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The general result of equation (1.3) for flow on a finite slope seems to have been
forgotten by many. In general, pressure in flowing water is not “hydrostatic”.
However in this course, bed slopes are small enough that we will use it.
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The resistance to the flow of a stream is a very important quantity in river mechanics
– and is almost always poorly known.

We consider a simple theory based on force balance and some classical fluid
mechanics experiments to obtain a flow formula for a wide rectangular channel.
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To obtain the equivalent formula for channels of any section we consider velocity
distributions in real streams and develop an approximation giving a general flow
formula.
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The oldest flow formula is that of Chézy . Here it is written in terms of and the
Weisbach dimensionless resistance coefficient .
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We consider the approximation to the formula we obtained theoretically and find that
we have obtained the Gauckler-Manning-Strickler formula, including a theoretical
prediction of Strickler’s formula for the effect of boundary grain size.
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Comparison with a series of experiments validates the Strickler approach, giving an
explicit flow formula for a variety of channel boundaries.
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It is better to use a simpler formulation of the flow formula in which forces and the
mechanics are clearer: the Weisbach form of the flow formula (2.8) has several
advantages.
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The problem of the current momentary resistance in the stream is actually a very
difficult and uncertain one, with large variation. We plot a diagram with a large
number of field studies showing the variation and how one might use the figure and
empirical formulae to obtain a resistance coefficient.
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We consider more complicated situations. The important problem of a compound
cross-section is difficult to solve rationally. Existing simple methods have been
abuses of science.
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The common practical problem of calculating the water depth for a given flow rate
is considered. A computational method is developed and applied.
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We consider some of the simplest concepts of hydraulics with a critical view, and
generalise them.
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The main objective here is to obtain a convenient theory for the effect on a stream
of a partial obstruction. To do this we linearise the governing momentum equation.
This is an example of how approximating a problem can give more insight and
understanding.
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long wave equations shallow water equations
Saint-Venant equations
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In general, however, solving the long wave
equations themselves using our explicit FTQS scheme is the best of all.
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