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This document describes a computer program, its backgrthawty, and its use to approx-
imate more-or-less scattered data, or to smooth, diffettentinterpolate, or calculate an
envelope to that data. Piecewise local polynomials, nameadratic or cubic splines, are
used, which overcome some characteristic problems of bigdg@oximation. A number of
practical considerations are described, then the redudtsveral applications of the program
are shown. It seems to be quite flexible and powerful. Finadlgn appendix, the files nec-
essary and instructions how to use the program are described

This report is: Fenton, J. D. (2015) Approximating splines and the repre-
sentation of scattered and not-so-scattered data, Atteenadydraulics Paper 7,
http://johndfenton.com/Approximating-splines/Appimating-splines.pdf
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1 Introduction

Consider a problem where we have a

number of data points and we want to

obtain a function which represents those 94 — . . . . .
points, and possibly even derivatives of o Irregular data points

such a function. There are two main ap- Interpolating 6th degree polynomial
proaches that we can take. Onériter- — Approximating 2nd degree polynomial
polation, finding a function that passes
through all data points. The otherap-
proximation, obtaining a function that
passes through the assembly of the data
points, approximating them in a least-
squares sense such that the parameters

of that function, for example the coef-
ficients in a polynomial, minimise the R6
sum of the squares of the differences be-
tween the function and the data points.
Figurell shows that, in general, approxiFigure 1: The difference between interpolation and appnaxion
mation of point data is to be preferred to for data with any irregularity

interpolation. Later in this work we will

develop a method which can almost do both operations, dapgod the number of degrees of freedom
of the approximating function. In the limit as that numbepragaches the number of data points, we call
it quasi-interpolation.
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In this document below we first consider some of the problefrgiabal representation and how they
can be overcome by using piecewise-continuous polynomiath as quadratic or cubic splines. Then
we present a theory of approximating splines, not to intetpoas is usual, but to approximate data
which might be scattered. A number of practical consideratiare described, then the results of several
applications of the program are shown. Finally, in an appente files necessary to use the program
are described.

In conventional global approximation, the end result migéta polynomial which could be written as

a single equation. The output of the present program, hawmaudes the boundary points of a series
of intervals, say 3-7, or even 20 in one application desdrilvéith 3 or 4 spline coefficients for each.

The results here are not expected to be encapsulated inla &ngpula, but are output to a file, some
of which could be used as a data file for other software, wtithers are the approximating values and
derivatives at a number of points which could be used fortipigt

1.1 Problems of global representation

Often a singleglobal function is used for either interpolation and approximatisuch as a polynomial
composed of a number of monomiad8, which is valid over the whole intervakmin, Xmax], required to
represent the data poings,y;) fori =1,2,... N, say:

M
f) =Y am™=ao+ax+ax+...+aux". 1)

m=0

This global formulation has some problems which can degtreyaccuracy of interpolation or approxi-
mation. Two aspects are:



Apparent similarity of basis functions leading to poor condtioning of results: Figure[2 shows the
behaviour of three monomials of first, second, and third ekedor two different intervals ix. In part

(a) of the figure, on the intervdll00Q 1204, the monomials apparently show a similar behaviour to
each other — they look almost like straight lines. This mes&mspproximate a function or data with
curvature, the coefficientay, in equation [(I1) have to be large, such that there is poor cgemee in
the degreéV of the polynomial, and high accuracy is necessary in spiegfgnd using the coefficients.
On the other hand, part (b) of the figure shows that over theniat[—1,1] the monomials, X%, X3
show diverse behaviour and are better able, with smallefficieats, to interpolate or approximate a
function that varies arbitrarily. Hence, in global repmas¢ion it is always a good idea to scale the
independent variable tp-1,+1] or possibly[0,1] and to use that in calculations. Not doing this can
have severe consequences, as shown by Fenton (1994) allgpadiivil engineering problems, where
the numerical values of might be huge, corresponding to distances along a roadiasibr river, or as
the author has seen, where a river height is specified inmetrés. Even better for higher degrees of
approximation, when the monomials ¢nl,+1] also begin to look alike, would be to use Chebyshev
polynomials, which have a strong orthogonal nature, eaembalifferent properties from the others.
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Figure 2: Comparison of variation of mononomials on therive[100Q 1204 and
on[—1,1], showing the greater diversity of behaviour in the lattese;avith
a better ability to represent data or functions

It is worth mentioning here that this problem of poor coratitng of a polynomial formulation can be
almost accidentally invoked. There is a facility in the smleheeExcel by which "trendlines” can be
very simply added to sets of experimental points, which ameenother than approximations to data
using a relatively low-degree function. Generally the paog is very robust, and the plotted curves are
accurate. Various functions are available, in terms of @wly or three coefficients, but for polynomial
approximation as many as 6 coefficients are possible, wkiafore useful. Often one needs the actual
function whichExcel has obtained, and that can be displayed on the figure as walletr, that facility
has a flaw, in that however robustly the program internallgudates the approximating function, quite
possibly using a scaled interval as mentioned above, itadisghe formula in expanded form such as
equation[(ll), with the problems that entails, so that rooffiéérrors might be large. One can change the
number of digits shown, but the problem remains.

