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Abstract

The aim is to give an understanding of the numerical approximation and solution of physical systems,
especially in open channel hydraulics, but with more general application in hydraulics and fluid
mechanics generally.

The marriage of hydraulics and computations has not always been happy, and often unnecessarily
complicated methods have been developed and used, when a little more computational sophistication
would have shown the possibility of using rather simpler methods.

This course considers a number of problems in hydraulics, and it is shown how general methods,
based on computational theory and practice, can be used to give simple methods that can be used in
practice.
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1. Introduction – numerical methods
In the first part of the course we considered methods for common problems, including solutions of nonlinear
equations; systems of equations; interpolation of data including piecewise polynomial interpolation; approximation
of data; differentiation and integration; numerical solution of ordinary differential equations. The lecture notes are
at URL: http://johndfenton.com/Lectures/Numerical-Methods/Numerical-Methods.pdf.

For the remainder of the course we will be considering problems in hydraulics, largely open-channel hydraulics,
and will be developing methods to solve those problems computationally. Initially the problems considered are
those where there is a single independent variable, and we solve ordinary differential equations, notably for cal-
culating the passage of floods through reservoirs and for steady flow in open channels. Subsequently we consider
unsteady river problems such that variation with space and time are involved, and we solve partial differential
equations. We consider model equations that describe important phenomena in hydraulics and fluid mechanics,
and develop methods for them. Then these methods are carried over to the full equations of open channel hy-
draulics.

It will be found that the methods developed here are based on general methods of computational mechanics,
and are rather simpler than many methods used in computational hydraulics by large software companies and
organisations. It is hoped that these lectures will empower people and give them confidence that they can solve
problems for themselves, incorporating a spirit of modelling, and not be dependent on large software packages
whose properties are often spurious.

2. Reservoir routing

Surface Area A

z = η +∆η

z = η

I(t)

Q(η(t), t)

Surface Area A+∆A ≈ A

Figure 2-1. Reservoir or tank, showing surface level varying with inflow, determining the rate of outflow

Consider the problem shown in figure 2-1, where a generally unsteady inflow rate I enters a reservoir or a storage
tank, and we have to calculate what the outflow rate Q is, as a function of time t. The action of the reservoir
is usually to store water, and to release it more slowly, so that the outflow is delayed and the maximum value is
less than the maximum inflow. Some reservoirs, notably in urban areas, are installed just for this purpose, and are
called detention reservoirs or storages.

Also consider the volume conservation equation, stating that the rate of change of volume in a reservoir is equal to
the difference between inflow and outflow rates:

dS

dt
= I(t)−Q(η(t), t), (2.1)

in which S is the volume of water stored in the reservoir, t is time, I(t) is the volume rate of inflow, which is a
known function of time or known at points in time, and Q(η(t), t) is the volume rate of outflow, which is usually a
known function of the surface elevation η(t), itself a function of time as shown, and the extra dependence on time
is if the outflow device such as a weir or a gate is moved. The procedure of solving this differential equation is
called Level-pool Routing.

The process can be visualised as in figure 2-2. Initially it is assumed that the flow is steady, when outflow equals
the inflow. Then, a flood comes down the river and the inflow increases substantially as shown. It is assumed that
the spillway cannot cope with this increase and so the water level rises in the reservoir until at the point O when
the outflow over the spillway now balances the inflow. At this point, where I = Q, equation (2.1) gives dS/dt = 0
so that the surface elevation in the reservoir also has a maximum, and so does the outflow over the spillway, so that
the outflow is a maximum when the inflow equals the outflow. After this, the inflow might reduce quickly, but it
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Time (t)

Discharge

Inflow I

Outflow Q

Figure 2-2. Typical inflow and outflow hydrographs for a reservoir

still takes some time for the extra volume of water to leave the reservoir.

2.1 The traditional "Modified Puls" method
The traditional method of solving the problem is to relate the storage volume S to the surface elevation η, which
can be done from knowledge of the variation of the plan area A of the reservoir surface and evaluating

S(η) =

Z η

A(z) dz, (2.2)

usually by a low-order numerical approximation for various surface elevations. Equation (2.1) can be then be
written

dS

dt
= I(t)−Q(S(η(t)), t), (2.3)

so that it is an ordinary differential equation for S as a function of time t that could be solved numerically.

It can be solved numerically by any one of a number of methods, of which the most elementary are very simple,
such as Euler’s method. Strangely, the fact that the problem is merely one of solving a differential equation seems
not to have been recognised. The traditional method of solving equation (2.3), described in almost all books
on hydrology, is unnecessarily complicated. The differential equation is approximated by a forward difference
approximation of the derivative and then a trapezoidal approximation for the right side, so that it is written

S(t+∆)− S(t)

∆
= 1

2 (I(t) + I(t+∆))− 1
2 (Q(S(t+∆), t+∆) +Q(S(t), t)) ,

where∆ is a finite step in time. The equation can be re-arranged to give

2S(t+∆)

∆
+Q(S(t+∆), t+∆) = I(t) + I(t+∆) +

2S(t)

∆
−Q(S(t), t) (2.4)

At a particular time level t all the quantities on the right side can be evaluated. The equation is then a nonlinear
equation for the single unknown quantity S(t+∆), the storage volume at the next time step, which appears tran-
scendentally on the left side. There are several methods for solving such nonlinear equations and the solution is in
principle not particularly difficult. However textbooks at an introductory level are forced to present procedures for
solving such equations (by graphical methods or by inverse interpolation) which tend to obscure with mathemati-
cal and numerical detail the underlying simplicity of reservoir routing. At an advanced level a number of practical
difficulties may arise, such that in the solution of the nonlinear equation considerable attention may have to be
given to pathological cases. As the methods are iterative, several function evaluations of the right side of equation
(2.4) are necessary at each time step.
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2.2 An alternative form of the governing equation
Another form of the differential equation can be simply obtained. Figure 2-1 shows the reservoir or tank surface,
showing the surface level initially at z = η and the level some time later at z = η + ∆η. Of course in the limit
∆η → 0 the change in storage dS is given by

dS

dη
= A(η), (2.5)

in terms of the plan area A of the water surface at elevation η. Substituting into equation (2.1) an equivalent form
of the storage equation is obtained:

dη

dt
=

I(t)−Q(η, t)

A(η)
= f (t, η) , (2.6)

which is a differential equation for the surface elevation itself, and we have introduced the symbol f (.) for the
right side of the equation. This equation has been presented by Chow, Maidment & Mays (1988, Section 8.3), and
by Roberson, Cassidy & Chaudhry (1988, Section 10.7), but as a supplementary form to equation (2.3). In fact it
has advantages over that form, and this formulation is be preferred. It makes no use of the storage volume S, which
then does not have to be calculated. Also, the dependence of outflow Q on surface elevation is usually a simple
expression from a weir-flow formula or the like. Usually where outflow is via outlet pipes and spillways, it can be
expressed as a simple mathematical function of η, usually involving terms like (η− zoutlet)

1/2 and/or (η− zcrest)
3/2,

where zoutlet is the elevation of the pipe or tailrace outlet to atmosphere and zcrest is the elevation of the spillway
crest. The dependence on t can be obtained by specifying the vertical gate opening or valve characteristic as a
function of time, usually as a coefficient multiplying these powers of η. In general the η formulation requires a
table for A and η, obtained from planimetric information from contour maps, to give A(η) by interpolation.

2.3 Solution as a differential equation
The lecturer (Fenton 1992) adopted the differential equation (2.6) and emphasised that it was just a differential
equation that could be solved by any method for differential equations, most much simpler than the modified Puls
method. When he presented it at a conference in Christchurch in New Zealand, a friend of his said at question time
"But this is trivial! I always solve it like that. Doesn’t everybody?". The answer, then as now, was "strangely and
regrettably, no".

2.3.1 Euler’s method
This is the simplest but least-accurate of all methods, being of first-order accuracy only. It is

ηi+1 = ηi +∆f(ti, ηi) +O
¡
∆2
¢
= ηi +∆

I(ti)−Q(ηi, ti)

A(ηi)
+O

¡
∆2
¢
, (2.7)

where we use the notation ηi = η (i∆) for the solution at time step i, and f (.) for the right side of the differential
equation as shown. This makes the presentation of the next higher approximation simpler.

2.3.2 Heun’s method
The scheme is evaluated in two steps and can be written:

η∗i+1 = ηi +∆ f (ti, ηi) , (2.8a)

ηi+1 ≈ ηi +
∆

2

¡
f (ti, ηi) + f

¡
ti+1, η

∗
i+1

¢¢
+O

¡
∆2
¢
. (2.8b)

2.3.3 Richardson extrapolation
For simple Euler time-stepping solutions of ordinary differential equations, if we perform two simulations, one
with a time step∆ and then one with∆/2, we have that at any step a more accurate solution, denoted by η+ is

η+(t) = 2 η(t,∆/2)− η(t,∆) +O
¡
∆3
¢
, (2.9)

where the numerical solution at time t has been shown as a function of the step. This is very simply implemented.
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2.3.4 Higher-order methods
Any method or software for solving ordinary differential equations can be used. Fenton (1992) considered several,
including higher-order Runge-Kutta methods, but for most purposes those mentioned here are adequate.

2.4 An example
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Figure 2-3. Computational results for the routing of a sudden storm through a small detention reservoir

Consider a small detention reservoir, square in plan, with dimensions 100m by 100m, with water level at the crest
of a sharp-crested weir of length of b = 4m, where the outflow over the sharp-crested weir can be taken to be

Q (η) = 0.6
√
gbη3/2, (2.10)

where g = 9.8ms−2.The surrounding land has a slope (V:H) of about 1:2, so that the length of a reservoir side is
100 + 2× 2× η, where η is the surface elevation relative to the weir crest, and

A(η) = (100 + 4η)2 .

The inflow hydrograph is:

I(t) = Qmin + (Qmax −Qmin)

µ
t

Tmax
e1−t/Tmax

¶5
, (2.11)

where the event starts at t = 0 with Qmin and has a maximum Qmax at t = Tmax. This general form will be useful
throughout this course, as it mimics a typical storm, with a sudden rise, and slower fall. In this example we consider
a typical sudden local storm event, with Qmin = 1m

3s−1, and Qmax = 20m
3s−1 at Tmax = 1800 s.

The problem was solved with an accurate 4th-order Runge-Kutta scheme, and the results are shown as a solid line
on figure 2-3, to provide a basis for comparison. Next, Euler’s method (equation 2.7) was used with 30 steps of
200 s, with results that are barely acceptable. Halving the time step to 100 s and taking 60 steps gave the better
results shown. It seems, as expected from knowledge of the behaviour of the global error of the Euler method, that
it has been halved at each point. Next, applying Richardson extrapolation, equation (2.9), gave the results shown
by the crosses. They almost coincide with the accurate solution, and cross the inflow hydrograph with an apparent
horizontal gradient, as required, whereas the less-accurate results do not. Overall, it seems that the simplest Euler
method can be used, but is better together with Richardson extrapolation. In fact, there was nothing in this example
that required large time steps – a simpler approach might have been just to take rather smaller steps.

The role of the detention reservoir in reducing the maximum flow from 20m3s−1 to 14.7m3s−1 is clear. If one
wanted a larger reduction, it would require a longer spillway. It is possible in practice that this problem might have
been solved in an inverse sense, to determine the spillway length for a given maximum outflow.
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3. The equations of open channel hydraulics
In a course preliminary to this one1, we went to a lot of trouble to obtain the long-wave equations for rivers and
canals, making the general assumption that flow was essentially one-dimensional, observing that such channels are
much longer than they are wide or deep, and that variation along the stream is gradual.

i∆x

∆x
Q

A+∆A

Qb

Ab +∆Ab

x

y

z

A
Q+∆Q

Ab

Qb +∆Qb

Figure 3-1. Elemental length of channel showing control volumes

Consider Figure 3-1, showing an elemental slice of channel of length∆x with two stationary vertical faces across
the flow. It includes two different control volumes. The surface shown by solid lines includes the channel cross
section, but not the moveable bed, and is used for mass and momentum conservation of the channel flow. The
surface shown by dotted lines contains the soil moving as bed load. Each is modelled separately, subject to a mass
conservation equation, and each to a relationship that determines the flux. In this course we will not consider the
movement of soil.

η

z

y

P

B

Z

A

Figure 3-2. Cross-section of channel showing important dimensions

The most important dependent quantities that we need to calculate are Q, the discharge or volume flux, as shown
in figure 3-1, and η, the elevation of the free surface, as shown in the cross-section in figure 3-2. The equations
that will be considered are in terms of other geometric quantities shown on that figure:

• A – cross-sectional area

• B – top width of the surface

• P – the wetted perimeter around which the resistance to the flow acts.

• Z – the elevation of the bed at any point, which we will see appears only in determining the mean slope.

In fact, it is surprising that so few geometric quantities are involved!

1 The lecture notes are available here: URL: http://johndfenton.com/Lectures/RiverEngineering/River-Engineering.pdf
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3.1 Mass conservation equation
If rainfall, seepage, or tributaries contribute an inflow volume rate i per unit length of stream, the mass conservation
equation can be obtained

∂A

∂t
+

∂Q

∂x
= i. (3.1)

Remarkably for hydraulics, this is almost exact. The only approximation has been that the channel is straight. This
say that if the discharge Q is varying along the stream, and/or if there is inflow i, then the cross-sectional area A
will change with time, to accommodate the volume required.

We usually work in terms of water surface elevation stage η, which is easily measurable and which is practically
more important. We make a significant assumption here, but one that is usually accurate: the water surface is
horizontal across the stream. Now, if the surface changes by an amount δη in an increment of time δt, then the
area changes by an amount δA = B δη, where B is the width of the stream surface. Taking the usual limit of small
variations in calculus, we obtain ∂A/∂t = B ∂η/∂t, and the mass conservation equation can be written

B
∂η

∂t
+

∂Q

∂x
= i. (3.2)

This is a partial differential equation in terms of distance along the channel x and time t, for the surface elevation
η(x, t), which we have assumed is horizontal across the channel, and the discharge Q(x, t).

3.2 Momentum conservation equation
If we consider the fluid momentum in the x direction in the elemental slice of the above figure, we obtain another
partial differential equation in x and t, which is surprisingly simple in view of the complexity of the problem:

∂Q

∂t
+

∂

∂x

µ
β
Q2

A

¶
+ gA

∂η

∂x
= −ΛP Q |Q|

A2
. (3.3)

The terms are:

• ∂Q/∂t – comes from the rate of change of momentum in the control volume with time

• ∂
¡
βQ2/A

¢
/∂x – comes from the variation of momentum flux due to fluid velocity along the channel. The

quantity β is an empirical coefficient, modelling the velocity distribution across the channel. It is about 1.05
and in many places taken to be 1.0.

• gA∂η/∂x – comes from the pressure forces in the water. The pressure distribution has been assumed to be
hydrostatic, such that pressure is proportional to the depth of water above any point. If the surface slopes,
such that ∂η/∂x is finite (and almost always negative), then in the water, along any horizontal line, there is a
net downstream pressure gradient, which when integrated over the channel section, gives this term.

