columnmx, theyi in my, and if mw is not equal to 0, the weightswi to be used
for that particular point are in columnmw. Any other columns of data not relevant to the
approximation can be included in the file. Themx, my, mw andmcolumns specify only the data
that is to be used. The lines can be placedin any order.

Example, for whichmx = 1, my = 2, mw = 3, mcolumns= 3 would be used inControl.dat.

Sample data set

0 1 10 Weight of 10 to force the approximation to honour this point
1 0 1
0.8571 0.0570 1
0.7143 0.1392 1
... ... ... ...

Filename.knots – if the number of spline intervalsJ has been set to zero or a negative number,
this file must be provided. It contains a header line, possibly a blank line and then any number
of single values of the spline node pointsX j, ideally beginning with the minimum of all thexi

and ending with their maximum value. TheX j must be in ascending order. On each line any
annotation of the data is possible. If the firstX1 is less than the minimum of all thexi and/or
the lastXJ+1 is greater than the maximum data value, then the splines would be extrapolating,
and this is not recommended.

Sample knots file

0 This is the minimum
0.03 The first interior point
0.25
...

A.2 Files output by the program

Two files are usually generated, three if an envelope curve isrequired.

1. The main result file is output to the data directoryC:/Data directory path/ and is calledFile-
name.res. It has three blocks of data:
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Data points (sorted): The input data, extracted as described above, possibly fromdifferent columns
of a data file, is sorted according to thexi and copied here withxi andyi in columns 1 and 2.
The sorting is necessary if the program automatically allocates knot points. We thought it a
possibly-useful extra in any case. The precision of the original numbers is retained.

Spline data – knot points and coefficients for each interval:This block could be copied to an-
other file where it could be used in simple stand-alone machine readable form by other
software or inserted into a spreadsheet. The first line contains, after a Gnuplot comment
symbol, the values ofJ andM. The nextJ + 1 lines contain, forj = 1. . .J +1, values of
X j, andc j,m for m = 0, . . . ,M, the whole spline solution. Each number is in scientific format
with the number of significant figures given inComputational-parameters.dat.

Computed splines - values and derivatives:This is useful for plotting. At the knot points and
also at a number of points intermediate between them, that number specified inComputational-
parameters.dat, with 20 as default, values ofx are printed followed by the value of the spline
therePj (x), and itsM derivativesP′

j (x), P′′
j (x), and ifM = 3, P′′′

j (x). The numbers are out-
put in floating-point format with the number of significant figures given inComputational-
parameters.dat.

The file as created with these three blocks separated by at least two blank lines is suitable for
reading by the graph plotting software Gnuplot (http://www.gnuplot.info/).

2. A small file Control.plt is created by the program in the directory whereApproximating-
splines.exe andControl.dat are placed. There is already a filePlot.plt there which can be used
for immediate plotting with Gnuplot to see the results of running the program. It readsControl.plt
and plots the results in a window.

3. If in Computational-parameters.dat the fourth data line contains an integer6= 0, this enables the
calculation of an envelope using repeated passes of the program. An extra new data file is created
with a ”-1” appended to the filename,Filename-1.dat. If the integer in the fourth data line is
positive/negative, only those data points falling above/below the splines curve are output. Then in
the first line ofControl.dat, Filename should be amended by the user toFilename-1, the program
run, fitting a curve to half of the original points and generating a fileFilename-1-1.dat containing a
quarter of the original points. Modifying the filename in thefirst line inControl.dat to Filename-1-
1, running the program again, gives a curve which has 1/8 of theoriginal points outside it, and can
probably be considered to be the envelope, in the spirit of approximation. The extra fileFilename-
1-1-1.dat will now have only those points and is probably not useful. The process can probably be
terminated without running again. At each stage the programretains the first and last points. They
could be edited out if required.

A.3 Additional files included in the package

• Plot.plt is a Gnuplot file which can be used for immediate plotting of results from the program –
see below.

• DirectoryExamples with data filesScattered.dat, Sine.dat, Sine.knots, Batchelor341.dat, Cubic.dat
plus result files from the authors computations.
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