Region(s) of rapid variation: Another problem for global approximation by a function sasha poly-
nomial is that if the data to be interpolated or approximditas a region of rapid variation, then because
the global function has to approximate that region, andwdisee, the interpolation or approximation
can be poor. This is known &nge's phenomenon, and the consequences can be very serious and sur-
prising, such that increasing the degree of approximatamsmply make the problem worse. Figure
B(a) shows this dramatically for the global polynomial apgmation of a function 1(1 -+ 25x?) (on

the previously recommended interval [ef1,+1]!) devised by Runge to show that the region of rapid
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Figure 3: Interpolation of Runge’s functior (il + 25x?) with a sharp crest using 21
data points. For the spline case, a data point-at—0.5 was raised slightly
— the effects are quite localised.

variation near the crest has destroyed the accuracy inakdysVarying region away from the crest. A
series of Chebyshev polynomials would be no solution to telpm, because they would give exactly
the same results. We now consider the method whose much bettdts are shown in part (b) of the
figure.

1.2 Piecewise-continuous interpolation — cubic splines

It is well-known that for interpolation, piecewise-contus splines can be used to overcome both prob-
lems described in the previous section. They are a sequdriog-alegree polynomials, with a high
degree of continuity of function and derivatives at datanpgibut not complete continuity. Using them
it is no longer necessary to scale the independent variabkk the effects of rapid variation are more
limited to the region in which it occurs. Figué 3(b) shows tlesults for Runge’s problem using cubic
spline interpolation. The results are excellent, even enrfgion of high curvature near the crest. To
further demonstrate the power of the method, a data poxtat-0.5 was raised by 10% to make the
data slightly irregular. It can be seen that the effects @ghiy localised, reflecting the largely local
nature of the spline interpolation.

The method is described in many books (for example, Contalari@bor, 1980, and de Boor, 2001) and
included in software packages. The physical interpratatiod the name of cubic splines is familiar to
civil engineers, for it comes from a draughtsperson’s fliexgtrip or "spline” which can be used to fair
smooth curves between points. If the strip is held in pasiab various points by pins, then between
any two of those pins there are no lateral forces acting ddfieeshear force in the strip is constant, the
bending moment varies at most linearly, and hence by beaontiff®r sufficiently small deflections) the
strip takes on a cubic variation between the two points. &s/triation of moment is different between
other points, other cubics will apply there. However, baeathe shear force and bending moment
are continuous across each pin, then the first and secongiiles are continuous across the pins, or
interpolation points. With four unknown coefficients foethubic in between each pair of points, and
the requirement that each of the two cubics, to left and idletach interpolation point, must interpolate
at that point and must have the same first and second deesatiimost enough equations are obtained
for all the four coefficients of each cubic.

It is necessary, however, to specify two more conditionsis Timly be by specifying the slope at the
two end points, as in Conte and de Boor (1980, Section 6. By arbitrarily specifying that the second



derivative at both the end points be zero. This "moment:fez®l condition gives the so-called "natu-
ral spline” approximation, which is the method traditidpaddopted. In general, however, there is no
particular reason at all why the first or the second derieadifithe interpolating spline should be zero at
the ends, and in almost all presentations and software thétlexception of de Boor (2001), the method
suffers from this disadvantage and is not as accurate ahtteas it might be.

A better way to obtain the two extra conditions is to use that-a-knot” condition at the first and last
interior points (de Boor 2001), where it is required, in addition ®fihst and second derivatives agreeing
to left and right of the interpolation point, that also thadtderivatives agree. The physical significance
of this is simply that a single cubic interpolates over thstfiwo intervals and another over the last two
intervals. No arbitrary assumptions have been introduaad, it can be shown that the error is much
less than for "natural” splines. The manner in which the fiatibns of the interpolating polynomial
are held down has made cubic splines popular as a means gfalatiing and obtaining derivatives
numerically.

2 Piecewise-continuous approximation — quadratic andccubi
splines

2.1 Introduction

Here we extend the use of splines from interpolation to appration in a least-squares sense with
a finite number of specifiable knot/node points, across wtiiehfunction and some of its derivatives
will be continuous, but where the functions are primarilyedmined by least-squares approximation.
The node points can be spaced more closely where the daés vadre rapidly. It is expected that not
many such intervals will be necessary. We will call this noetlthat of Approximating Splines, using
low-degree spline functions and least squares approxamati

The method is a quite obvious one. However, the author ha#t spene effort searching for presen-
tations and applications. It is mentioned enigmaticallg &niefly in obvious places on the Internet.
There are a number of papers available, but the author hafowmod any with a presentation of the
theory and method and an exploration of practical aspectpplying them. Many papers use the
term Regression Splines, following statistical terminology. These all seem to gatceéhat the method
is obvious and then to pursue abstract and arcane areasooétibal statistics, with no presentation of
method or results for practical problems. Of papers thathsavord "approximation” rather than "re-
gression”, there are some with source code versions alailakC, Fortran and MatLab, for example
http://people.sc.fsu.edupurkardt/msrc/spline/spline.html. But nowhere is the method exgdior its
performance described.