• ΛPQ |Q| /A2 – we consider the resistance to motion in the channel as being caused by a shear force τ on the
boundary, with Weisbach’s empirical formula:

τ =
λ

8
ρ

µ
Q

A

¶2
, (3.4)

where λ is the dimensionless Weisbach resistance factor, ρ is the density, and Q/A is the mean velocity along
the pipe or channel. It is convenient for us to consider channels which are not very steep, to introduce the
parameter Λ = λ/8, and to integrate this stress around the wetted perimeter P , giving the result shown,
where we have written Q |Q| rather than Q2 to allow for possible negative values of Q in tidal estuaries.

In fact, equation (3.3) is not ready for use, as expanding the second term would give a contribution ∂A/∂x, and
we need to express this in terms of the free surface gradient. It can be shown that

∂A

∂x
= B

µ
∂η

∂x
+S̃

¶
, (3.5)
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where the symbol S̃ for the mean downstream bed slope across the section has been introduced such that

S̃ = − 1
B

Z
B

∂Z

∂x
dy, (3.6)

where the negative sign has been used such that in the usual case when Z decreases with x, this mean downstream
bed slope at a section is positive. In the usual case where bed topography is poorly known, a reasonable local
approximation or assumption is made to give a value of S̃.

3.3 The long wave equations
The momentum equation (3.3) can then be expressed in terms of ∂η/∂x. Writing it and the mass-conservation
equation again, we have the pair of partial differential equations

∂η

∂t
+
1

B

∂Q

∂x
=

i

B
, (3.7)

∂Q

∂t
+ 2β

Q

A

∂Q

∂x
+

µ
gA− β

Q2B

A2

¶
∂η

∂x
= β

Q2B

A2
S̃ − ΛP Q |Q|

A2
. (3.8)

These are the long wave equations, sometimes called the Saint-Venant equations. They are the basis for most open
channel hydraulics.

3.3.1 Other resistance formulations – Chézy and Gauckler-Manning-Strickler
The simplest model of a river is that the channel is prismatic, the flow is steady (∂/∂t = 0) and it is uniform, with
a constant bed and surface slope S0 such that ∂η/∂x = −S̃ = −S0. The momentum equation (3.8) gives

ΛP
Q2

A2
= gAS0,

giving the Weisbach equation for steady uniform flow

Q

A
=

r
g

Λ

A

P
S0. (3.9)

Other (and more traditional) formulations of the resistance term include those of Chézy and Gauckler-Manning-
Strickler. For them to agree for steady uniform flow, Λ can be expressed in terms of the Chézy coefficient C, the
Manning coefficient n, and the Strickler coefficient kSt respectively, the latter two being in SI units:

Λ =
g

C2
=

gn2P 1/3

A1/3
=

g

k2St

P 1/3

A1/3
, (3.10)

giving the familiar results for steady uniform flow (note that Chézy is the same form as Weisbach):

Chézy :
Q

A
= C

r
A

P
S0

Gauckler-Manning-Strickler :
Q

A
=
1

n

µ
A

P

¶2/3p
S0 = kSt

µ
A

P

¶2/3p
S0

3.3.2 Conveyance and Friction Slope
It is convenient to introduce the conveyance K, so that the resistance term in the momentum equations appears as

−ΛP Q |Q|
A2

= −gAQ |Q|
K2

. (3.11)

From equation (3.10), the various definitions of K become

K =

r
g

Λ

A3

P
= C

r
A3

P
=
1

n

A5/3

P 2/3
= kSt

A5/3

P 2/3
, (3.12)

showing that is a convenient shorthand that includes the resistance coefficient of whatever law is being used, plus
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cross-sectional geometry terms. It has units of discharge, L3T−1.

A simple and important result for steady uniform flow is that

Q = K0

p
S0, (3.13)

where the subscript 0 denotes the conveyance corresponding to the normal depth h0 of the uniform flow.

Many textbook presentations write the friction term in terms of a dimensionless quantity Sf = Q |Q| /K2, called
the "friction slope", possibly better known as "resistance slope", so that the resistance term in the momentum
equations appears as−gASf. It is also known as the "slope of the energy grade line", or the "head gradient", which
gives an uninformative and misleading picture, for in our momentum-based approach it is neither of those things.
In textbook derivations of the steady equations Sf is actually calculated from the slope of the energy grade line,
which it should not be.

3.3.3 The nature of the long wave equations
They are a pair of equations that can be written as a vector evolution equation

∂u

∂t
+ C

∂u

∂x
= r (u) ,

where u is the vector of unknowns, for example, [η,Q], C is a 2 × 2 matrix with algebraic coefficients, and r is
the vector of right side terms, due to inflow, slope, and resistance.

It can be shown that the system is hyperbolic, although this mathematical terminology seems not very useful for us.
The implication of that is that solutions are of a wave-like nature. We will see that the behaviour of disturbances is
more complicated than we might expect or is often stated. This arises because the right sides are functions of the
dependent variables, that we have written here as r (u). In particular we will see that a common interpretation of
the system in terms of characteristics, with the solution that of travelling waves with simple properties, is incorrect.
The solution is actually more complicated: disturbances travel at speeds which depend on their length, and show
diffusion as well.

4. Steady uniform flow in prismatic channels
Steady flow does not change with time; uniform flow is where the depth does not change along the waterway. For
this to occur the channel properties also must not change along the stream, such that the channel is prismatic, and
this occurs only in constructed canals. However in rivers if we need to calculate a flow or depth, it is common to use
a cross-section which is representative of the reach being considered, and to assume it constant for the approximate
application of theory. This is the simplest problem we consider!

The Weisbach and Chézy equations and the Gauckler-Manning-Strickler forms give formulae for the discharge Q
in terms of resistance coefficient, slope S0, area A, and wetted perimeter P :

Weisbach-Chézy : Q =

r
8g

λ

A3/2

P 1/2

p
S0 =

r
g

Λ

A3/2

P 1/2

p
S0 = C

A3/2

P 1/2

p
S0 (4.1)

G-M-S : Q =
1

n

A5/3

P 2/3

p
S0 = kSt

A5/3

P 2/3

p
S0 (4.2)

in which bothA and P are functions of the flow depth. Each equation show how flow increases with cross-sectional
area and slope and decreases with wetted perimeter. The maximum depth is the normal depth, and determining it
is a common problem.

Trapezoidal sections: Most canals are excavated to a trapezoidal section, and this is often used as a
convenient approximation to river cross-sections too. In many of the problems in this course we will consider the
case of trapezoidal sections. We will introduce the terms defined in Figure 4-1: the bottom width is W , the depth is
h, the top width is B, and the batter slope, defined to be the ratio of H:V dimensions is γ. From these the following
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γ

1
P

h

B

W

Figure 4-1. Trapezoidal section showing important dimensions

important section properties are easily obtained:

Top width : B =W + 2γh

Area : A = h (W + γh)

Wetted perimeter : P =W + 2
p
1 + γ2h.

(Ex. Obtain these relations).

4.1 Computation of normal depth
If the discharge, slope, and the appropriate roughness coefficient are known, any of equations (4.1)-(4.2) is a
transcendental equation for the normal depth h, which can be solved by the methods for solving transcendental
equations described earlier.

In the case of wide channels, (i.e. channels rather wider than they are deep, h ¿ B, which is a common case)
neither the wetted perimeter P nor the breadth B vary much with depth h. Hence the quantity A(h)/h also does
not vary strongly with h. Hence we can rewrite the G-M-S expression:

Q =
1

n

A5/3(h)

P 2/3(h)

p
S0 =

√
S0
n

(A(h)/h)5/3

P 2/3(h)
× h5/3,

where most of the variation with h is contained in the last term h5/3, and by solving for that term we can re-write
the equation in a form suitable for direct iteration

h =

µ
Qn√
S0

¶3/5
× P 2/5(h)

A(h)/h
,

where the first term on the right is a constant for any particular problem, and the second term is expected to be
a relatively slowly-varying function of depth, so that the whole right side varies slowly with depth – a primary
requirement that the direct iteration scheme be convergent and indeed be quickly convergent.

Experience with typical trapezoidal sections shows that this works well and is quickly convergent. However, it also
works well for flow in circular sections such as sewers, where over a wide range of depths the mean width does not
vary much with depth either. For small flows and depths in sewers this is not so, and a more complicated method
such as the secant method might have to be used.

Example 4.1 Calculate the normal depth in a trapezoidal channel of slope 0.001, Manning’s coefficient n =
0.04, bottom width 10m, with batter slopes 2 : 1, carrying a flow of 20m3 s−1. We have A = h (10 + 2h),
P = 10 + 4.472h, giving the scheme

h =

µ
Qn√
S0

¶3/5
× (10 + 4.472h)

2/5

10 + 2h

= 6.948× (10 + 4.472h)
2/5

10 + 2h

and starting with h = 2 we have the sequence of approximations: 2.000, 1.609, 1.639, 1.637 – quite satisfactory
in its simplicity and speed.
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5. Steady gradually-varied flow – backwater computations
A common problem in river engineering is, for example, how far upstream water levels might be changed, and
hence flooding possibly enhanced, due to downstream works such as the installation of a bridge or other obstacles.
Far away from the obstacle or control, the flow may be uniform, but generally it is variable. The transition between
conditions at the control or point of known level, and where there is uniform flow is described by the Gradually-
Varied Flow Equation, which is an ordinary differential equation for the water surface height. The solution will
approach uniform flow if the channel is prismatic, but in general we can treat non-prismatic waterways also. The
steady flow approximation is often used as a first approximation, even when the flow is unsteady, such as in floods.

5.1 The differential equation
Consider the mass conservation equation for steady flow, when ∂/∂t ≡ 0, and equation (3.7) becomes

dQ

dx
= i,

with the solution obtained by integration

Q(x) = Q0 +

Z x

x0

idx,

where at an upstream station x0 the discharge is Q0, the extra discharge just being given by the integral of the
inflow i.

The momentum equation (3.8) for ∂Q/∂t = 0 and ∂Q/∂x = i, and assuming Q positive, becomesµ
gA− β

Q2B

A2

¶
dη

dx
= β

Q2B

A2
S̃ − ΛP Q2

A2
, (5.1)

which is a first-order ordinary differential equation for η(x), provided we have evaluated Q(x), and that we know
how the geometric quantities A, B and P depend on surface elevation at each point. This is the Gradually-Varied
Flow Equation (GVFE). The equation may be solved numerically using any of a number of methods available for
solving ordinary differential equations.

It is surprising that books on open channels do not recognise that the problem of numerical solution of the
gradually-varied flow equation is actually a standard numerical problem, although practical details may make
it more complicated. Instead, such texts use methods such as the ”Direct step method” and the ”Standard step
method”, which can become complicated. There are several software packages such as HEC-RAS which use such
methods, but solution of the gradually-varied flow equation is not a difficult problem to solve for specific problems
in practice if one recognises that it is merely the solution of a differential equation.

In sub-critical (relatively slow) flow, the effects of any control can propagate back up the channel, and so it is that
the numerical solution of the gradually-varied flow equation also proceeds in that direction. On the other hand, in
super-critical flow, all disturbances are swept downstream, so that the effects of a control cannot be felt upstream,
and numerical solution also proceeds downstream from the control.

No inflow: If there is no inflow, i = 0 and Q = Q0, a constant, throughout. Dividing both sides of equation
(5.1) by gA gives

dη

dx
= F 2

βS̃ − ΛP/B
1− βF 2

=
βS̃ − ΛP/B
1/F 2 − β

, (5.2)

where, unusually for lectures on flow with a free surface, it has taken us until now to define the Froude number

F 2 =
Q2B

gA3
=
(Q/A)

2

g (A/B)
,

the ratio of the mean velocity Q/A squared to g times the mean depth A/B. In this course we call F 2 the Froude
number, and not F , as the latter quantity occurs quite rarely, and F 2 expresses the real relative importance of
inertia terms.

The GVFE in the form of equation (5.2) seems simple – deceptively simple. For example, β can be taken as a
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constant; S̃ might be a function of x, but we probably do not have enough information to express it as a function
of η; many open channels are much wider than their depth, and so P ≈ B and P/B ≈ 1. This leaves most of the
functional variation with η on the right side in the term 1/F 2 = gA3/Q2B in which, for practical river problems
the dependence of A and B on the local elevation η is actually quite complicated.

Constant slope: As a special case, consider a channel with a bed of constant slope S̃ = S0. It is simpler to
use as a variable the depth of flow h, where h = η − Z, where Z is the elevation of the bed at a section, so that
dZ/dx = −S0. Equation (5.2) becomes

dη

dx
=

dh

dx
+

dZ

dx
=

dh

dx
− S0 =

βS0 − ΛP/B
1/F 2 − β

.

Solving for dh/dx and introducing the conveyance gives the GVFE for a prismatic canal of constant slope:

dh

dx
=

S0 −Q2/K2

1− βF 2
. (5.3)

5.2 Properties of gradually-varied flow and the governing equations

Normal depth h0

h(x)

Figure 5-1. Subcritical flow retarded by a gate, showing typical behaviour of the free surface and, if the channel is
prismatic, decaying upstream to normal depth

• The equation and its solutions are important, in that they tell us how far the effects of a structure or works in
or on a stream extend upstream or downstream.

• It is an ordinary differential equation of first order, hence one boundary condition must be supplied to obtain
the solution. In sub-critical flow, this is the depth at a downstream control; in super-critical flow it is the
depth at an upstream control.

• If the channel is prismatic, far from the control, the flow is uniform, and the depth is said to be normal.

• In general the boundary depth is not equal to the normal depth, and the differential equation describes the
transition from the one to the other. The solutions look like exponential decay curves, and below we will show
that they are, to a first approximation. Figure 5-1 shows a typical sub-critical flow in a prismatic channel,
where the depth at a control is greater than the normal depth.

• The differential equation is nonlinear, and the dependence on h is complicated, such that analytical solution
is not possible, and we will usually use numerical methods.

• However, a small-disturbance approximation can be made, the resulting analytical solution is useful in pro-
viding us with some insight into the quantities which govern the extent of the upstream or downstream
influence.

• If the flow approaches critical flow, when βF 2 → 1, then dh/dx → ∞, and the surface becomes vertical.
This violates the assumption we made that the flow is gradually varied and the pressure distribution is hy-
drostatic. This is the one great failure of our open channel hydraulics at this level, that it cannot describe the
transition between sub- and super-critical flow.
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5.3 When we do not compute – approximate analytical solution
Whereas the numerical solutions give us numbers to analyse, sometimes very few actual numbers are required,
such as merely estimating how far upstream water levels are raised to a certain level, the effect of downstream
works on flooding, for example. Here we introduce a different way of looking at a physical problem in hydraulics,
where we obtain an approximate mathematical solution so that we can provide equations which reveal to us more
of the nature of the problem than do numbers. This work was originally done by Samuels (1989).

