
Hydraulics

Solution Sheet 6 – The momentum theorem

1. A jet of water issues from a nozzle at a speed of 6m s−1 and strikes a stationary flat plate oriented
perpendicular to the jet. The exit area of the nozzle is 645mm2 and the Bousinesq momentum
coefficient is β = 1.05. Draw a diagram of the flow plus a control volume and calculate the total
force on the plate from the fluid in contact with it for two cases
a. if the fluid travels parallel to the plate after impact, and

b. if each particle of fluid rebounds back in the direction from which it came without loss?

(Ans: 24.4N, Twice that).
We can use the formula given in the lecture notes. If you are uncertain, then do it from first princi-
ples.
a. The formula derived is

P = +ρβ1U
2
1A1

= 1000× 1.05× 62 × 645
106

= 24.4N

b. As the jet is in air, the pressure is atmospheric throughout and we are given no information about
elevation differences which will be small anyway, so that we can use the energy theorem and
conclude that the speed of the water travelling in the other direction is the same, and by mass
conservation the cross-sectional area will be the same. Hence the momentum is completely
reversed rather than just brought to zero in the horizontal, and the force will be twice, 48.8N.

2. A flat plate is struck normally by a jet of water 50mm in diameter with a velocity of 18m s−1 and
β = 1.05. Calculate
a. the force on the plate when it is stationary, and

b. the force when it moves in the same direction as the jet with a velocity of 6m s−1. (To do this
you will have to superimpose a uniform horizontal velocity to your system such that all motion
is steady)

(Ans. 668N, 283N.)
This is the same sort of problem as the previous one
Part (a) is exactly the same sort:

P = +ρβ1U
2
1A1

= +1000× 1.05× 182 × π

4
0.052

= 668N

Part (b) is actually an unsteady problem when viewed by a stationary observer in our inertial frame.
To make the problem steady so that we can apply the steady momentum theorem we superimpose a
horizontal velocity of−6m s−1 to the system such that the plate is now stationary and the incoming
fluid has a velocity of 12m s−1, when we can apply the formulae developed in the previous two
problems:

P = +ρβ1U
2
1A1

= +1000× 1.05× 122 × π

4
0.052

= 297N

3. The pipe bend and nozzle in the figure is bolted onto a pipe at 1, where it has a diameter of 150mm.
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It turns 180◦ in a horizontal plane and narrows down to 50mm as it discharges the water into air.
The discharge is 56.5 Ls−1.
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m

a. Calculate mean velocity at 1 and at 2.

Q = 56.5L s−1 = 0.0565m3 s−1

A1 =
π

4
× 0.152 = 0.0177m2

U1 =
0.0565

0.0177
= 3.19ms−1

A2 =
π

4
× 0.052 = 0.00196m2

U2 =
0.0565

0.00196
= 28.8m s−1

It is very helpful to reduce these all to strict SI units: metres, seconds etc.

b. Calculate the pressure at 1. Assume α = 1.3 in the energy equation.
We can use the energy equation in the formµ

p

ρg
+ z +

α

2g

Q2

A2

¶
1

=

µ
p

ρg
+ z +

α

2g

Q2

A2

¶
2

p1
ρg
+ 0 +

1.3

2× 9.83.19
2 = 0 + 0 +

1.3

2× 9.828.8
2

p1 = 1000× 9.8× 1.3

2× 9.8 ×
¡
28.82 − 3.192¢

= 532 kPa

c. Calculate the net horizontal force exerted on the pipe bend and nozzle. Assume β = 1.15 in the
momentum equation.
We have from the lecture notes (Last year’s tutors – this is a much simpler formulation which I
discovered):

P =
X
j

¡
ρβjU

2
j Aj + p̄jAj

¢
(−n̂j) +Fbody

In this case we can make the usual pipe approximation that pressure is constant across it. Hence
we have, just considering forces in the horizontal direction, such that n̂1 = +i, and also n̂2 =
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+i so that we have

P i =

µ
ρβ1

Q21
A1

+ p̄1A1 + ρβ2
Q22
A2

+ p̄2A2

¶
(−i)

P = −
µ
ρβ1

Q21
A1

+ p̄1A1 + ρβ2
Q22
A2

+ p̄2A2

¶
= −

µ
1000× 1.15× 0.0565

2

0.0177
+ 532000× 0.0177 + 1000× 1.15× 0.05652

0.00196
+ 0

¶
= −11500N = −11.5 kN

Thus, the force of the fluid on the body is 11.5 kN to the left. Note that all contributions
conspire together in this problem – the incoming fluid moving to the left has to be stilled and
then accelerated to the right, with both giving contributions to the force to the left, and the
pressure forces on the first end is to the left (the other is zero).

d. Repeat (b) and (c) using β = α = 1.

p1 = 1000× 9.8× 1.0

2× 9.8 ×
¡
28.82 − 3.192¢

= 410 kPa

P = −
µ
1000× 1.0× 0.0565

2

0.0177
+ 410000× 0.0177 + 1000× 1.0× 0.05652

0.00196
+ 0

¶
= −9070N = −9.07 kN

Thus the force of fluid on the body is 9.1 kN to the left. It is interesting that the Coriolis and
Boussinesq coefficients have quite a large contribution. I do not know why textbooks pretend
that they are all 1.