There is one variant of piecewise polynomial approximatidrich is described elsewhere, and that is
Smoothing Splines (de Boor 2001, pp207-214). That approach is where no twesalfithe independent
variablex are the same, one fits a spline over every intepyak 1], i = 1...N, and calculates the error
e as the sum of squares of errors at every data point, but addsughiness” term to the quantity

to be minimised, which is the integral of the curvature, teeomd derivative of the splines, over the
whole interval. For many data approximation problems tlggirement that no tweg; be the same is an
important limitation, and we will not consider it further.

When the author began this work, he also included a rougheess minimising total curvature, but
found that it was not necessary, and the Approximating $pliatescribed here seem to have a natural
tendency to minimise total integrated curvature.

If one pursues some statistical papers, one encounters pnecbcupation with homoscedasticity, or the
requirement that the variance of the points about the fitteglecbe constant over the whole domain.
Otherwise, it seems that the Gauss-Markov theorem showdehst squares as we use it will result


http://people.sc.fsu.edu/~jburkardt/m_src/spline/spline.html

in bias of the results. We are going to going to ignore suclsicamations. Amongst others, we will
consider a problem where there is more than a thousand-&idtion of the dependent variable, and
presumably variance changes by a similar ratio. Excellesults are obtained for that problem and for
all others we have considered. We will simply approximate least-squares sense.

2.2 Method

| | |
Xj-1 X X1
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Figure 4: Spline approximation of scattered points — théicedrposition of the knots, shown by open circles, is
calculated by the program

Consider the scattered data such as shown in Flgure 4 congpeshumber of data pairsg,y;) with
i=1,2,.... Let the data intervalXmin, Xmax be subdivided intd intervals byJ + 1 points, whose co-
ordinates arex = X for j = 1...J+ 1. We expect that these will be placed roughly in accordante w
the rapidity of variation of the data. Th§, however, are separate and ordered, suchXpat > X; for

all the j. The points are to be approximated by a number of low-degsbmpmials such as quadratics or
cubics,Py(x), P2(x), ..., P3(x), where the number indicates the interval over which therpmtyial P;(x)

is valid, between knot or node points)at= X; andx = X; 1. Over each interval we have a polynomial
of degreeM, such that at over the intervg| X; < x < Xj41:

M
Pi(X) = Cjo+Cja(X= X)) +Cj2 (x= X)) +... = cjm(x—X)™, )
m=0

where in this casayl is expected to be only 2 or 3, giving quadratic or cubic fumtdi These are the
same as the functions used in spline interpolation. It isvecessary to scale tixeas we recommended
in 0 as it only appears as the local shifted vatueX; and the degree of the polynomial is low.

The spline nature of our approximation now requires us tigfyadcross each interior node the continuity
of function value plus all derivatives up i — 1. Hence for allj = 1...J — 1 we have

Pi-1(Xj) = Pj(Xj), (3a)
(X)) = P{(X), andifM=3, (3b)
(X)) = P 30)

From equation[(2) at left and right, and usidg= Xj;1 — X; for the interval length, the continuity



conditions become

M
Cjt10 = Z Cj’m5jm :Cj’o+Cj715j—|—...+Cj7M5M, (4a)
m=0
M
Civrt = Y MCjmd™ * =Cj1+...+Mcjmd)*, and ifM =3, (4b)
m=1
3
2Cj112 = z m(m—1) Cj,m5jm72 = 2¢j 2+ 6Cj 30;. (4c)
m=2

Now, unlike Interpolating or Smoothing Splines, we do na tise conditions that the knot points are
data points X; = x;. Neither do we require, like Interpolating Splines, thatleapline passes through
the corresponding data poiRf(X;) =y;. Instead, we seek to approximate the data points such #at th
sum of the squares of the errors over all the points is michisVe write this as a sum over all the
intervals of all the contributory points in each intervaldavhere each data point is assigned a weight of
Wi

J

e=3 S wi(Pi(x)-y)* (5)

J=1i€cl;
where we have used the mathematical notatien; wherel; is the set of points which are in intervgl
I = {i : Xj <X < Xj4+1} which simply means taking all the poirtsvhich are in intervalj. This means
that the contribution to the total errenf a data point is only given by the spline function on the rivexe
in which it falls. Nevertheless it will affect the overalls@t by the continuity conditions at the ends of
that interval.

We write e using the polynomial as given in equatidnh (2) as

J

M 2
e=> 6Z_wi (nZOCj,m(Xi—Xj)m—Yi> : (6)

=i
Convenient aspects of this formulation are:

e Thex can be in any order

e There can be multiple points with the samgeand

e The weightsw; can be assigned arbitrarily so as to attach less or more tamp® to a point or,
with a large weight, to force the spline to go through or niat point.

We calculate how many unknowns we have. For each intgrvall...J we haveM + 1 values of the
Cjm giving J(M + 1) unknowns or degrees of freedom. However, equatibhs (4)lenabto eliminate
M unknowns at each interior knot point=1...J — 1 giving a total ofM (J — 1) such unknowns so that
the net number of unknowns s+ M. To be specific, these are 8+ 1 coefficients in the first interval:
C10,---C1m plus theMth degree coefficients at each of the 1 internal pointo v, ...Cym.