This is carried out by ”linearising” about the uniform flow in a prismatic channel, i.e. by considering small
disturbances to that flow. Consider the water depth to be written

h(x) = h0 + h1(x), (5.4)

where we use the symbol h0 for the constant normal depth, and h1(x) is a relatively small departure of the surface
from that. We use the governing differential equation (5.3) (although our notation has obscured the fact that F
and K are functions of h). Substitute equation (5.4) into the equation and writing numerator and denominator as
Taylor series in h1:

dh0
dx

+
dh1
dx

=

¡
S0 −Q2/K2

¢
0
+ h1

¡
d
dh

¡
S0 −Q2/K2

¢¢
0
+ terms in h21

(1− βF 2)0 + h1
¡
d
dh (1− βF 2)

¢
0
+ terms in h21

.

Now, as h0 is constant, dh0/dx = 0. Also, from equation (3.13),
¡
S0 −Q2/K2

¢
0
= 0 and the first term in the

numerator is zero. Now evaluating d
¡
S0 −Q2/K2

¢
/dh = 2Q2/K3 dK/dh, and considering just the first term

top and bottom, neglecting all higher order powers of h1 as it is small, we find

dh1
dx
≈ h1

2Q2/K3
0 (dK/dh)0

1− βF 20
= μ0 h1, (5.5)

where

μ0 =
2S0

1− βF 20

1

K

dK

dh

¯̄̄̄
0

, (5.6)

and where we have used Q2/K2
0 = S0.

Equation (5.5) is a linear differential equation which we can solve analytically by separation of variables, giving

h1 = Ceμ0x, and h = h0 + Ceμ0x, (5.7)

where C is a constant which would be evaluated by satisfying the boundary condition at the control, and where μ0
is a constant decay rate given by equation (5.6).

This shows that the water surface is actually approximated by an exponential curve passing from the value of depth
at the control to normal depth. As dK/dh is positive, and for subcritical flow 1 − βF 20 is also positive, equation
(5.6) shows that μ0 is positive, and far upstream as x → −∞, the water surface decays to normal depth. For
supercritical flow, 1− βF 20 < 0, μ0 is negative, and the water surface approaches normal depth downstream.

Now we obtain an approximate expression for the rate of decay μ0. From the Gauckler-Manning-Strickler formula
for a wide channel, a common approximation, we can show that K ∼ h5/3, dK/dh ∼ 5/3 × h2/3, and for slow
flow βF 20 ¿ 1, we find

μ0 ≈
10

3

S0
h0

. (5.8)

The larger this number, the more rapid is the decay with x. The formula shows that more rapid decay occurs with
steeper slopes (large S0), and smaller depths (h0). Hence, generally the water surface approaches normal depth
more quickly for steeper and shallower streams, and the effects of a disturbance can extend a long way upstream
for mild slopes and deeper water.

Let us use equation (5.8) to calculate the distance upstream that the disturbance decays by 1/2, that is, exp (μ0x) =
0.5. We find

10

3

S0x

h0
= ln 0.5 giving

x

h0
=
3 ln 0.5

10

1

S0
.
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For S0 = 10−4 and a stream 2m deep, the distance is 4 km. For the stream disturbance to decay to 1/16 = (1/2)4
of the original, this distance is 4 × 4 km = 16 km. These are possibly surprising results, showing how far the
backwater effect extends.

5.4 Numerical solution of the gradually-varied flow equation
Consider the gradually-varied flow equation (5.3)

dh

dx
=

S0 −Q2/K2

1− βF 2

where F 2(h) = Q2B(h)/gA3(h). The equation is a differential equation of first order, and to obtain solutions
it is necessary to have a boundary condition h = h0 at a certain x = x0, which will be provided by a control.
The problem may be solved using any of a number of methods available for solving ordinary differential equations
which are described in books on numerical methods.

The direction of solution is very important. For mild slope (sub-critical flow) cases the surface decays somewhat
exponentially to normal depth upstream from a downstream control, whereas for steep slope (super-critical flow)
cases the surface decays exponentially to normal depth downstream from an upstream control. This means that to
obtain numerical solutions we will always solve (a) for sub-critical flow: from the control upstream, and (b) for
super-critical flow: from the control downstream.

5.4.1 Euler’s method
The simplest (Euler) scheme to advance the solution from (xi, hi) to (xi +∆xi, hi+1) is

xi+1 ≈ xi +∆xi, where∆xi is negative for subcritical flow, (5.9a)

hi+1 ≈ hi +∆xi
dh

dx

¯̄̄̄
i

= hi +∆xi
S0 −Q2/K2(hi)

1− βF 2(hi)
+O

³
(∆xi)

2
´
. (5.9b)

This is the simplest but least accurate of all methods – yet it might be appropriate for open channel problems where
quantities may only be known approximately. One can use simple modifications such as Heun’s method to gain
better accuracy, or use Richardson extrapolation – or even more simply, just take smaller steps ∆xi.

5.4.2 Richardson extrapolation
There is an interesting method for obtaining more accurate solutions from computational schemes for almost any
physical problem. Applied to the Euler scheme in the present context, as the local truncation error is O

³
(∆xi)

2
´

,

so that after a number of steps proportional to 1/∆xi, the actual solution has an error O
³
(∆xi)

1
´

so that n = 1,
a first-order scheme. In the present problem, if we use a constant space step ∆ to obtain the first solution 1, then
another constant space step half that ∆/2, requiring twice the number of steps, then r = 1/2, and equation (2.9)
gives for a better estimate of the solution

hi ≈ 2h2i(∆/2)− hi(∆), (5.10)

which is trivially applied to each or any of the steps. The notation h2i(∆/2) is intended to show that the same
point in physical space is used; with half the step size it will now take twice the number of steps to reach that point.

5.4.3 Heun’s method
In this case the value of hi+1 calculated from Euler’s method, equation (5.9b), is used as a first estimate of the
depth at the next point, written h∗i+1, then the value of the derivative at that point

¡
xi+1, h

∗
i+1

¢
is calculated. Heun’s

method is then to use the mean slope over the step, the mean of the initial value and that at the other end of the
interval calculated by the Euler step. Then, the change over the step is calculated, multiplying that mean slope by
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the step length. That is,

hi+1 ≈ hi +
∆xi
2

Ã
dh

dx

¯̄̄̄
(xi,hi)

+
dh

dx

¯̄̄̄
(xi+1,h∗i+1)

!

= hi +
∆xi
2

µ
S0 −Q2/K2(hi)

1− βF 2(hi)
+

S0 −Q2/K2(h∗i+1)

1− βF 2(h∗i+1)

¶
+O

³
(∆xi)

3
´
. (5.11)

Now, the error of a single step is proportional to the third power of the step length and the error at any point will
be proportional to the second power.

Neither of these two methods are presented in hydraulics textbooks as alternatives, yet they are simple and flexible,
and reveal the nature of what we are doing. The step ∆xi can be varied at will, to suit possible irregularly spaced
cross-sectional data. In many situations, where F 2 ¿ 1, we can ignore the βF 2 term in the denominators, giving
a notationally simpler scheme.

5.4.4 Predictor-corrector method – Trapezoidal method
This is simply an iteration of the last method, whereby the step in equation (5.11) is repeated several times, at each
stage setting h∗i+1 equal to the updated value of hi+1. This gives an accurate and convenient method, and it is
surprising that it has not been used.

5.4.5 Higher-order methods
One of the aims here has been to emphasise that all that is being done is to solve numerically a differential equation,
and any method can be used, for which reference can be made to any book on numerical solution of ordinary differ-
ential equations. There are sophisticated methods such as high-order Runge-Kutta methods and predictor-corrector
methods. However, in the case of open channel hydraulics there will usually be some variation of parameters along
the channel that such sophistication is unnecessary.

5.5 Traditional methods
Here we present methods for comparison as they are given in textbooks.

5.5.1 Derivation of the gradually-varied flow equation using energy

Total energy line

2 1

Sub-critical flow

αU22 /2g Sf∆x

αU21 /2g

h2

h1

∆x

S0∆x

Figure 5-2. Elemental section of waterway

Consider the elemental section of waterway of length∆x shown in Figure 5-2. We have shown stations 1 and 2 in
what might be considered the reverse order, but for the more common sub-critical flow, numerical solution of the
governing equation will proceed back up the stream. Considering stations 1 and 2:

Total head at 2 = H2

Total head at 1 = H1 = H2 −HL,

and we introduce the concept of the friction slope Sf which is the gradient of the total energy line such that
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HL = Sf ×∆x. This gives

H1 = H2 − Sf∆x,

and if we introduce the Taylor series expansion for H1:

H1 = H2 +∆x
dH

dx
+ . . . ,

substituting and taking the limit∆x→ 0 gives

dH

dx
= −Sf, (5.12)

an ordinary differential equation for the head as a function of x, and we use the approximation that the friction
slope is given by Q2/K2.

5.5.2 Direct step method
Textbooks do present the Direct Step method, which is applied by taking steps in the height and calculating the
corresponding step in x. It has practical disadvantages, such that it is applicable only to prismatic sections, results
are not obtained at specified points in x, and as uniform flow is approached the ∆x become infinitely large.
However it is a surprisingly accurate method.

The reciprocal of equation (5.12) is
dx

dH
= − 1

Sf
.

The numerical method as set out in textbooks is to approximate the differential equation (5.12) by the finite differ-
ence expression

∆xi =
∆Hbi

S0 −Q2/K2 (Hb)
(5.13a)

=
∆Hbi

S0 − 1
2Q

2
¡
K−2i +K−2i+1

¢ (5.13b)

where the overbar in equation (5.13a) indicates the mean of the friction slope at beginning and end of the com-
putational interval, which finds its mathematical expression in equation (5.13b), where the shorthand Ki has been
used for K (Hbi).

While this is a plausible approximation, it is not mathematically consistent. It is an apparent attempt to develop a
Trapezoidal method. Applying Heun’s method as formally presented in equation (5.11) automatically leads to the
Trapezoidal scheme which in this case gives

xi+1 = xi +
∆Hb,i

2

µ
1

S0 −Q2/K2
i

+
1

S0 −Q2/K2
i+1

¶
+O

³
(∆Hb,i)

3
´
, (5.14)

The term O (. . .) is a Landau order symbol, showing in this case that the local truncation error is proportional to
the third power of the step, which is a strong result and explains the accuracy of the method. Since the use of a
step size of ∆Hb,i over the whole computational domain requires a number of steps proportional to 1/∆Hb,i, the
global error in this case will be of order (∆Hb,i)

2, thus the global error, or accumulated error at the end of that
integration interval will be of this order, so that halving the step should improve the global accuracy by about a
factor of 4.

In view of the method presented here, the method is no longer applicable only to prismatic sections, but the practical
disadvantages remain that results are not obtained at specified points in x, and as uniform flow is approached the
∆x become infinitely large.

5.5.3 Standard step method
The nomenclature "standard" is not very descriptive. Presumably it refers to finding the solution for η at specified
values of x, rather than the other way round, for which the term "direct", as above, is even worse. This is an
implicit method, requiring numerical solution of a transcendental equation at each step. It can be used for irregular
channels, and is rather more general. In this case, the distance interval∆x is specified and the corresponding depth
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change calculated. In the Standard step method the procedure is to write

∆H = −Sf∆x,

and then write it as

H2(h2)−H1(h1) = −
∆x

2
(Sf1 + Sf2) ,

for sections 1 and 2, where the mean value of the friction slope is used. This gives

α
Q2

2gA22
+ Z2 + h2 = α

Q2

2gA21
+ Z1 + h1 −

∆x

2
(Sf1 + Sf2) ,

where Z1 and Z2 are the elevations of the bed. This is a transcendental equation for h2, as this determines A2, P2,
and Sf2. Solution could be by any of the methods we have had for solving transcendental equations, such as direct
iteration, bisection, or Newton’s method.

Although the Standard step method is an accurate and stable approximation, the lecturer considers it unnecessarily
complicated, as it requires solution of a transcendental equation at each step. It would be much simpler to use a
simple explicit Euler or Heun’s method as described above.

5.6 Comparison of schemes
To compare the performance of the various numerical schemes, Example 10-1 of Chow (1959, p250) was solved
using each. All quantities specified by Chow were converted to SI units and rounded to the numbers shown here:
a flow of 11.33m3 s−1 passes down a trapezoidal channel of gradient S0 = 0.0016, bed width 6.10m and channel
side slopes 0.5, g = 9.8m s−2, the quantity α or β = 1.10, and Manning’s n = 0.025. At x = 0 the flow is
backed up to a depth of 1.524m, and the backwater curve was computed for 1000m. Results for the water surface
profile are shown in Figure 5-3, while Figure 5-4 shows the errors. Some 10 computational steps were used for
each scheme.

The basis of accuracy is shown by the solid line, from a highly-accurate Runge-Kutta 4th order method (see, for
example, p372 of Yakowitz & Szidarovszky, 1989, or almost any other book on numerical methods). It is not
recommended here as a method, however, as it makes use of information from three intermediate points at each
step, information which in non-prismatic channels is usually not available. The rest of the results are shown in
reverse order of accuracy. The dotted line is that with the same numerical method, but where the roughness n was
changed by -5%, to give an idea of the effect of uncertainty in knowledge of that quantity. The maximum error, of
about−3 cm, in the normal depth, is greater than any of the other methods, so that a preliminary conclusion is that
if the roughness is not known to within 5%, almost certainly the case in practice, then any of the methods can be
used.

It can be seen that Euler’s method, eqn (5.9), was the least accurate, as expected. As it is a first-order scheme,
halving the step size would halve the error. Actually doing just that and then applying Richardson extrapolation,
equation (5.10), gave the second most accurate of all the methods, with an error of about 1mm. The most accurate
of all was the Trapezoidal method, namely using Heun’s method, equation (5.11) and iterating the final step. All
the other methods, Heun’s, and the two inverse formulations, equations (5.13) and (5.14), gave errors intermediate
between the two extremes. It is interesting that the two traditional methods were accurate, notably the traditional
inverse formulation over the modified version presented in this work; and the Trapezoidal method, the basis for the
so-called "standard" method.

The results show the disadvantages of the inverse formulation (Direct Step), that the distance between compu-
tational points becomes large as uniform flow is approached, and the points are at awkward distances. In this
example relatively few steps were chosen (roughly 10) so that the numerical accuracies of the methods could be
distinguished visually. The computational effort was very small indeed.

In this problem the analytical solution (5.7) gave poor results. This was because the depth at the control was rather
larger (50%) than the normal depth, and the linearisation adopted, for small departures from normal depth, was not
accurate. In general, however, it does give a simple approximate result for the rate of decay and how far upstream
the effects of the control extend. For many practical problems, this accuracy and simplicity may be enough.
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Figure 5-3. Backwater curve computed with various schemes; the dashed line is the
surface for uniform flow.
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Figure 5-4. Errors for the different schemes; symbols as for Figure 5-3.
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6. Model equations and theory for computational hydraulics
and fluid mechanics

In §3.3.3 we saw that the long wave equations could be written as a vector evolution equation

∂u

∂t
+ C

∂u

∂x
= r (u) ,

where u is the vector of unknowns, for example, [η,Q], C is a 2× 2matrix with algebraic coefficients, and r is the
vector of right side terms, due to inflow, slope, and resistance. In this case the matrix C is a generalised velocity,
and it is possible to obtain the eigenvalues of the matrix to obtain propagation velocities.