The problem is now to find all the; i, such that is minimised. We have two ways of proceeding. We
could set up théNormal Equations by differentiating equatior{{6) with respect to each unknawm
and setting equal to zero for an extremum, which gives theesanmber of equations as unknowns.
For global approximation such as a polynomial, the equatam@ famously poorly conditioned, and
numerical solution can be quite difficult and not so accurdtkile the spline formulation would lead to
a diagonally-dominant matrix form, which would be more rsiunere we adopt a rather more modern
method and avoid the Normal Equations altogether, whereistelse optimisation software to minimise
e and determine the values of the coefficients. Such softveanédely available, including the Solver
module in spreadsheets. This method is rather simpler amd easily implemented.



3 Practical considerations and computer program

We have written computer programs to implement the Splinpréximation method, one in MPLE,
and one in C, giving an executable fdgoproximating-splines.exe. The detailed use of that program,
available at http://johndfenton.com/Approximatingiepk/ is described in Appendix A.

3.1 Modes of operation, number of intervdlsand placement of knots

There are different applications of the program, howevey florm something of a continuum, whether
the number of intervals is very much less than the number iotgpd@ < N, whether there might be not
such a big difference between the two, or in the limilas N, which we callquasi-interpolation:

Approximation of scattered data,J < N: one has to have enough intervals so as to be able to describe
the local variation adequately, but in general the fewemtinmber of intervals the better so that
there are more data points in each interval to better defméotal quadratic or cubic.

The program does a very good job of approximating whatevisrdiven, but sometimes this is
too good, for example when in one interval there might be asa® 2 or 3 data points, the local
quadratic/cubic obligingly tries to interpolate them, giag through or close to each point. This is
not necessarily what one wants with scattered data, sottisadésirable to have a number of data
points in each interval.

It is recommended for the first application of Approximati@glines to a problem that the default
option be chosen, where the program places the knots autathatsuch that there are equal
numbers of data points in each interval. Then, visual exatiun of the results might suggest
the clustering of knots in regions of rapid variation, frorhigh a*.knots file could be prepared
with values of theX; modified by hand. In typical applications described beloaugs of] =
3,4,5,6,7,... intervals have been found to be usually satisfactory.

Near the ends of the data set, where there might be moressridelated points, the program
also tends to agree closely with the data, which in this ceisepleasant property, especially for
stream-gauging data, where there may only be one or twospairthe upper end.

Smoothed interpolation and differentiation: here we consider an application of the program where
one might have a number of discrete data points lying almosa @ontinuous curve, such as
if they had been scanned and digitised, or if we wanted tewifitiate the data, when numerical
differentiation would give irregular results. We approxit@ the points to give a smooth continuous
curve that can be used for plotting, calculation of functi@ues, or even differentiation. The
process is not quite interpolation, it is not quite appraadiion, but a combination of the two, for
which we have given it the name "Smoothed interpolation”. codirse, it is not really different
from the approximation problem, just that the data is notcasdtered. In this case it is probably
necessary to have a larger number of intervals so that ajppatien is more precise.

Quasi-interpolation, J < N — 3: The question arises, what happens if we let every data peiatkmot
such that] = N —1? Can we use the program to interpolate a set of data pointe?aiswer
is "na”, for now there are too many degrees of freedom. It Wdog analogous to using a con-
ventional spline interpolation program but without the texdra equations required, as described
above. In fact, the present program almost works in that usplecified manner, except over the
last two or three intervals. It could be modified to includér&xcontinuity conditions. However,
as we are mainly concerned with approximation we will notfs.tinstead, if we simply use two
fewer knots than data points, that is, we chodseN — 3, or slightly fewer than that, the program
seems to work well. Figufe 10 below shows an exampdémest interpolating every data point,
including the two we have chosen not to be knots.
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3.2 Performance

The program has worked remarkably well in all the examplesatiithor has considered. It has never
failed badly. Sometimes adjustment of the knot positiomeiessary to describe regions of high curva-
ture or to avoid having too few points in an interval.

3.3 Quadratic or cubic

It does not seem to matter very much whether quadratic ocamines are used. The method is quite
robust, with a minimal tendency for oscillations to devel@ne may as well use quadratic splines, as
there are fewer unknowns and computation time is shorter.

3.4 Computation time

On a personal computer builtin 2011, using the Windows dpeyaystem, approximating the Nikuradse
data in§4.7 with N = 232 data points, using quadratic splines dnd 7 intervals, with results shown in
Figure[%, computation time wasls, and ford = 20, Q9s (the results for the latter were not as good as
for J =7, as with fewer data points in an interval, as describedipusly, the splines do a faithful job of
approximating them to the point of almost interpolatingnthend this gave irregularities in the result).
These times were typical for other problems too.

The author often uses cubic spline interpolation to protkssresults of time-stepping solutions of
partial differential equations, so as to be able to plot ltesat every few steps and possibly obtain
derivatives. For such applications, with hundreds of jpidations necessary, the present approximation
method would be too slow. Fortunately in those problems wntiooth data, conventional spline interpo-
lation works well. For the stand-alone problems we studyis dlocument, computer time was never a
problem.