The combination of a time derivative plus a velocity times a space derivative, called an advective derivative, occurs
throughout fluid mechanics and hydraulics – the Navier-Stokes equations: all fluid motion, in fact, including the
equations of meteorology, oceanography, and in our case, the long wave equations. Possibly more computational
power around the world is used in the numerical solution of such equations than in any other, especially in the
large scale numerical solution of the equations of the atmosphere.

The advective derivative describes the time rate of change of some quantity (such as heat or momentum) by
following it, while moving with a velocity field. Numerical solution of it is surprisingly non-trivial, as we are
about to see.

6.1 The advection equation
To introduce the subject and demonstrate the numerical difficulties that can occur, firstly we consider the one-
dimensional advection equation:

∂φ

∂t
+ u (x, t, φ)

∂φ

∂x
= 0, (6.1)

where φ (x, t) is some passive scalar, and u (x, t, φ) is a velocity, possibly a wave speed, and possibly even depen-
dent on the dependent variable φ.

A typical problem is to solve the advection equation when we know φ (x, 0), that is, the distribution of φ with x at
some initial time t = 0, and we also know what φ (0, t) is, namely how it is varying at the upstream boundary. We
want to obtain the solution for all x and t.

6.1.1 Exact solution for constant velocity

Figure 6-1. Exact solution of advection equation for triangular wave

In the case of a constant velocity u(x, t) = U , the equation has a simple analytical solution φ(x, t) = f(x− Ut),
where the function f(t) is given by the history of φ at the upstream boundary, f(t) = φ(0, t), and to obtain the
value at any general place and time (x, t) we just substitute f(x − Ut). The solution corresponds to a simple
”wave” travelling at a speed of U . We can easily verify that this is the solution, by using the Chain Rule for partial
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differentiation:

∂φ

∂t
=

df

d(x− Ut)
× ∂(x− Ut)

∂t
= −U × f 0(x− Ut)

∂φ

∂x
=

df

d(x− Ut)
× ∂(x− Ut)

∂x
= f 0(x− Ut),

where f 0(x−Ut) = df(x−Ut)/d(x−Ut). Substituting these values into equation (6.1) shows that it is satisfied
exactly. Figure 6-1 shows the exact solution of a triangular wave being advected with no diffusion.

6.1.2 An advective numerical scheme
In situations where the velocity is not constant, then numerical solutions have to be made. It is rare that such a
simple equation has to be solved numerically, but here we include numerical schemes as models for rather more
complicated problems. The previous exact solution scheme suggests the following scheme:

φ(x, t+∆) ≈ φ(x− u(x, t, φ)∆, t), (6.2)

where the errors can be shown by a consistency analysis, introduced below, to be O(∆2), which means that
neglected terms are of the order of ∆2. This is an advective scheme, which attempts to build in the nature of the
solution. It can be interpreted as

To obtain the solution at some point x at a later time t +∆, take the known value of the velocity at (x, t),
namely u(x, t), and at a distance upstream given by this velocity times the time step, interpolate the value.

In the case of a constant velocity u(x, t) = U this would be exact, for the value at (x, t+∆) is precisely that which
was upstream at (x−U∆, t). However, if the velocity is variable, it is not exact, and errors are proportional to the
square of the time step.

Such advective schemes are to much to be preferred in fluid mechanics, hydraulics, and hydrology, as they mimic
the behaviour of solutions as well as the equation, rather than mimicking just the behaviour of the equation.
Schemes which do not incorporate the advective nature of the solution can have some unpleasant characteristics,
as we now demonstrate.

The interpolation can be done by any scheme – a simple one is to fit a quadratic to three computational points. The
lecturer prefers using cubic splines, which are a very powerful way of using a series of cubics.

x x+ δx− δ x− u∆

u∆

Backwards approximation

Accurate derivative

Computed values of

φ(x, t+∆)φ

From derivative

Advection scheme

From backwards approxmn to derivative

Figure 6-2. Physical nature of three computational schemes for solving the advection equation

Figure 6-2 shows this scheme and two other finite-difference-based schemes. We will use it to demonstrate the
inferior properties of the other schemes.

6.1.3 Forwards-Time-Accurate-Space schemes
Here we consider a family of schemes which approximate the derivative in x accurately, The time-stepping scheme
is only first-order, although the spatial approximation might be accurate. To evaluate the derivative accurately a
high-order scheme using splines or Fourier series or a centred space scheme could be used. For our purposes here
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it doesn’t matter which scheme is used. These schemes do not exploit the travelling-wave nature of the solutions,
but rather just approximate all the derivatives of the partial differential equation:

φ (x, t+∆)− φ (x, t)

∆
+ u∆

∂φ

∂x
(x, t) ≈ 0.

This can be re-written as the scheme

φ(x, t+∆) ≈ φ(x, t)− u∆
∂φ

∂x
(x, t). (6.3)

This scheme can be interpreted as ”the change in φ is equal to−u∆ times the approximation to the derivative”, or,
”travel along the line with gradient that of the approximation back a distance u∆, and that is the updated value”.
This can be seen on figure 6-2. We have deliberately drawn this near a maximum in x, such that the tangent is
always above the interpolating function. This shows that when the solution is updated, the value at t+∆ will be
greater than the previous maximum, and shows that the scheme will be unstable, as maxima will grow. All such
schemes are unuseable for any value of u∆. This phenomenon is well-known in numerical methods for solving
partial differential equations. It is paradoxical, that a good approximation to the derivative gave us bad results. We
will see later that the converse also holds – a bad approximation gives us a useable scheme!

It is interesting that this is the first-order Taylor expansion in x of the potentially-exact scheme, equation (6.2).
These are traditionally much more common throughout computational hydraulics than advection schemes. One
wonders why.

6.1.4 The most obvious finite difference scheme: Forward-Time-Centre-Space
(FTCS)

A special case of the "accurate space" scheme is the ”Forwards-Time-Centre-Space” scheme. Finite difference
approximations to derivatives are used throughout engineering to provide numerical solutions of partial differ-
ential equations. Here, we adopt the typical types of approximations to the derivatives used in finite difference
approximations. Using the accurate centre space approximation

∂φ

∂x
=

φ (x+ δ, t)− φ (x− δ, t)

2δ
,

we substitute into the Forwards-Time-Accurate-Space scheme (6.3), and rearranging gives the FTCS scheme for
computing the updated value at (x, t+∆):

φ (x, t+∆) = φ (x, t)− u (x, t, φ)∆

2δ
(φ (x+ δ, t)− φ (x− δ, t)) , (6.4)

so that the scheme can be represented as ”calculate the centre difference approximation ∂φ/∂x ≈ (φ (x+ δ, t)−
φ (x− δ, t))/2δ, and then calculate the change in value at x by calculating the distance u∆ and the change u∆×
∂φ/∂x”. The "stencil", showing the points that are involved in this calculation, is shown in figure 6-3.

x− δ x+ δx

t

t+∆

Figure 6-3. Computational stencil for FTCS scheme

The behaviour is the same as in the previous section, namely, it is unconditionally unstable. Figure 6-4 shows such
a numerical solution for an initially triangular distribution for C = u∆/δ = 0.75, the same problem as in Figure
6-1, but here solved numerically. The parameter C is an important one in computational hydraulics, the Courant
Number, which expresses how far the solution should be advected in a single time step relative to the space step.
In this case, the solution should be carried 3/4 of a space step in a time step. We have found that this simple and
obvious scheme is unstable, and is unable to be used at all, as was suggested by Figure 6-2.
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Initial condition

Figure 6-4. Unstable numerical solution of advection equation with FTCS scheme

6.1.5 Forwards-Time-Backwards-Space scheme
Finally we consider a simple Forwards Time Backwards Space scheme, where the derivative is approximated by a
backwards difference approximation

φ (x, t+∆) = φ (x, t)− u∆

δ
(φ (x, t)− φ (x− δ, t)) , (6.5)

as shown in Figure 6-2. The dotted line shows the backwards difference approximation to the gradient, giving
the corresponding updated point as an open circle. It can be seen that the solution is now lower than the accurate
advection solution. This shows the phenomenon of numerical diffusion, due to such a poor level of approximation,
which occurs in many computational schemes.

If we were free to choose u∆ = δ the solution would be exact, as the point we would update from is the exact
solution at x − δ. However, u is usually a function of time and space and this cannot be satisfied at all points.
If we were to take u∆ > δ, then as can be seen on Figure 6-2 the gradient line is now above the exact solution,
and the scheme would be unstable. It is common for this limitation to occur in computational schemes that are
conditionally stable. It is called the Courant-Friedrichs-Levy criterion, which can be written in terms of the Courant
number C:

C =
u∆

δ
6 1 for stability,

whose essential meaning is ”for stability of this scheme, the computational wave in a single time step should not
travel more than a single space step”.

6.2 Convergence, stability, and consistency
In view of some of the insight we have obtained, we now consider some theory for the nature of the numerical
solution of finite difference approximations. We are concerned with the conditions that must be satisfied if the
solution of the finite difference equations is to be a reasonably accurate approximation to the solution of the
corresponding partial differential equation.

6.2.1 Convergence
A finite difference approximation to a differential equation is said to be convergent if its solution converges to the
solution of the differential equation in the limit as∆→ 0 and δ → 0.

Lax’ Equivalence Theorem: if a linear difference equation is consistent with a properly-posed linear
initial-value problem, then stability is the necessary and sufficient condition for convergence.

6.2.2 Consistency
If the local truncation error at a mesh point goes to zero as the mesh lengths tend to zero, the difference equation
is said to be consistent with the partial differential equation. We examine consistency using Taylor expansions of
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the difference equation.

Example 6.1 Consistency of the Forwards-time-Backwards-Space scheme for the advection equation

Consider the scheme (6.5):

φ (x, t+∆) = φ (x, t)− u∆

δ
(φ (x, t)− φ (x− δ, t)) .

Expanding both sides as Taylor series:

φ+∆φt +
1

2
∆2φtt +O

¡
∆3
¢
=

µ
1− u∆

δ

¶
φ+

u∆

δ

µ
φ− δφx +

1

2
δ2φxx +O

¡
δ3
¢¶

, (6.6)

where subscripts denote partial differentiation, giving

φt + uφx +
1

2
∆φtt +O

¡
∆2
¢
= 1

2uδφxx +O
¡
δ2
¢
. (6.7)

Clearly in the limit∆, δ → 0 this has the limiting result

φt + uφx = 0,

which is the differential equation we are solving.

However, by considering higher-order terms some additional insight is obtained. If we write equation (6.7) as

φt + uφx = O (∆, δ) ,

then differentiating with respect to x and then with respect to t gives

φtx + uφxx = O (∆, δ) and φtt + uφxt = O (∆, δ) ,

and eliminating the cross-derivatives gives

φtt = u2φxx +O (∆, δ) ,

and substituting into equation (6.7) gives

φt + uφx = 1
2uδφxx −

1

2
∆u2φxx +O

¡
∆2, δ2

¢
= 1

2uδ

µ
1− u∆

δ

¶
φxx +O

¡
∆2, δ2

¢
.

The second derivative term on the right means that this is actually a diffusion equation, and we have the interesting
result that our FTBS is actually not solving the advection equation but an equation with a diffusion term, showing
that our scheme exhibits numerical diffusion. The diffusion coefficient is u∆ (1− C) /2, which disappears in the
limit as the time step goes to zero. What is more interesting, however, is that if u∆ > δ, such that the Courant
number is greater than one, C > 1, the scheme has a negative coefficient of diffusion, and is unstable, as we have
seen!

6.2.3 Stability using Fourier series – von Neumann’s method
Now we examine the effect that the time stepping has on the nature of our solution relative to the analytical solution.
We suppose that the solution to the difference equation can be written

φ (x, t) = A (t) eikx,

such that the variation in x is a sine wave with wavelength L = 2π/k. This is not as arbitrary as it appears at
first, as we can in theory represent any (periodic) variation in x as a Fourier series, and as we are considering linear
equations only, we can just restrict ourselves to a single term in the Fourier series such as this one. Substituting
into our FTBS computational scheme

φ (x, t+∆) = φ (x, t)− u∆

δ
(φ (x, t)− φ (x− δ, t))
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gives

A (t+∆) eikx = A (t) eikx − u∆

δ

³
A (t) eikx −A (t) eik(x−δ)

´
,

and dividing through by A (t) eikxgives

r =
A (t+∆)

A (t)
= 1− C + C e−ikδ,

where r is the factor by which the solution changes at each time step.We consider the magnitude of the amplification
factor |A (t+∆) /A (t)| by multiplying by the complex conjugate:

rr∗ =

¯̄̄̄
A (t+∆)

A (t)

¯̄̄̄2
=
¡
1− C + C e−ikδ

¢ ¡
1− C + C e+ikδ

¢
= (1− C)

2
+ C (1− C)

¡
e−ikδ + e+ikδ

¢
+ C2

= 1− 2C + 2C2 + 2C (1− C) sin kδ.

The criterion for stability is that the amplitude ratio should be less than or equal to one, that is,

rr∗ =

¯̄̄̄
A (t+∆)

A (t)

¯̄̄̄2
≤ 1,

which gives

1− 2C + 2C2 + 2C (1− C) sin kδ ≤ 1,
or,

2C (1− C) (sin kδ − 1) ≤ 0,
such that the term on the left must be negative. The first factor 2C is always positive, and the last factor sin kδ− 1
is always negative or zero, so that the only way that the whole left term can be negative or zero is that the remaining
term 1− C must be positive or zero, giving the stability criterion for the FTBS scheme:

C ≤ 1, or u∆ ≤ δ.

This criterion is the Courant-Friedrichs-Levy stability criterion, which occurs in many computational schemes.
The physical interpretation of it is that the time step should be such that in one such step the computational
solution should not be advected a distance greater than the space step.

6.3 The diffusion equation
Thus far we have ignored the important physical phenomenon of diffusion. The process of diffusion occurs because
of a continuous process of random particle movements, and leads to viscosity, amongst other effects. The diffusion
equation, obtained when the advective velocity of the medium is zero, is

∂φ

∂t
= ν

∂2φ

∂x2
, (Diffusion Equation)

and is well-known to describe many physical quantities in nature, including the flow of heat and electrical charge.
Diffusion has the characteristic of smoothing out all variation. A typical analytical solution that shows the
essential behaviour, is the Gaussian function, describing the diffusion of an initial single spike of concentra-
tion/heat/pollution:

φ =
1√
4πνt

exp

µ
− x2

4νt

¶
,

with the behaviour shown in figure 6-5. Note the doubling of the time at each stage – the later behaviour is
relatively slow.

Forwards-Time-Centre-Space scheme: The best-known numerical scheme is where the time derivative
in the diffusion equation is approximated by a forward difference, and the diffusive term by a centre-difference
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Figure 6-5. Diffusion of a concentration spike at times t = 1/4, 1/2, 1, 2, 4, and 8,

expression. We obtain

φ (x, t+∆)− φ (x, t)

∆
= ν

φ (x+ δ, t)− 2φ (x, t) + φ (x− δ, t)

δ2
,

which gives the scheme

φ (x, t+∆) = Dφ (x− δ, t) + (1− 2D) φ (x, t) +Dφ (x+ δ, t) , (6.8)

in which D is the computational diffusion number D = ν∆/δ2. This is widely used, notably in civil engineering,
to solve the consolidation equation in geomechanics, which is simply the diffusion equation.

Initial condition
Four steps, D = 1/8
One step, D = 1/2

Figure 6-6. FTCS solutions for a single spike of concentration, taking four steps of
D = 1/8 and one with D = 1/2

We consider the finite difference expression (6.8) applied to the case of a single pulse of concentration, with the
analytical solution as shown in figure 6-5. Numerical results are shown in figure 6-6. Four steps of D = 1/8 give
the physically reasonable solution shown. However, in the limiting case for stability D = 1/2 the solution has
”snapped through” far too much and gives a physically nonsensical result. Clearly, accuracy rather than stability
determines the desirable step size here. Of course, there are many other schemes which could be tried. There are
many papers in the technical literature on this problem.

Now we perform a stability analysis. Let φ (x, t) = A (t) eikx, then equation (6.8) gives

r =
A(t+∆)

A(t)
= De−ikδ + (1− 2D) +De+ikδ

= 1− 2D (1− cos kδ)

Squaring and imposing the limit for stability rr∗ ≤ 1 gives the condition

D (1− cos kδ) (D (1− cos kδ)− 1) ≤ 0.
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The first factor is positive, the second factor is positive or zero for all kδ, so that for stability the last factor must
be negative. That is,

D (1− cos kδ)− 1 ≤ 0,
giving

D ≤ 1

1− cos kδ ,

and the minimum value of the right side is 1/2, giving the criterion

D =
ν∆

δ2
≤ 1
2

for stability, which is a well-known result.

6.4 Advection-diffusion combined
Consider the advection-diffusion equation containing both advection and diffusion terms:

∂φ

∂t
+ u(x, t, φ)

∂φ

∂x
= ν

∂2φ

∂x2
,

where in most physical problems the diffusivity parameter ν (viscosity in fluid mechanics) is a constant.

Figure 6-7. Solution of advection-diffusion equation

The combined effects of advection and diffusion can be seen in figure 6-7, where initially concentration is ev-
erywhere zero. At the upstream end a constant non-zero concentration is suddenly introduced. The advection
transports the solution; the diffusion has the effect of smoothing out the behaviour.

6.4.1 Forward Time Centred Space scheme
Performing a Von Neumann stability analysis, the result is obtained for the amplification factor

r =
A(t+∆)

A(t)
= 1− 2D (1− cos kδ)− iC sin kδ, (6.9)

from which, after considerable difficulty, it can be shown that for stability, two criteria are obtained. The first is a
limitation on the computational number D:

ν∆

δ2
≤ 1
2
,

which is independent of the flow velocity, and is valid for pure diffusion as well. The second becomes

u2∆

ν
≤ 2,

and it can be seen how difficult and strange the behaviour of diffusion can make numerical schemes. To satisfy the
first criterion, the time step allowed is inversely proportional to diffusion, the more diffusion, the smaller the time
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step, which feels reasonable. However, to satisfy the second criterion, the allowable time step is proportional to
the amount of diffusion, thus, strangely, the less diffusion there is, the smaller is the time step allowed for stability,
and in the limit of vanishing diffusion, the scheme is unconditionally unstable, as has been already discovered!

6.4.2 A simple advection-oriented scheme
The previous results suggested that the combination of advection and diffusion can be difficult to compute. Many
of these difficulties are overcome if the advective nature of solutions are incorporated, as we saw for the advection
equation. A simple scheme which the lecturer advocates is simply using the advective nature, writing the scheme

φ (x, t+∆) =

µ
1 + ν∆

∂2

∂x2

¶
φ (x− u∆, t)

= φ (x− u∆, t) + ν∆
∂2φ

∂x2
(x− u∆, t) .

This can be interpreted as ”interpolate to find the value of φ upstream a distance u∆ as well as its second derivative
there, and combine them as shown to give the updated value allowing for the diffusion of the advected solution”.

Using a von Neumann stability analysis, we obtain a stability criterion which is similar to that for the pure diffu-
sion equation. By incorporating advection ”exactly” we have overcome any difficulties with the combination of
advection and diffusion as we found above. If we used the FTCS scheme for the diffusion part we would obtain
the same criterion as for the pure diffusion case.
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7. Wave and flood propagation in rivers and canals

7.1 Governing equations

Real stream

Boussinesq approximations,
non-hydrostatic, can describe
transition between sub- and

super-critical flow

One-dimensional long wave equations
for curved streams, e.g. §??, eqn (??)

One-dimensional long wave equations,
eqns (7.1a) and (7.1b)

Characteristic formulation, §7.4,
reveals speed of front of disturbances

Characteristic-based
numerical models

Finite-difference-based numerical
methods, Preissmann Box Scheme

Linearised Telegrapher’s equation, §??, eqn
(??), reveals nature of propagation of

disturbances

Low-inertia (small F 2) approximation,
Volume routing, §??, eqn (??), simple
equation & computational method

Linearised, and small F2, Advection-diffusion
equation, §6.4, eqn (??), reveals nature of

most disturbances

Two-dimensional equations, possibly
including moment of momentum, to
include secondary flows, not yet

established

Assume pressure hydrostatic

Two-dimensional equations, no
secondary flows

Interchange of time & space differentiation,
Muskingum-Cunge routing

Vertically averaged

Assume stream straight, no cross-stream variation

Assume small disturbances Assume flow and disturbances both slow

Both assumptions: small disturbances and slow flow

Assume diffusion small

Assume diffusion zero

Kinematic wave approximation

Assume stream curvature small

Figure 7-1. Hierarchy of one-dimensional open channel theories and approximations

Figure 7-1 shows how a number of theories relate to each other. The arrows generally show the direction of
increasing approximation. The assumptions made in each case are shown as text without a box. There have been
a variety of approximations used, because the core theory, the one-dimensional long wave equations, have been
believed difficult and problematical to solve. Here we will present a method that overcomes a number of perceived
problems, such that it is not necessary to go to the approximations that have long been considered an important
part of computational hydraulics.

The problem is shown in Figure 7-2, showing the x axis corresponding to distance along the river, the t or time
axis and computational points. To commence numerical solution it is necessary to know the initial conditions –
what the values of Q and η are along the x axis, or at least at the computational points. These initial conditions
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x

t

Downstream
control
Q = f(η)

Initial conditions at t = t0, Q(x, t0) and η(x, t0) specified

t1

t2

Upstream
inflow
Q = Q0(t)
specified

t0

Figure 7-2. (x, t) axes showing initial and boundary conditions and a typical computational grid

are complemented by the upstream boundary condition, usually given in the form of a discharge hydrograph,
Q = Q0(t), and the downstream boundary condition, which is usually that at some control such as a weir, where
Q = f(η) might be specified.

Consider the long wave equations, (3.7) and (3.8):

∂η

∂t
+
1

B

∂Q

∂x
=

i

B
, (7.1a)

∂Q

∂t
+ 2β

Q

A

∂Q

∂x
+

µ
gA− β

Q2B

A2

¶
∂η

∂x
= β

Q2B

A2
S̃ − ΛP Q |Q|

A2
. (7.1b)

We will consider numerical methods to solve them, and a couple of approximations to them that have been used
sufficiently often that we should mention them, and an approximation that is quite useful in practice.

The one-dimensional long wave equations require relatively little detailed information, given the complexity of the
problem. The process of integrating across the cross-section, by which the equations reflect conservation of mass
and momentum, has been able to be performed in relatively simple terms.

7.1.1 Dependent variables
They are most conveniently written in terms of the two dependent variables:

1. Discharge Q – most hydraulic and hydrologic investigations specify the rate of volume transport of water
input into a stream, often based on simplified and approximate analyses, but it is the volume transport that is
more important than mean velocity, which could also have been used. The rate of outflow from the system is
also important, whether being used in further models downstream or in the design of hydraulic works.
Here we can also mention the lateral inflow volume rate i per unit length of stream, which may have to be
specified, although it can often be ignored.

2. Surface elevation η – usually this is very important, for it is easily measured, and it is important in determining
whether or nor a stream will overtop its banks and flood, or what areas of land can be irrigated.

For structures on the stream, there is often a definite and well-known relationship between discharge and surface
elevation, such as in the formulae for the discharge of a weir.

7.1.2 Geometrical information
• B – surface width: ideally one should now the cross-sectional geometry such that this can be calculated as a

function of surface elevation

• A – cross-sectional area: also should be known as a function of η

• P – wetted perimeter of the section, also a function of η, but this requires even more detailed knowledge of
the underwater topography. For wide channels, it might simply be assumed that P ≈ B.

• S̃ – bed slope, the mean across the section: usually this is not well known, and an approximate value is
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estimated.

A common approximation is to assume that the stream, even if a natural one, has a cross-section that is approxi-
mated by a trapezoidal section, giving

Top width : B =W + 2γh

Area : A = h (W + γh)

Wetted perimeter : P =W + 2
p
1 + γ2h,

in which h = η−Z, where Z is the local elevation of the bottom of the channel, which in turn might be able to be
approximated by a formula such as Z(x) = Z(x0)− xS0.

7.1.3 Fluid flow parameters
It is surprising that so few parameters enter. The problem which is being modelled is that of a turbulent shear flow
and the resistance that the boundary exerts on the flow.

• β – momentum correction factor, which is a relatively trivial parameter. It enters because the square of the
velocity has been integrated across the section to calculate momentum transport by the fluid. A typical value
is 1.05, which could easily be approximated by 1. The terms which contain β can be shown to be of a relative
magnitude of the square of the Froude number F 2, often not important.

• Λ – the resistance parameter. In the momentum equation (7.1b) it appeared as −ΛPQ |Q| /A2, which is
one of the dominant terms. Like the slope S̃, the resistance Λ is often not well-known at all. Yen has given
a convenient formula for the Weisbach coefficient λ, which Fenton (2010) re-wrote, and as Λ = λ/8 the
formula becomes:

Λ =
0.166

ln2

Ã
ε

12.
+

µ
2.

R

¶0.9! , (7.2)

where ε = ks/ (A/P ) is the relative roughness of the boundary, which is the equivalent sand-grain diameter
ks divided by the hydraulic radius A/P ; and where R = Q/Pν is the channel Reynolds number. In many
situations the Reynolds number dependence can be neglected. Results are as shown in figure 7-3.
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Figure 7-3. Dependence of λ on relative roughness and channel Reynolds number

Other formulations of the resistance term include those of Chézy and Gauckler-Manning-Strickler. For them
to agree for steady uniform flow, Λ can be expressed in terms of the Chézy coefficient C, the Manning
coefficient n, and the Strickler coefficient kSt respectively, the latter two being in SI units:

Λ =
g

C2
=

gn2

(A/P )
1/3

=
g

k2St (A/P )
1/3

. (7.3)
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There is little theory or sophisticated experimental results for these parameters. There are two books that
provide a catalogue of stream types and resistance parameters n and C for a number of rivers from New
Zealand and the USA.
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New Zealand — Hicks & Mason (1991)
USA — Barnes (1967)
Regions of most common conditions

Figure 7-4. Resistance-Slope plot of rivers from New Zealand and the USA

Figure 7-4 shows the slopes and the resistance coefficient Λ for a number of rivers from New Zealand and
the USA. The results for New Zealand are taken from 78 river and canal reaches (Hicks & Mason 1991). The
data for the USA were taken from 50 natural streams (Barnes 1967). From all that data, most values lie in
the range 0.003 . Λ . 0.1. It can be seen that for a number of the rivers, the roughnesses are rather greater
than included in figure 7-3. The figure shows that the values are arranged between limits according to Froude
number, for, from equation (3.9), the Weisbach equation for steady uniform flow

Q

A
=

r
g

Λ

A

P
S,

it can be shown that

F =
Q/Ap
gA/B

=

r
S

Λ

B

P
≈
r

S

Λ
,

for a wide channel such that P ≈ B. It can be seen that the data mostly fall between the lines corresponding
to slope to resistance coefficient ratios of S/Λ ≈ F 2 for F between 0.1 and 0.8. For lateral boundaries there
are two possibilities, shown by the two dashed parallelograms. One has vertical lines, suggesting that most
data points are bounded by 0.003 . Λ . 0.1. However, another possibility is that the lines with a negative
slope form the boundaries. Those lines are such that S = 10−6/Λ and S = 10−3/Λ. These are mostly for
natural streams. In canal problems smaller slopes might be encountered.

7.2 Initial conditions
Usually there is some initial flow in the channel that is assumed Q(x, t0) which is constant if there is no inflow.
The next step is to determine the initial distribution of surface elevation η. The conventional method is to solve
the Gradually-varied flow equation, using the equations and methods described in §5, as well as the downstream
boundary condition, which is about to be described. A simpler method is to use the unsteady equations and
computation scheme that will be used later anyway – simply start with an approximate solution for η(x, t0) and
let the unsteady dynamics take over, allowing disturbances to propagate downstream and out of the computational
domain until the solution is steady. Then, for example, the main computation could be started, such as a flood
inflow hydrograph.
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7.3 Boundary conditions

7.3.1 Upstream
It is usually the upstream boundary condition that drives the whole model, where a glood or wave enters, via the
specification of the time variation of Q = Q (x0, t) at the boundary. The surface elevation there is obtained as part
of the computations.

A model inflow hydrograph is that given previously as equation (2.11):

Q (x0, t) = Qmin + (Qmax −Qmin)

µ
t

Tmax
e1−t/Tmax

¶5
,

where the event starts at t = 0 with Qmin and has a maximum Qmax at t = Tmax.

Usually the location of the upstream boundary condition is well-defined, such as just below an upstream structure
or maybe the entry of a major tributary.

7.3.2 Downstream

If a control exists: If there is a structure downstream that restricts or controls the flow, the choice of location
and the nature of the control are both made easy. For example, a weir might have a flow formula such as

Q = 0.6
√
gb (η − zc)

3/2

where b is the crest length and zc is the elevation of the crest. Through formulae such as these, we then have the
general expression Q = f(η), and the way that this is implemented is that η is updated from the mass conservation
equation, and the formula used to give the value of Q.

Open boundary condition: often the computational domain might be truncated without the presence of
a control, such as just below a town, for which the danger of flooding is to be investigated, but where there is no
control structure on the stream. In this case the problem is altogether less well solved.

One solution is to use a uniform flow boundary condition there, and so, from the Chézy-Weisbach formula, for
example, for steady uniform flow

Q = A

r
g

Λ

A

P
S̃,

and to assume that this holds even if the flow is unsteady and non-uniform, as it generally is as disturbance pass
out from the computational domain. As A and P are known functions of surface elevation there, this becomes a
formula Q = f(η), just as if it were a control.