3.5 Imposing conditions

There is a simple way of requiring the approximating splm@dss through (or near) a particular point,
by adding that point to the data file and giving it a large weighich as 10. Conversely, of course, the
importance of any data points can be minimised by reduciagmgight of that point or giving it a zero
weight. If weights are not specified, they are assumed to bbdre seems to be no simple way of using
the present program to include information about first oosdderivatives at any point.

4 Examples of applications

4.1 Nikuradse’s results for resistance in pipes with umifd@woundary
roughness

Figure[® shows Nikuradse’s 1933 results (English tramsiatNikuradse 1950) for resistance in pipes
with uniform boundary roughness. The present author hamschand digitised the data from figure 11
in that work, as there are errors in that table 7. For the abdfee logarithm of the grain Reynolds number
log;oR. is used, wher®, =log(u.d/v), u, is the shear velocity, = \/1/p, in which T is the boundary
shear stress angl is the fluid densityd is the grain diameter and is the kinematic coefficient of vis-
cosity. The ordinate is the quantity introduced by Colekrand White,F = 2.0l0g,(3.7/¢) — 1/V/A,
wheree = d/D is the relative roughness, in whidh is pipe diameter, and is the Darcy-Weisbach



Lr

' Nikuradse °
0.8F Approximating splines —— A
X Spline knots °
0.6 - Smooth pipe - i
0.4}
0.2}
L
oL
0.2+
0.4+
-0.6 | _
085 05 T 5 ) 25 3
log;oR.
Figure 5: Nikuradse’s results fér as a function of the logarithm of the grain Reynolds number
1 T T T T T T T T
Nikuradse )
0.8 LApproximating splines —— 4
Spline knots o
0.6 | _
LL -
06 07 08 09
Figure 6: The results re-plotted in terms of the inverse efgtain Reynolds number
0.1F I I I I Nikuradse I o ]
s Approximating splines —
0 ' Spline knots o
-0.1F
L 0.2}
-0.3F
0.4} 00
e o
054 0.0 002 0.3 10/.'9{4 0.05 006 0.7 0.8

Figure 7: Enlargement of part of figulé 6 in the large Reynaldsber limit, /R, small, for civil engineering

flows

10



resistance coefficient. For fully-rough conditioRs — o, Nikuradse concluded that a quantity like
approached a constant value. Colebrook and White intrabtieedefinition here such that in the fully
rough limitF ~ 0, as suggested by the figure. The figure here shows that ihe gpiproximation using
J = 6 intervals and quadratic splin& = 2 works well.

To further examine that limit we try to do something differémm conventional practice, where even
using loggR. is difficult in the limit of infinite Reynolds number, and theeiof the logarithm has
no real physical justification. It makes sense to use anatheissa, and an obvious choice &R,

as this goes to zero in the large Reynolds number limit, widabf rather more interest for hydraulic
engineering. Possibly of greater importance, it has a physignificance, in that it is a dimensionless
viscosity number, directly representing the importanceistosity, asR;* = v/ (u.d). It would have
been better had the Reynolds number itself originally beximed in this way.

The results are shown on Figlide 6, and we get a very diffeppreaiation — the region of small viscosity,
typical of civil engineering flows, is really very small. lac be seen that the approximating quadratic
splines seem to work well, with 7 intervals specified by a ssgaknots file as described above. Initially
we tried using automatic allocation of knots, placing kreaish that each interval had the same number
of data points, but the results were not quite as good. Athlaepsdip in the curve, the approximation
is not completely satisfactory. We tried including more kpoints there, but that just led to a small
oscillation in the approximation as there were fewer daiatpan each interval.

To examine the limit of large grain Reynolds number furtheg, plot an enlarged version of the left of
the figure, for small 1R,, in Figure[J. The results are now more revealing, for it casd®n thaF does
not go to 0 but seems to go to aboudDin the fully-rough limit, as suggested in Figlile 5, althlowhat
only went as far as 0B, ~ 3.

There is quite a scatter, of abot0.03 on Figurd_l7, however this large Reynolds number limit fs su
ficiently important that we present the formula obtained iy program for the first interval. Here,
however, we are going to be a little bit naughty, and in spit@arnings above against extrapolating and
against expanding polynomials with shifted origins, weang and assume that we can extrapolate to
1/R. = 0 beyond the minimum experimental value gRL = 0.00098 (it is a very small amount) so that
we write

. 3.7 1 0.0453 222
For 1/R, < 0.02, thatisR. > 50, F =2.0log;, <?> ———~0.0135—- - — (7

VA R, Re
This raises a question, however, as to whether we shoulditmpased a zero derivative on the approx-
imation in the limit as IR, — 0. That is, in the limit of infinite Reynolds number, shoul@ tlunction
be independent of Reynolds number? Our program cannotligcticathat, in any case. However the
second term on the right of equatidn (7) is so small in theeahg 1/R, < 0.02 that it suggests we can
omit it and write

. 3.7
For 1/R, < 0.02, thatisR. > 50, F =2.0log;q <—

>_i 222
€ VA

(8)