The lecturer prefers a different approach, and this is simply to treat the boundary as if it were just any other part
of the river (which it is!) and to use both long wave equations to update both η and Q there, calculating the
necessary derivatives ∂η/∂x and ∂Q/∂x from upstream finite difference formulae. He has found it works very
well in practice, but a senior hydraulic engineer was horrified when he heard this, believing it to violate the physics
of the problem. To the lecturer it is a sensible step. One still has to truncate somewhere. If one has truncated
the computational domain, one has already abandoned any idea of information coming from downstream anyway.
So, if all information is coming from upstream, we just use that and compute η and Q from the equations, using
approximations to derivatives from the conditions immediately upstream. To me, it is more sensible than applying
the wrong boundary condition such as a uniform flow boundary condition at the downstream end.

7.4 The method of characteristics
This method is described in many books, and for completeness is included here. The lecturer believes that it is
something of an accident of history, and that the deductions that emerge from it are misleading and have caused
several misunderstandings about the nature of wave propagation in open channels.

The two long wave equations (7.1a) and (7.1b), which are partial differential equations, can be expressed as four
ordinary differential equations. Two of the differential equations are for paths for x(t), a path known as a charac-
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Figure 7-5. Part of (x, t) plane, showing information arriving from upstream and downstream at velocities βU±C

teristic:
dx

dt
= βU ± C, (7.4)

where U = Q/A is the mean fluid velocity in the waterway at that section and the velocity C is

C =

r
gA

B
+ U2

¡
β2−β

¢
,

often described as the "long wave speed". It is, as equation (7.4) shows, actually the speed of the characteristics
relative to the flowing water. There are two contributions of ±C, corresponding to both upstream and downstream
propagation of information. Two characteristics that meet at a point are shown on Figure 7-5. The "downstream"
or "+" characteristic has a velocity at any point of βU + C. In the usual case where U is positive, both parts
are positive and the term is large. As shown on the diagram, the "upstream" or "-" characteristic has a velocity
βU−C, which is usually negative and smaller in magnitude than the other. Not surprisingly, upstream-propagating
disturbances travel more slowly. The characteristics are curved, as all quantities determining them are not constant,
but functions of the variable A, B, and Q.

The other two differential equations for η and Q can be established from the long wave equations:

B

µ
−βQ

A
± C

¶
dη

dt
+

dQ

dt
= β

Q2B

A2
S̃ − ΛP Q |Q|

A2
+ i

µ
−βQ

A
± C

¶
, (7.5)

On each of the two characteristics given by the two alternatives of equation (7.4), each of these two equations
holds, taking the corresponding plus or minus signs in each case. To advance the solution numerically means that
the four differential equations (7.4) and (7.5) have to be solved over time, usually using a finite time step∆. Figure
7-5 shows the nature of the process on a plot of x against t.

The usual computational problem is, for a time tn+1 = tn+∆, and for each of the discrete points xj , to determine
the values of x+j and x−j at which the characteristics cross the previous time level tn. From the information about
η and Q at each of the computational points at that previous time level, the corresponding values of η+j , η−j , Q+j ,
and Q−j are calculated and then used as initial values in the two differential equations (7.5) which are then solved
numerically to give the updated values η (xj , tn+1) and Q (xj , tn+1), and so on for all the points at tn+1.

The advantage of characteristics has been believed to be that numerical schemes are relatively stable. The lecturer
is unconvinced that they are any more stable then simple finite difference approximations to the original partial
differential equations, but this remains to be proved conclusively.

The use of characteristics has led to a widespread misconception in hydraulics where C is understood to be the
speed of propagation of waves. It is not – it is the speed of characteristics. If surface elevation were constant on a
characteristic there would be some justification in using the term ”wave speed” for the quantity C, as disturbances
travelling at that speed could be observed. However as equation (7.5) holds, in general neither η (surface elevation –
the quantity that we see), nor Q, is constant on the characteristics and one does not have observable disturbances or
discharge fluctuations travelling atC relative to the water. WhileC may be the speed of propagation of information
in the waterway relative to the water, it cannot properly be termed the wave speed as it would usually be understood.
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7.5 The Preissmann Box scheme
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Figure 7-6. Implicit Preissmann Box scheme

The most popular numerical method for solving the equations in time are Implicit Box (Preissmann) models, where
the derivatives are replaced by finite-difference equivalents, giving algebraic equations for point values of elevation
and discharge in space and time. At time tn a pair of equations are written for each computational module, giving
two equations for two unknowns at time tn+1. Such equations are written all along the x axis (i.e. for every
computational point), giving a system of 2N nonlinear equations in 2N unknowns. The method is complicated,
and several well-known commercial programs are available.

Consider the finite difference approximations, where δ is a spatial step length, ∆ a time step, θ is a weighting
parameter, and the point fnj is for a spatial point number j and time level n:

∂f

∂x
(j, n) ≈ 1

δ

£
θ
¡
fn+1j+1 − fn+1j

¢
+ (1− θ)

¡
fnj+1 − fnj

¢¤
,

∂f

∂t
(j, n) ≈ 1

2∆

£¡
fn+1j+1 − fnj+1

¢
+
¡
fn+1j − fnj

¢¤
,

f̄ (j, n) ≈ 1

2

£
θ
¡
fn+1j+1 + fn+1j

¢
+ (1− θ)

¡
fnj+1 + fnj

¢¤
,

in which θ is a weighting coefficient, which determines how much weight is attached to values at time n + 1 and
how much to those at n. Now, in the equations (7.1a) and (7.1b) we use these expressions for all derivatives and also
the averaged quantity for quantities that occur algebraically. We obtain a set of complicated algebraic equations
in the values of Q and η at the corners of a rectangle in space-time, which can be used for numerical solutions
of the full nonlinear equations. Note that values at two points to be determined have entered the equations: fn+1j

and fn+1j+1 . This means that it is not possible to solve the equations explicitly, and one obtains at each time step
a system of 2N simultaneous nonlinear equations that have to be solved. The lecturer uses a multi-dimensional
secant method, which requires successive use of solutions of a system of nonlinear equations.

The lecturer thinks this is a terrible scheme. It is very complicated. It is, however, very robust and stable, and
large time steps can be taken. The scheme can be shown to be neutrally stable if θ = 1

2 is taken, but it is only
marginally stable. In practice, one uses a larger value, such as θ = 0.6, and the scheme is stable because it is
computationally-diffusive.
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7.6 Explicit Forward-Time-Centre-Space scheme

7.6.1 The scheme
Initially, consider the Forward-Time approximation to equations (7.1), which is generic, in that we have not speci-
fied a means of computing the spatial derivatives:

η (x, t+∆) = η (x, t) +∆

µ
i

B
− 1

B

∂Q

∂x

¶
(x,t)

, (7.6)

Q (x, t+∆) = Q (x, t) +∆

µ
β
Q2B

A2
S̃ − ΛP Q |Q|

A2
− 2βQ

A

∂Q

∂x
−
µ
gA− β

Q2B

A2

¶
∂η

∂x

¶
(x,t)

. (7.7)

We could use, say, cubic splines to approximate the derivatives, and the lecturer has found that the scheme works
quite well. In the interest of simplicity, however, it is better to use the Centre-Space expressions for the derivatives:µ

∂η

∂x

¶
(x,t)

=
η (x+ δ, t)− η (x− δ, t)

2δµ
∂Q

∂x

¶
(x,t)

=
Q (x+ δ, t)−Q (x− δ, t)

2δ
.

The computational stencil for the scheme is shown in figure 7-7. It is quite simple to apply
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Figure 7-7. Computational stencil for explicit Forward-Time-Centre-Space scheme

Liggett & Cunge (1975) showed that the scheme was unconditionally unstable. This had some important implica-
tions, for it meant that the world was forced into using complicated schemes such as the Preissmann Box scheme.
The lecturer has recently discovered that their analysis is wrong, and that the scheme has a quite acceptable stabil-
ity limitation, and it opens up the possibility for simpler computations of floods and flows in open channels. The
Preissmann Box Scheme allows much larger time steps, but it is very complicated to apply.

7.6.2 Stability limits
The theory is non-trivial: for present purposes it is probably best just to try and see if the computations are stable.
As an example, we consider a 100m wide channel, with L = 100 km, N = 100 computational points, and a flow
that rises from 100m3s−1 to a peak of 1000m3s−1 after 24 hours and then diminishes again. We computed for
96 h. A number of different cases of resistance Λ and slope were considered. In each case the approximate limit
to stability was found by trial and error. Results are shown in figure 7-8. It can be seen that over the range of most
natural rivers and canals, shown by the dashed lines corresponding to the region of most streams on figure 7-4 the
allowable time steps might be 100 s. For streams on very small slopes, the steps are quite small, being something
like 5 s. This does not seem to be a problem on modern computers, for computational times for each simulation
varied between less than a second to several seconds.
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Figure 7-8. Stability limits determined by trial and error for a model river

7.7 The slow-change approximation – advection-diffusion and kinematic
theories

There is a family of approximations that can be studied and used, to give rather simpler equations, and certainly
simpler numerical methods, than the Preissmann Box Scheme. However the FTCS scheme of the previous section
is so general and simple that it might be considered the method of choice. Nevertheless the approximations are
included here for completeness, as they traditionally form parts of computational hydraulics courses.

It has been widely believed that the essential approximation that is made is that the square of the Froude number,
F 2, is small, so that they apply to slow-moving flows. However that belief has come from non-dimensionalising
arguments that postulated that the time scale of variation was dictated by the velocity of the stream. In fact, the
time scale of variation is dictated by the time scale of variation of input to the system – how fast floods rise or how
fast control gates open.

To examine the implications of that statement we will consider the long wave equations written in terms of cross-
sectional area A rather than surface elevation η. By substituting the relations

∂A

∂t
= B

∂η

∂t
and

∂A

∂x
= B

µ
∂η

∂x
+ S̃

¶
, (7.8)

into equations (7.1), we obtain

∂A

∂t
+

∂Q

∂x
= i, (7.9a)

∂Q

∂t
+

µ
gA

B
− β

Q2

A2

¶
∂A

∂x
+ 2β

Q

A

∂Q

∂x
= gAS̃ − ΛP Q |Q|

A2
. (7.9b)

For slowly-varying input to the system the time derivative ∂Q/∂t in equation (7.9b) can be shown to be much
smaller than the other terms, and not surprisingly, the spatial derivative ∂Q/∂x is also smaller, as motion is varying
slowly in both time and space. This argument cannot be used to simplify equation (7.9a) for both derivatives in
general are of the same magnitude. However, in the momentum equation (7.9b), if we neglect both derivatives of
Q, the equation is approximated by µ

gA

B
− β

Q2

A2

¶
∂A

∂x
= gAS̃ − ΛP Q2

A2
, (7.10)
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which contains Q only algebraically, and the equation can be solved for Q:

Q =

r
gA3

ΛP

vuuuut S̃ − 1
B

∂A

∂x

1− β
ΛP

∂A

∂x

= K

vuuuut S̃ − 1
B

∂A

∂x

1− β
ΛP

∂A

∂x

, (7.11)

where the conveyance K has been introduced for convenience, from equation (3.12).

Now to use the value of Q from equation (7.11) in a mass-conservation equation to give a single equation in a
single unknown, there are two ways that we can proceed.

1. The first is to substitute Q into the remaining mass conservation equation (7.9a) to give the equation

∂A

∂t
+

∂

∂x

⎛⎜⎜⎝K

vuuuut S̃ − 1

B

∂A

∂x

1− β

ΛP

∂A

∂x

⎞⎟⎟⎠ = i. (7.12)

Routing problems could be solved by solving for A down the channel and if necessary using equation (7.11)
at any stage to calculate the discharge Q. However the free surface elevation η has more direct significance.
Equations (7.8) can be used, and equation (7.12) becomes the equation in terms of surface elevation η:

∂η

∂t
+
1

B

∂

∂x

⎛⎜⎜⎜⎝K

vuuut −∂η/∂x

1− βB

ΛP

µ
∂η

∂x
+ S̃

¶
⎞⎟⎟⎟⎠ =

i

B
. (7.13)

2. In many problems, however, the discharge is specified as a boundary condition, which does not naturally lead
to a boundary condition on η. It is helpful to introduce the concept of upstream volume V , or the volume of
water upstream of a point (x, t) and which will pass that point, that is related to A and Q by:

∂V

∂x
= A and

∂V

∂t
=

Z x

i(x0) dx0 −Q. (7.14)

The first of those relations is obvious, the x-derivative of the volume is the cross-sectional area. The second
states that the rate of change of volume is equal to the rate at which it is flowing into the system given by the
integral, less the flow which is passing the point, thereby no longer being upstream. Substituting A and Q
from equation (7.14) into the mass conservation equation (7.9a) shows that it is satisfied identically:

∂

∂t

µ
∂V

∂x

¶
+

∂

∂x

µZ x

i(x0) dx0 − ∂V

∂t

¶
= i.

Now we just take equation (7.11) for Q and to use the upstream volume identity (7.14) Q =
R x

i(x0) dx0 −
∂V/∂t to give the equation in terms of V :

∂V

∂t
+K

vuut S̃ − 1
B
∂2V
∂x2

1− β
ΛP

∂2V
∂x2

=

Z x

i(x0) dx0. (7.15)

This is a single equation in a single unknown, the upstream volume V . The only approximation that has been
made is that variation with time (and space) is slow. It is most suited to flood routing problems, and not to
problems of waves caused by fast irrigation gate movements.

There is an interesting approximation to equation (7.15) that we can obtain by linearising the equation for small
disturbances about a steady uniform flow with no inflow i = 0. Let

V = A0x−Q0t+ v,

where v is a small quantity. Then we have

A =
∂V

∂x
= A0 +

∂v

∂x
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and as K = K(A) we have

K(A) = K

µ
A0 +

∂v

∂x

¶
= K (A0) +

dK

dA

¯̄̄̄
0

∂v

∂x
+ . . . ,

writing it as a Taylor series. The square root term in equation (7.15) can be evaluated using power series expansions
(1 + δ)n = 1 + nδ + . . .and as S̃ = S0 for the underlying uniform flowvuut S̃ − 1

B
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¶
,

and multiplying through by the Taylor expansion for K and substituting into equation (7.15) we get

−Q0 +
∂v

∂t
+K (A0)

p
S0 +

p
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and as the underlying flow is given by Q0 = K (A0)
√
S0 the leading terms cancel and we get
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. (7.16)

The left side is an advective derivative, and the coefficient of the ∂v/∂x term plays the role of an advective velocity
so that we write ck =

√
S0 dK/dA|0, which is called the kinematic wave speed. Now, asQ0 = K0

√
S0, this means

that

ck =
dQ0
dA0

,

which is called the Kleitz-Seddon equation.

From the uniform flow relation we have

Q0 = A0

r
g

Λ0

A0
P0

S0,

from which it is possible to show that
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d (ΛP )
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¯̄̄̄
0

¶
. (7.17)

For wide channels, the derivative of ΛP with area should be small, and so we have the useful formula that the
speed of propagation of long disturbances in streams is ck ≈ 3U0/2.