4.2 Rating curves in river hydraulics

The original stimulus for the development of Approximati@glines came from an important problem
in river hydraulics, of approximating rating data for a gauggstation. Relatively infrequently, hydro-
graphers measure the flow velocities across a river andrateeghem to give the dischargg, while

the water surface elevatidnis also measured. With the results from many such streargiggs; one
would like to establish a relationship betwe®randh. From this, daily, hourly, or even more frequent
automatic measurements of the surface height are then aggdetthe discharge at that station corre-
sponding to each reading. Current practice in obtainingefaionship shows a surprising prevalence of
arbitrary and laborious hand/screen methods. It is hopeidtiie present approach might give a means
of automating the task.
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Figure 8: Results for the 1970s for Gauging Station 0244&B0the Noxubee River near Geiger, Alabama, USA

As an example, Figurig 8 shows all data, roughly 100 pointsn fthe 10 years of the 1970s for United
States Geological Survey Station 02448500 on the Noxubesr Rear Geiger, Alabama. The approxi-
mating spline method was applied to giQeas a function oh, not by approximating data pai(k;, Q;)

but instead taking the square root of the dischargqsﬁ) and approximating. As the relationship be-
tweenQ andh for small flows often looks approximately lik@ ~ (h— hmin)? this makes the description
of small flows more accurate. In all three parts of Figure &#selts are shown, characteristically for all
such rating curves, with the independent varidbte logh plotted vertically, and the dependent variable
Q or logQ plotted horizontally. Figurél8(a) shows the results for libsws using natural scales; part
(b) shows all the results on natural scales; while part (opshthe results on log-log axes, commonly
used in practice. It can be seen that the spline approximadidighly satisfactory, and is capable of
approximating over the whole range of flows from%m' to 3500n¥s~1, something that is required in
practice. Only 5 intervals were necessary, despite the thare thousand-fold variation in the depen-
dent variable, the discharge. It was found that using therldgns ofh andQ to actually perform the
approximation gave results which were no better. The metimw#s surprisingly well. The author has a
paper in preparation describing in detail the applicatibAgproximating Splines to such rating data.
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4.3 A different application — Smoothed interpolation
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Figure 9: Example of the use of approximating splines tapakate and smooth data — using scanned and digitised
results from Batchelor (2000, p341) for the variation ofglmefficient with Reynolds number of a
smooth circular cylinder

The situation here is where one has a set of discrete pogattsight have been digitised or measured by
hand, which might have small deviations from a smooth cuovelotting because of the imperfections
of the digitising process or using straight lines between gaints.

As an example we consider the data set obtained by the autiem fve scanned and digitised figure
5.11.6 on page 341 of Batchelor (2000), for the variatiorhefdrag coefficienCp of a smooth circular
cylinder as a function of Reynolds number. This includeswed-known sudden drop i€p as the
boundary layer goes from laminar to turbulent, making iméation/approximation by global methods
very difficult, and which was the reason the author chosepitiblem as a demanding test.

Here the author tried to approximate the problem as simplyoasible, without giving an extra knots
file, the default option being simply to allow the program pase knots such that there are the same
number of data points in each interval. Results were hightisfactory, as shown in Figuié 9, with the
smooth continuous line of the output of the program and thatpmf the author’s digitisation. The
results shown are fal = 20 intervals with cubic functiongyl = 3, using values of the logarithm of the
Reynolds number for the, i.e. using the co-ordinates in which the figure is plotted.

4.4 A quasi-interpolation example

We consider the limit whed is equal toN — 3 or just less than that, as has been mentioned above,
giving a near-interpolation of the data. Figlré 10 showsa siave defined by 21 points and the near-
or quasi-interpolation using 19 knots or 18 intervals. Thesing two points can be identified on closer
examination. The results are good. This is a way of usingieplfor quasi-, or almost-interpolation
using the program described in the Appendix. It can be sirimpptemented by taking the data file, for
exampleFilename.dat, copying to fileFilename.knots and deleting any two or more lines (the second
column of numbers in the knots file is not read and could stegedh
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Figure 10: Example of "quasi-interpolation” where there awo fewer knot points
than data points

4.5 Numerical differentiation

It is well-known that numerical differentiation is an optéoa which may give quite poor results, whether
from natural variability in the data, or where the data hasnbguncated to too few significant figures.
Using the present program is one way to obtain smoother asgllgp more-reliable results. The deriva-
tives are easily obtained from equatidh (2), and have beed imsequationd {3) an@l(4). The output of
the program includes for a large number of points output,défault value being 20 over each spline
interval, the function value at the point, first and secondveéves there and third derivatives if cubic
splinesM = 3 are used.

4.6 Numerical integration

This is, of course, relatively simple and robust anywaynewih noisy data, nevertheless we present the
expressions from Approximating Splines, trivially obtih Within a single interval, the integral is

X
: Pi(X)dx = Cj o (X— X}) + 2cj.1 (x— Xj)? + ¢ 2 (x— X))+ L¢3 (x— X)*,
j

where for quadratic splines the last term is dropped. Thregal of the spline over the whole interval of
approximation, from the first knot poidg; to the lastxy, 1, is

I X J
/X P dx="Y (cjodj+3¢j10f +3Cj20] +36i3d]) .
=177 =1

whered; is the length of interval, as defined previously.