From the uniform flow formula the term in the brackets in the diffusion coefficient of equation (7.16) can be
simplified to give

∂v

∂t
+ ck

∂v

∂x
=

Q0
2B0S0

¡
1− βF 20

¢ ∂2v
∂x2

, (7.18)

which is an advection-diffusion equation. We have shown that this describes disturbances in channels where
variation is slow and deviations about uniform flow are relatively small, and have observed the nature of behaviour
of solutions in §6.4. These are relatively minor limitations in many cases, and the equation is a good model of
motion in a river or canal.

Now we non-dimensionalise the advection equation (7.18). We consider a time scale of variation T , and assume
that to first order the length scale L ≈ ckT . We introduce dimensionless variables x∗ = x/L and t∗ = t/T , so that
the scale of variation of both x∗ and t∗ is about 1. Substituting into the equation, and assuming that βF 20 ¿ 1:

1

T

∂v

∂t∗
+

ck

L

∂v

∂x∗
=

Q0
2B0S0

1

L2
∂2v

∂x2∗
,
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and multiplying through,

∂v

∂t∗
+

∂v

∂x∗
=

Q0
2B0S0c2kT

∂2v

∂x2∗
.

As the time and space differentiation are now of a scale of 1, the dimensionless diffusion coefficient on the right
now shows the relative importance of diffusion. We substitute ck = 3U0/2, Q0 = U0A0, and making the wide-
channel approximation, such that A0 = B0h0 and P0 = B0 the dimensionless diffusion coefficient becomes

2

9T

s
h0Λ0
gS30

,

and we can see that diffusion is small for slowly-varying waves (T large) on steeper streams, S0 large. In the case
where it is negligible, the advection equation results, with solution v = f (x− ckt), where f (.) is given by the
upstream boundary condition, which is a travelling wave with no diminution.

8. The analysis and use of stage and discharge measurements
Almost universally the routine measurement of the state of a river is that of the stage, the surface elevation at
a gauging station, usually specified relative to an arbitrary local datum. While surface elevation is an important
quantity in determining the danger of flooding, another important quantity is the actual flow rate past the gauging
station. Accurate knowledge of this instantaneous discharge - and its time integral, the total volume of flow - is
crucial to many hydrologic investigations and to practical operations of a river and its chief environmental and
commercial resource, its water. Examples include decisions on the allocation of water resources, the design of
reservoirs and their associated spillways, the calibration of models, and the interaction with other computational
components of a network.

8.1 Stage discharge method

Discharge (m3s−1)

Stage

(m)

Figure 8-1. Rating curve (stage-discharge diagram) and data points to which it has been fitted

The traditional way in which volume flow is inferred is for a Rating Curve to be derived for a particular gauging
station, which is a relationship between the stage measured and the actual flow passing that point. The measurement
of flow is done at convenient times by traditional hydrologic means, with a current meter measuring the flow
velocity at enough points over the river cross section so that the volume of flow can be obtained for that particular
stage, measured at the same time. By taking such measurements for a number of different stages and corresponding
discharges over a long period of time, a number of points can be plotted on a stage-discharge diagram, and a curve
drawn through those points, giving what is hoped to be a unique relationship between stage and flow, the Rating
Curve, as shown in Figure 8-1. If the supposedly unique relationship between the flow rate and the stage is written
Qr(η), subsequent measurements of the surface elevation at some time t, such as an hourly or daily measurement,
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are then used to give the discharge:

Q(t) = Qr(η(t)).

It is assumed that for any stage reading, which is the routine periodic measurement, the corresponding discharge
can be calculated. This is what happens when the stage is read and telemetered to a central data management
authority. From the rating curve for that stage, the corresponding discharge can be calculated. This is very widely
used and is the routine method of flow measurement. It begs a number of questions.

Qfalling Qrated Qrising Discharge

Stage

A measured stage value

Steady flow rating curve Actual flood event

Figure 8-2. Stage-discharge diagram showing the steady-flow rating curve and an exaggerated looped trajectory of
a particular flood event, which can be due to two effects: changing roughness and unsteady flow effects

There are several problems associated with the use of a Rating Curve:

• The assumption of a unique relationship between stage and discharge may not be justified.

• Discharge is rarely measured during a flood, and the quality of data at the high flow end of the curve might
be quite poor.

• It is usually some sort of line of best fit through a sample made up of a number of points - sometimes
extrapolated for higher stages.

• It has to describe a range of variation from no flow through small but typical flows to very large extreme
flood events.

• There are a number of factors which might cause the rating curve not to give the actual discharge, some of
which will vary with time. Factors affecting the rating curve include:

– The channel changing as a result of modification due to dredging, bridge construction, or vegetation
growth.

– Sediment transport - where the bed is in motion, which can have an effect over a single flood event,
because the effective bed roughness can change during the event. As a flood increases, any bed forms
present will tend to become larger and increase the effective roughness, so that friction is greater after
the flood peak than before, so that the corresponding discharge for a given stage height will be less after
the peak. This will contribute to a flood event showing a looped curve on a stage-discharge diagram as is
shown on Figure 8-2.

– Backwater effects - changes in the conditions downstream such as the construction of a dam or flooding
in the next waterway.

– Unsteadiness - in general the discharge will change rapidly during a flood, and the slope of the water
surface will be different from that for a constant stage, depending on whether the discharge is increasing
or decreasing, also contributing to a flood event appearing as a loop on a stage-discharge diagram such as
Figure 8-2.

– Variable channel storage - where the stream overflows onto flood plains during high discharges, giving
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rise to different slopes and to unsteadiness effects.

– Vegetation - changing the roughness and hence changing the stage-discharge relation.

– Ice - which we will ignore.

Some of these can be allowed for by procedures which we will describe later.

8.1.1 The hydraulics of a gauging station

High flow

Low flow

Local
control

Distant
control

Channel control

Gauging
station

Channel control

Flood

1

3

2

4

5

Larger body
of water

Figure 8-3. Section of river showing different controls at different water levels with implications for the stage
discharge relationship at the gauging station shown

A typical set-up of a gauging station where the water level is regularly measured is given in Figure 8-3 which
shows a longitudinal section of a stream. Downstream of the gauging station is usually some sort of fixed control
which may be some local topography such as a rock ledge which means that for relatively small flows there is a
relationship between the head over the control and the discharge which passes. This will control the flow for small
flows. For larger flows the effect of the fixed control is to ”drown out”, to become unimportant, and for some other
part of the stream to control the flow, such as the larger river downstream shown as a distant control in the figure,
or even, if the downstream channel length is long enough before encountering another local control, the section
of channel downstream will itself become the control, where the control is due to friction in the channel, giving
a relationship between the slope in the channel, the channel geometry and roughness and the flow. There may be
more controls too, but however many there are, if the channel were stable, and the flow steady (i.e. not changing
with time anywhere in the system) there would be a unique relationship between stage and discharge, however
complicated this might be due to various controls. In practice, the natures of the controls are usually unknown.

Something which the concept of a rating curve overlooks is the effect of unsteadiness, or variation with time. In
a flood event the discharge will change with time as the flood wave passes, and the slope of the water surface will
be different from that for a constant stage, depending on whether the discharge is increasing or decreasing. Figure
8-3 shows the increased surface slope as a flood approaches the gauging station. The effects of this are shown on
Figure 8-2, in somewhat exaggerated form, where an actual flood event may not follow the rating curve but will in
general follow the looped trajectory shown. As the flood increases, the surface slope in the river is greater than the
slope for steady flow at the same stage, and hence, according to conventional simple hydraulic theory explained
below, more water is flowing down the river than the rating curve would suggest. This is shown by the discharge
marked Qrising obtained from the horizontal line drawn for a particular value of stage. When the water level is
falling the slope and hence the discharge inferred is less.

The effects of this might be important - the peak discharge could be significantly underestimated during highly
dynamic floods, and also since the maximum discharge and maximum stage do not coincide, the arrival time of the
peak discharge could be in error and may influence flood warning predictions. Similarly water-quality constituent
loads could be underestimated if the dynamic characteristics of the flood are ignored, while the use of a discharge
hydrograph derived inaccurately by using a single-valued rating relationship may distort estimates for resistance
coefficients during calibration of an unsteady flow model.

8.1.2 Rating curves – representation, approximation and calculation
Figure 8-4 shows the current rating curve for the Ovens River at Wangaratta in Victoria, Australia, where flow
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Figure 8-4. Rating curve using natural (Q, η) axes

measurements have been made since 1891. There are a couple of difficulties with such a curve, including reading
results off for small flows, where the curve is locally vertical, and for high flows where it is almost horizontal.
A traditional way of overcoming the difficulty of representing rating curves over a large range has been to use
log-log axes. However, this has no physical basis and has a number of practical difficulties, although it has been
recommended by International Standards.Hydraulic theory can help here, for it can be used to show that the stage-
discharge relationship will tend to show stage varying approximately like η ∼ Q1/2, for both cases:

1. Flow across a U-shaped (parabolic) weir, the approximate situation for low flow at a gauging station, when a
local control such as a rock ledge controls the flow, and

2. Uniform flow down a U-shaped (parabolic) waterway for large flows, when the local control is washed out
and the waterway acts more like a uniform flow governed by Manning’s law.
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Figure 8-5. The same rating curve as in figure 8-4 but using (
√
Q, η) axes

In these cases, both parts of the relationship would plot as (different) straight lines on
¡√

Q,η
¢

axes. In figure 8-5
we plot the results from the above figure on such a square root scale for the discharge, and we see that indeed
at both small and large flows the rating curve is a straight line. This means that simpler procedures of numerical
approximation and interpolation could be used. Sometimes results have to be taken by extrapolating the curve. If
this has to be done, then linear extrapolation on the

¡√
Q,η

¢
axes might be reasonable, but it is still a procedure to
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be followed with great caution, as the actual geometry for above-bank flows can vary a lot.

A number of such practical considerations are given in Fenton (2001).

8.2 Stage-discharge-slope method
This is presented in some books and in International Standards, however, especially in the latter, the presentation is
confusing and at a low level, where no reference is made to the fact that underlying it the slope is being measured.
Instead, the fall is described, which is the change in surface elevation between two surface elevation gauges and
is simply the slope multiplied by the distance between them. No theoretical justification is provided and it is
presented in a phenomenological sense (see, for example, Herschy 1995).

Although the picture in Figure 8-3 of the factors affecting the stage and discharge at a gauging station seems
complicated, the underlying processes are capable of quite simple description. In a typical stream, where all wave
motion is of a relatively long time and space scale, the governing equations are the long wave equations, which
are a pair of partial differential equations for the stage and the discharge at all points of the channel in terms of
time and distance along the channel. One is a mass conservation equation, the other a momentum equation. Under
the conditions typical of most flows and floods in natural waterways, however, the flow is sufficiently slow that
the equations can be simplified considerably. Most terms in the momentum equation are of a relative magnitude
given by the square of the Froude number, which is U2/gD, where U is the fluid velocity, g is the gravitational
acceleration, and D is the mean depth of the waterway. In most rivers, even in flood, this is small, and the
approximation may be often used. For example, a flow of 1ms−1 with a depth of 2m has F 2 ≈ 0.05.

In Appendix §A we show that under these circumstances, a surprisingly good approximation to the momentum
equation of motion for flow in a waterway is the simple equation:

Q(t) = K(η(t))
p
−∂η/∂x(t), (8.1)

where we have shown that the slope of the free surface might be a function of time. This gives us a formula for
calculating the discharge Q which is as accurate as is reasonable to be expected in river hydraulics, provided we
know

1. the stage and the dependence of conveyance K on stage at a point from either measurement or the G-M-S or
Chézy’s formulae, and

2. the slope of the surface

Stage-conveyance curves

Equation (8.1) shows how the discharge actually depends on both the stage and the surface slope, whereas tra-
ditional hydrography assumes that it depends on stage alone. If the slope does vary under different backwater
conditions or during a flood, then a better hydrographic procedure would be to gauge the flow when it is steady,
and to measure the surface slope , thereby enabling a particular value of K to be calculated for that stage. If this
were done over time for a number of different stages, then a stage-conveyance relationship could be developed
which should then hold whether or not the stage is varying. Subsequently, in day-to-day operations, if the stage
and the surface slope were measured, then the discharge calculated from equation (8.1) should be quite accurate,
within the relatively mild assumptions made so far. All of this holds whether or not the gauging station is affected
by a local or channel control, and whether or not the flow is changing with time.

This suggests that a better way of determining streamflows in general, but primarily where backwater and unsteady
effects are likely to be important, is for the following procedure to be followed:

1. At a gauging station, two measuring devices for stage be installed, so as to be able to measure the slope of
the water surface at the station. One of these could be at the section where detailed flow-gaugings are taken,
and the other could be some distance upstream or downstream such that the stage difference between the two
points is enough that the slope can be computed accurately enough. As a rough guide, this might be, say
10 cm, so that if the water slope were typically 0.001, they should be at least 100m apart.

2. Over time, for a number of different flow conditions the discharge Q would be measured using conventional
methods such as by current meter. For each gauging, both surface elevations would be recorded, one becoming
the stage η to be used in the subsequent relationship, the other so that the surface slope Sη can be calculated.
Using equation (8.1), Q = K(η)

p
Sη, this would give the appropriate value of conveyance K for that stage,
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automatically corrected for effects of unsteadiness and downstream conditions.

3. From all such data pairs (ηi,Ki) for i = 1, 2, . . ., the conveyance curve (the functional dependence of K on
η) would be found, possibly by piecewise-linear or by global approximation methods, in a similar way to the
description of rating curves described below. Conveyance has units of discharge, and as the surface slope is
unlikely to vary all that much, we note that there are certain advantages in representing rating curves on a plot
using the square root of the discharge, and it my well be that the stage-conveyance curve would be displayed
and approximated best using (

√
K, η) axes.

4. Subsequent routine measurements would obtain both stages, including the stage to be used in the stage-
conveyance relationship, and hence the water surface slope, which would then be substituted into equation
(8.1) to give the discharge, corrected for effects of downstream changes and unsteadiness.

If hydrography had followed the path described above, of routinely measuring surface slope and using a stage-
conveyance relationship, the ”science” would have been more satisfactory. Effects due to the changing of down-
stream controls with time, downstream tailwater conditions, and unsteadiness in floods would have been automat-
ically incorporated, both at the time of determining the relationship and subsequently in daily operational practice.

However, for the most part slope has not been measured, and hydrographic practice has been to use rating curves
instead. The assumption behind the concept of a discharge-stage relationship or rating curve is that the slope at a
station is constant over all flows and events, so that the discharge is a unique function of stage Qr(η) where we
use the subscript r to indicate the rated discharge. Instead of the empirical/rational expression (8.1), traditional
practice is to calculate discharge from the equation

Q(t) = Qr(η(t)), (8.2)

thereby ignoring any effects that downstream backwater and unsteadiness might have, as well as the possible
changing of a downstream control with time.

In comparison, equation (8.1), based on a convenient empirical approximation to the real hydraulics of the river,
contains the essential nature of what is going on in the stream. It shows that, although the conveyance might be
a unique function of stage which it is possible to determine by measurement, because the surface slope will in
general vary throughout different flood events and downstream conditions, discharge in general does not depend
on stage alone.

8.3 Looped rating curves – correcting for unsteady effects in obtaining
discharge from stage

In conventional hydrography the stage is measured repeatedly at a single gauging station so that the time derivative
of stage can easily be obtained from records but the surface slope along the channel is not measured at all. The
methods of this section are all aimed at obtaining the slope in terms of the stage and its time derivatives at a single
gauging station. The simplest and most traditional method of calculating the effects of unsteadiness has been the
Jones formula, derived by B. E. Jones in 1916 (see for example Chow 1959, Henderson 1966). The principal
assumption is that to obtain the slope, the x derivative of the free surface, we can use the time derivative of stage
which we can get from a stage record, by assuming that the flood wave is moving without change as a kinematic
wave (Lighthill and Whitham, 1955) such that it obeys the partial differential equation:

∂h

∂t
+ c

∂h

∂x
= 0, (8.3)

where h is the depth and c is the kinematic wave speed. Solutions of this equation are simply waves travelling at a
velocity c without change. The equation was obtained as the last of a series of approximations in Section ??. The
kinematic wave speed c is given by the derivative of flow with respect to cross-sectional area, the Kleitz-Seddon
law

c =
1

B

dQr

dη
=
1

B

dK

dη

p
S̃, (8.4)

where B is the width of the surface and Qr is the steady rated discharge corresponding to stage η, and where we
have expressed this also in terms of the conveyance K, where Qr = K(η)

p
S̃, and the slope

p
S̃ is the mean slope

of the stream. A good approximation is c ≈ 5/3× U , where U is the mean stream velocity.
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The Jones method assumes that the surface slope Sη in equation (8.1) can be simply related to the rate of change
of stage with time, assuming that the wave moves without change. Thus, equation (8.3) gives an approximation for
the surface slope: ∂h/∂x ≈ −1/c × ∂h/∂t. We then have to use the simple geometric relation between surface
gradient and depth gradient, that ∂η/∂x = ∂h/∂x− S̃, such that we have the approximation

Sη = −
∂η

∂x
= S̃ − ∂h

∂x
≈ S̃ +

1

c

∂h

∂t

and recognising that the time derivative of stage and depth are the same, ∂h/∂t = ∂η/∂t, equation (8.1) gives

Q = K

r
S̃ +

1

c

∂η

∂t
(8.5)

If we divide by the steady discharge corresponding to the rating curve we obtain

Q

Qr
=

r
1 +

1

cS̃

∂η

∂t
(Jones)

In situations where the flood wave does move as a kinematic wave, with friction and gravity in balance, this theory
is accurate. In general, however, there will be a certain amount of diffusion observed, where the wave crest subsides
and the effects of the wave are smeared out in time.

To allow for those effects Fenton (1999) provided the theoretical derivation of two methods for calculating the
discharge. The derivation of both is rather lengthy. The first method used the full long wave equations and
approximated the surface slope using a method based on a linearisation of those equations. The result was a
differential equation for dQ/dt in terms of Q and stage and the derivatives of stage dη/dt and d2η/dt2, which
could be calculated from the record of stage with time and the equation solved numerically. The second method
was rather simpler, and was based on the next best approximation to the full equations after equation (8.3). This
gives the advection-diffusion equation

∂h

∂t
+ c

∂h

∂x
= ν

∂2h

∂x2
, (8.6)

where the difference between this and equation (8.3) is the diffusion term on the right, where ν is a diffusion
coefficient (with units of L2T−1), given by

ν =
K

2B
p
S̃
.

Equation (8.6), is a consistent low-inertia approximation to the long wave equations, where inertial terms, which
are of the order of the square of the Froude number, which approximates motion in most waterways quite well.
However, it is not yet suitable for the purposes of this section, for we want to express the x derivative at a point in
terms of time derivatives. To do this, we use a small-diffusion approximation, we assume that the two x derivatives
on the right of equation (8.6) can be replaced by the zero-diffusion or kinematic wave approximation as above,
∂/∂x ≈ −1/c×∂/∂t, so that the surface slope is expressed in terms of the first two time derivatives of stage. The
resulting expression is:

∂h

∂t
+ c

∂h

∂x
=

ν

c2
∂2h

∂t2
,

and solving for the x derivative, we have the approximation

Sη = −
∂η

∂x
= S̃ − ∂h

∂x
≈ S̃ +

1

c

∂h

∂t
− ν

c3
d2h

dt2
,

and substituting into equation (8.1) gives

Q = Qr(η)

vuuuut 1|{z}
Rating curve

+
1

cS̃

dη

dt| {z }
Jones formula

− ν

c3S̃

d2η

dt2| {z }
Diffusion term

(8.7)

where Q is the discharge at the gauging station, Qr(η) is the rated discharge for the station as a function of stage,
S̃ is the bed slope, c is the kinematic wave speed given by equation (8.4):

c =

p
S̃

B

dK

dη
=
1

B

dQr

dη
,
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in terms of the gradient of the conveyance curve or the rating curve, B is the width of the water surface, and where
the coefficient ν is the diffusion coefficient in advection-diffusion flood routing, given by:

ν =
K

2B
p
S̃
=

Qr

2BS̃
. (8.8)

In equation (8.7) it is clear that the extra diffusion term is a simple correction to the Jones formula, allowing for
the subsidence of the wave crest as if the flood wave were following the advection-diffusion approximation, which
is a good approximation to much flood propagation. Equation (8.7) provides a means of analysing stage records
and correcting for the effects of unsteadiness and variable slope. It can be used in either direction:

• If a gauging exercise has been carried out while the stage has been varying (and been recorded), the value of
Q obtained can be corrected for the effects of variable slope, giving the steady-state value of discharge for
the stage-discharge relation,

• And, proceeding in the other direction, in operational practice, it can be used for the routine analysis of stage
records to correct for any effects of unsteadiness.

The ideas set out here are described rather more fully in Fenton & Keller (2001).

An example

A numerical solution was obtained for the particular case of a fast-rising and falling flood in a stream of 10 km
length, of slope 0.001, which had a trapezoidal section 10m wide at the bottom with side slopes of 1:2, and a
Manning’s friction coefficient of 0.04. The downstream control was a weir. Initially the depth of flow was 2m,
while carrying a flow of 10m3s−1. The incoming flow upstream was linearly increased ten-fold to 100m3s−1
over 60 mins and then reduced to the original flow over the same interval. The initial backwater curve problem
was solved and then the long wave equations in the channel were solved over six hours to simulate the flood. At
a station halfway along the waterway the computed stages were recorded (the data one would normally have), as
well as the computed discharges so that some of the above-mentioned methods could be applied and the accuracy
of this work tested.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

Flow
(m3 s−1)

Time (hours)

Actual flow
From rating curve

Jones formula
Eqn (8.7)

Figure 8-6. Simulated flood with hydrographs computed from stage record using three
levels of approximation

Results are shown on Figure 8-6. It can be seen that the application of the diffusion level of approximation of
equation (8.7) has succeeded well in obtaining the actual peak discharge. The results are not exact however,
as the derivation depends on the diffusion being sufficiently small that the interchange between space and time
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differentiation will be accurate. In the case of a stream such as the example here, diffusion is relatively large, and
our results are not exact, but they are better than the Jones method at predicting the peak flow. Nevertheless, the
results from the Jones method are interesting. A widely-held opinion is that it is not accurate. Indeed, we see here
that in predicting the peak flow it was not accurate in this problem. However, over almost all of the flood it was
accurate, and predicted the time of the flood peak well, which is also an important result. It showed that both before
and after the peak the ”discharge wave” led the ”stage wave”, which is of course in phase with the curve showing
the flow computed from the stage graph and the rating curve. As there may be applications where it is enough to
know the arrival time of the flood peak, this is a useful property of the Jones formula. Near the crest, however, the
rate of rise became small and so did the Jones correction. Now, and only now, the inclusion of the extra diffusion
term gave a significant correction to the maximum flow computed, and was quite accurate in its prediction that the
real flow was some 10% greater than that which would have been calculated just from the rating curve. In this
fast-rising example the application of the unsteady corrections seems to have worked well and to be justified. It is
no more difficult to apply the diffusion correction than the Jones correction, both being given by derivatives of the
stage record.

8.4 The effects of bed roughness on rating curves

8.4.1 Introduction
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Figure 8-7. Flood trajectories for Station 41 on the Red River, showing raw data –
corrected data was everywhere obscured

We have considered the detailed records for 1995 and 1996 for the Red River, Viet Nam. The trajectories, plotted
on Stage/Discharge axes on Figure 8-7, show considerable loopiness. In the expectation that the cause was the
unsteady wave effects as described above, we applied the theory described above, assuming for simple purposes,
a slope S0 = 0.0015, and using the recorded values of stage, depth, area, and breadth. Everywhere, no visible
correction was made, and the methods of the section above have failed to describe the loopiness. It seems that the
loopiness in this case must be due to effects of the bed topography and friction changing with flow. This is the
more common situation, and it is bed roughness changes which will more often be the cause of loopiness.

Simons & Richardson (1962) have written on the nature of the relationship between stage and discharge when the
river bed is mobile, when bed forms may change, depending on the flow, such that in a flood there may be different
bed roughness before and after, and the stage-discharge trajectory may show loopiness, as shown in Figure 8-7
above. This suggests a different approach to the relationship between stage and discharge observed in a river,
when the river itself is the control, rather than a hydraulic structure.

Let us consider the mechanism by which changes in roughness cause the flood trajectories to be looped, by con-
sidering a hypothetical and idealised situation. In Figure 8-8 is shown a plot of Stage versus Discharge. The rating
curves which would apply if the bedforms were held constant are shown – for a flat bed and for various increasing
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Figure 8-8. Rating curves for different bedforms and a looped flood trajectory

bedform roughness. In the left corner is a stage-time graph with three flood events, one small, one large, and one
not yet completed. The points labelled O, A, ..., G are also shown on the flood trajectory, showing the actual
relationship between stage and discharge at each time.

O: flow is small, over a flat bed.

A: a small flood peak has arrived. The flow is not enough to change the nature of the bed, and the flood trajectory
follows the flat-bed rating curve back down to a smaller flow, and then back up to a larger flow.

B: the bed is no longer stable and bed forms, with increasing roughness, start to form. Accordingly, the carrying
capacity of the channel is reduced and the stage increases.

C: the flood peak has arrived, and the bed forms continue to grow, so that a little time later the stage is a
maximum.

D: the bedforms have continued to grow until here, although the flow is decreasing.

E: the flow has decreased much more quickly than the bed-forms can adjust, and the point is only a little below
the rating curve corresponding to the largest bedforms.

F: over the intervening time, flow has been small and almost constant, however the time has been enough to
reduce the bed-forms. Now another flood starts to arrive, and this time, instead of following the flat-bed curve,
it already starts from a finite roughness, such as we seem to see in Figure 8-7.

G: after this, the history of the stage will still depend on the history of the flow and the characteristics of the
bed-form rate of growth.

8.4.2 A theoretical approach
This process could be modelled mathematically. If we had an expression for the rate of growth of roughness as a
function of discharge, depth, and roughness itself, say,

dΩ

dt
= f(Q,h,Ω), (8.9)

where Q is discharge, h is depth, and Ω is some measure of roughness, and if we had a channel friction law such
as Gauckler-Manning-Strickler, which we write in a general way:

Q = F (h,Ω, S̄), (8.10)

then if we assume that slope is constant, as it almost always is except when unsteady effects are important, then
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differentiating (8.10) with respect to time,

dQ

dt
=

∂F

∂h

dh

dt
+

∂F

∂Ω

dΩ

dt

=
∂F

∂h

dh

dt
+

∂F

∂Ω
f(Q,h,Ω),

having substituted equation (8.9), giving us an ordinary differential equation for Q as a function of t provided we
know the stage hydrograph h(t), which is what is usually measured.

In general the condition of the river bed, whether smooth, or with dunes, antidunes or standing waves, will depend
on the time history of the flow. That is, the roughness now depends on the preceding conditions for a period of
time.

8.4.3 An empirical approach
This immediately suggests the concept of using some form of convolution, where the effects of preceding events
are incorporated in an integral sense. In hydrology, this is most familiar as the unit hydrograph, see for example,
Chapter 7 of Chow et al. (1988). In the case of a river with data such as in Figure 8-7 we suggest the following
nonlinear influence function, where the discharge Q at time t can be written as nonlinear functions of stage η at
previous times t−∆, t− 2∆, etc.:

Q(t) = a00 +a01η(t) + a02η
2(t) + . . .

+a11η(t−∆) + a12η
2(t−∆) + . . .

+a21η(t− 2∆) + a22η
2(t− 2∆) + . . .

+ . . . .

If only the first line of that equation had been taken, then that is a conventional rating curve, where the discharge
at t is assumed to be a function of the stage at t.

Now, the procedure would be to calculate the coefficients aij from a long data sequence, using least squares
methods. This could then be then applied to future events so that a better prediction of the actual discharge could
be obtained.
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Appendix A. The momentum equation simplified

Somehow a very important simplification of the momentum equation got lost in between parts of the lecture notes.
Consider the momentum equation (3.8):

∂Q

∂t
+ 2β

Q

A

∂Q

∂x
+

µ
gA− β

Q2B

A2

¶
∂η

∂x
= β

Q2B

A2
S̃ − ΛP Q2

A2
, (3.8)

where we consider problems where the flow is only in one direction, Q |Q| = Q2. If we consider problems where
the boundary conditions change gradually in both time, such that ∂Q/∂t is small, and hence the spatial derivative
∂Q/∂x is small as well, such as when waves are very long, then if we neglect the terms with those two derivatives,
both usually the case, the momentum equation becomesµ

gA− β
Q2B

A2

¶
∂η

∂x
= β

Q2B

A2
S̃ − ΛP Q2

A2
,

which can simply be solved for Q as an algebraic equation, giving

Q =

r
gA3

PΛ

s
−∂η/∂x

1− βB
PΛ (S + ∂η/∂x)

.

We call the quantity
p
gA3/PΛ the conveyance K, or using other forms of the resistance term, from equation

(3.12)

K =

r
g

Λ

A3

P
= C

r
A3

P
=
1

n

A5/3

P 2/3
= kSt

A5/3

P 2/3
. (3.12)

The equation for Q becomes

Q = K

s
−∂η/∂x

1− βB
PΛ (S + ∂η/∂x)

, (A-1)

and in many (most) cases of interest the terms involving β, which are of a magnitude that of the Froude number
squared, can be ignored, giving the momentum equation in the form

Q = K

r
−∂η
∂x

. (A-2)

We have shown that in most practical situations that the momentum equation in the form of equation (3.8) can
be approximated very simply by equation (A-1) or even more simply by equation (A-2). It does not look like a
momentum equation, but it is – and one is free to use any of the common resistance formulae, equation (3.12)!
It shows that in a stream the discharge is given simply by K(η), a function of the local stage, and the slope of
the free surface ∂η/∂x, whether this is changing in time and space or not. This makes a number of deductions
rather simpler. We used this in §7.7 to get simple (and accurate enough!) formulae for unsteady flood routing.
Additionally, it provides the physical justification of the stage-discharge-slope method in §8.2, and the explanation
for the looped rating curve in §8.3.
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