4.7 Calculation of envelopes to data points

Another application of the present approximation metho e calculation of aenvelope above or

below data points. The approach suggested is first to cédctila approximating spline to all the points,
and to delete those points which lie above or those belowgpeoaimation approximate the remaining
points, and repeat as many times as necessary. The procedimple using the accompanying program
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Figure 11: Calculation of envelope by systematic deletibpaints above or below
approximation

and is described in the Appendix. Figlré 11 shows resulta fable 3 of Fenton & Abbott (1977) and
plotted in their figure 5. The ordinate is the dimensionléssshold shear streés = 19/ (pg(G—1)d),
whereTy is the bed shear stress at which particle movement occyrisdiuid densityg is gravitational
acceleration( is specific gravity of the bed grain, adds grain diameter. The protrusignis the amount
by which the particle protruded into the flow above the otheevweo-planar bed grains. The figure shows
how the threshold bed shear stress on a bed particle, thelhwhirains the particle into the flow, depends
on how much that particle protrudes into the flow. Becausb®tkperimental arrangement with a finite
time of exposing each particle at a particular elevationwas theminimum shear stress which was
important, and so it was desired to plot the envelope belevptints.

The process of successive approximations, neglectingaitgpabove the curve each time, gave a good
result for the envelope to the points. As approximately ttadf data points are lost with each pass, the
number of passes is limited. In the figure shown, and the atdnid the accompanying program, the
two data points with the smallest and largest values of ieddpnt variablg/d, were always retained

to ensure that the final envelope would extend from the sstatelargest values gf/d. Cubic splines
with M = 3 were used — but with only = 2 intervals. Another pass of the program gave poor results,
where the envelope passed near to the outlying points bélewthers, and with oscillations. There is
still a certain amount of arbitrary judgement necessanpiyang the method.

Also plotted is the original envelope curve sketched by &e@& Abbott (scanned and smoothed with
the present program). It can be seen that the calculationeoéntivelope by the present program agrees
surprisingly closely. At the left of the figure, one might gagt the present program has shown greater
courage and judgement than the original authors, who tteddaeir envelope curve as shown.

The result of this figure was of some interest, for it confirnBajnold’s conjecture that the Shields
diagram for incipient motion of bed particles is misleadirfepr large grain Reynolds numbg;, the
dimensionless threshold stress for incipient motion wéis\ve to befy ~ 0.03 to Q06, almost certainly
obtained from experiments on large bed material which wilfscally levelled in laboratories such that
p~ 0. In a natural bed, however, particles can project abovie tireégghbours with a finite value of
p/D and, according to the figure, a correspondingly smallerevafify ~ 0.01 for large grain Reynolds
numbers.
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Appendix

A Program package

A.1 Approximating splines program files

The program files are available from http://johndfentomt&pproximating-splines/.

The following looks complicated, but use of the packageadlyejuite simple: one needs the program file
Approximating-splines.exe, a file Control.dat in the same directory, whose first line contains information
where to find a third filePath/Filename.dat containing the data, and which columns of that file to use. A
fourth file Path/Filename.knots may be later necessary to adjust the spline knot points.

Approximating-splines.exe — the program file.

Control.dat — in the same directory as the program, directs it to the waorkiirectory where the data
is stored, which is where a results file of the same name, hit*wies extender will be created.
This file has all the computational parameters on the samee Tihe program only reads the first
line, so that the file can contain many lines of informaticagefor a different problem, which can
be brought to the first line when required.

Data directory path/  Filename m, m, my Meoumns M J  Comment/Remark

The entries are:

e The path where the data is (it can be anywhere on the compaigre:/Hydraulics/Pipelines/
—and can be specified relative to where the executable #e.is/Thesis/Chapter_1/). Itis
also where output will be. It must terminate with /.

e The second entry is the name of the example or data setfileout extender, which is the
common name of one or two data fildslename.dat and possiblyFilename.knots) which
will be used to produce a results fiéename.res.

e my: column number in the data filélename.dat for thex;
e my: column number foy;

e m,: column number for weightsj. If there is no column for they;, this number is 0, and
the program setw; = 1 for all i

e Meoumns Total number of data columns in file, however annotatiomsfollow on any data
line

e M: the degree of the splines, 2 or 3.
e J: the number of spline intervals. Jf< 0, a data filé=ilename.knots must be provided.

e After this a comment is possible

Example

JExamples/  Scattered 1 2 0 2 2 3 Experimentwithno. of ister3, 10
JExamples/ Batchelor34l 2 3 0 3 3 20 Scanned figure from Bhich
J/Examples/  Cubic 1 2 0 2 3 6 Trivial example of a cubic to test
C:/Pipelines/ Nikuradse 4 5 0 5 2 0 Noweights, needs knots file

Computational-parameters.dat — this file may never have to be examined or modified. After aéea
line it contains five numbers, one on each line possibly ¥odld by a comment:

17


http://johndfenton.com/Approximating-splines/

e The number of equally-spaced results points to be printétboeach spline interval. If your
resulting figure is not sufficiently continuous, the defaallue of 20 could be increased.

e The number of significant figures for output, default 5
e The convergence criterion for the optimisation, defaidt 16

e Is an envelope curve to be calculated? If O no, if an integ@r (> 0), the envelope below
(above) the data will be calculated after repeated rungyithesl below.

e The maximum number of data pairs that the program allowsulie2000. This is included
such that with data that is not precisely as expected by thgram, it does not go into an
infinite loop. If you have more data pairs than this, the progwill print out an instruction
for you to increase the number in this file and will then exit.

In the directory C:/Data directory path/ specified inControl.dat — one or two data files are to be placed,
each with the leading name given, for examplgename

Filename.dat — containing the actual data. There is a header line, thesitgps blank line, then
any number of lines withm.qiumns NUMbers, plus if necessary, any annotation of the data.
Thex; are in columnmy, they; in my, and ifm, is not equal to O, the weights; to be used
for that particular point are in columm,. Any other columns of data not relevant to the
approximation can be included in the file. Timg, my, my, andmeoumns Specify only the data
that is to be used. The lines can be plaoedny order.

Example, for whichmy = 1, my = 2, my, = 3, Mcolumns= 3 would be used itControl.dat.

Sample data set

0 1 10 Weight of 10 to force the approximation to honour thispo
1 0 1

0.8571 0.0570 1

0.7143 0.1392 1

Filename.knots — if the number of spline intervald has been set to zero or a negative number,
this file must be provided. It contains a header line, pogsillilank line and then any number
of single values of the spline node poitkgs ideally beginning with the minimum of all the
and ending with their maximum value. Tk must be in ascending order. On each line any
annotation of the data is possible. If the fitis less than the minimum of all the and/or
the lastX;, ; is greater than the maximum data value, then the splinesdir@uéxtrapolating,
and this is not recommended.

Sample knots file
0 This is the minimum

0.03 The first interior point
0.25

A.2 Files output by the program

Two files are usually generated, three if an envelope curkenjisired.

1. The main result file is output to the data direct@yData directory path/ and is calledFile-
name.res It has three blocks of data:
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A3

Data points (sorted): The input data, extracted as described above, possiblydifbenent columns
of a data file, is sorted according to tkeand copied here witlk andy; in columns 1 and 2.
The sorting is necessary if the program automatically aties knot points. We thought it a
possibly-useful extra in any case. The precision of theimighumbers is retained.

Spline data — knot points and coefficients for each interval:This block could be copied to an-
other file where it could be used in simple stand-alone mach#@adable form by other
software or inserted into a spreadsheet. The first line omtafter a Gnuplot comment
symbol, the values al andM. The nextJ+ 1 lines contain, forj =1...J+ 1, values of
Xj, andcjm for m=0,...,M, the whole spline solution. Each number is in scientific farm
with the number of significant figures given @omputational-parameters.dat.

Computed splines - values and derivatives:This is useful for plotting. At the knot points and
also at a number of points intermediate between them, tmbauspecified ilComputational -
parameters.dat, with 20 as default, values afare printed followed by the value of the spline
thereP; (x), and itsM derivativesP] (x), Pj’ (x), and ifM = 3, P{" (x). The numbers are out-
put in floating-point format with the number of significantdigs given inComputational-
parameters.dat.

The file as created with these three blocks separated by sittlea blank lines is suitable for
reading by the graph plotting software Gnuplot (http://wgmuplot.info/).

. A small file Control.plt is created by the program in the directory whekpproximating-

splines.exe and Control.dat are placed. There is already a ffot.plt there which can be used
for immediate plotting with Gnuplot to see the results ofrmimg the program. It readSontrol.plt
and plots the results in a window.

. If in Computational-parameters.dat the fourth data line contains an integgi0, this enables the

calculation of an envelope using repeated passes of theggnogin extra new data file is created
with a "-1" appended to the filenam&jlename-1.dat. If the integer in the fourth data line is
positive/negative, only those data points falling abogkfy the splines curve are output. Then in
the first line ofControl.dat, Filename should be amended by the useiFitename-1, the program
run, fitting a curve to half of the original points and genie@t file Filename-1-1.dat containing a
quarter of the original points. Modifying the filename in first line in Control.dat to Filename-1-

1, running the program again, gives a curve which has 1/8 abtiggnal points outside it, and can
probably be considered to be the envelope, in the spirit pfagmation. The extra fil&ilename-
1-1-1.dat will now have only those points and is probably not usefule phocess can probably be
terminated without running again. At each stage the progedains the first and last points. They
could be edited out if required.

Additional files included in the package

Plot.plt is a Gnuplot file which can be used for immediate plotting slits from the program —
see below.

Directory Examples with data filesScattered.dat, Sne.dat, Sne.knots, Batchelor341.dat, Cubic.dat
plus result files from the authors computations.

19



	Introduction
	Piecewise-continuous approximation – quadratic and cubic splines
	Practical considerations and computer program
	Examples of applications
	References
	Program package