4. Water flows along a rectangular irrigation canal of width b and depth d, with discharge Q, Boussi-
nesq momentum coefficient β, density ρ and gravitational acceleration g. You may assume that the
pressure in the water is hydrostatic, as the streamlines are all parallel.
a. Show that the magnitude of the momentum flux is

ρ

µ
β
Q2

bd
+ 1

2gbd
2

¶
.

b. Check that your equation is dimensionally homogeneous.

a. The expression for momentum flux is
R
A (ρuu · n̂+p n̂) dA. The inertial flux component we

simply approximate with the aid of the Boussinesq coefficient by ρβU2Ai, where i is a unit vector
along the channel. However, U = Q/A = Q/bd and A = bd, hence we have the contribution
ρβQ2/A i =ρβQ2/ (bd) i.

Now for the pressure component, we assume it is hydrostatic, such that if the z origin is on the bed,
p = ρg(d− z). Integrating, with n̂ = i,

R
A p n̂ dA = ρgb

dZ
0

(d− z) dz i

= ρgb(dz − z2/2)
¯̄d
0
i

= ρgbd2/2 i,

and combining the two contributions

ρβQ2/ (bd) i+ ρgbd2/2 i,

and the magnitude is as we were required to prove.
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b. Dimensional check – the ρ is a constant factor, we will not include it:

β
Q2

bd
+ 1

2gbd
2µ

L3

T

¶2
1

L2
=

L4

T 2
, LT−2L3 =

L4

T 2
,

thus it is OK.

5. The force on the nozzle of a fire hose - a fire hose is 100mm in diameter and is required to deliver
a stream of 20 L s−1. A nozzle is fixed to the hose which forces the jet of water to leave the hose
with a diameter of 50mm. Use momentum principles to calculate the force on the nozzle. You may
assume that the density of water is 1000 kgm−3, that the Boussinesq coefficient is β = 1.2 and the
Coriolis coefficient α = 1.3.
Consider the momentum theorem:

P =
X
j

Ã
ρβj

Q2j
Aj

+ p̄jAj

!
(−n̂j) +Fbody

In our case, if we consider the nozzle to be the control volume, which we assume to be pointed to the
right in the direction of the unit vector i. The unit outward normal vector at the entry to the control
volume (which we will call section 1) is then n̂1 = −i, and at the exit it is n̂2 = +i. Ignoring body
forces (vertical, due to gravity):µ

ρβ
Q2

A1
+ p1A1

¶
(−i) +

µ
ρβ

Q2

A2
+ p2A2

¶
(+i) + P i = 0.

However, p2 = 0 (atmospheric), therefore

P = p1A1 + ρβQ2
µ
1

A1
− 1

A2

¶
. (1)

However we don’t yet know p1, so that we will have to use the energy theorem between sections 1
and 2: µ

p

ρg
+ z +

α

2g

Q2

A2

¶
1

=

µ
p

ρg
+ z +

α

2g

Q2

A2

¶
2

,

and as z2 = z1 and p2 = 0,

p1
ρ
=

α

2

Q2

A22
− α

2

Q2

A21
=

αQ2

2

µ
1

A22
− 1

A21

¶
. (2)

Now we could substitute the expression for p1 into equation (1) algebraically, but the result is
more complicated than necessary. Instead firstly we will evaluate p1. We have β = 1.2, A1 =
π × 0.12/4 = 7.85× 10−3m2, A2 = π × 0.052/4 = 1. 96× 10−3m2. Evaluating equation (2):

p1 = ρ
α

2
Q2
µ
1

A22
− 1

A21

¶
= 1000× 1.3

2
×
µ
20

1000

¶2µ 1

(1. 96× 10−3)2 −
1

(7. 85× 10−3)2
¶

≈ 63500Pa

Substituting into (1):

P = +63500× 7. 85× 10−3 + 1000× 1.2×
µ
20

1000

¶2µ 1

7. 85× 10−3 −
1

1. 96× 10−3
¶

= 498.5− 183.75 ≈ 315N.

– As this is positive, the force on the nozzle is to the right, and the coupling between hose and
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nozzle has to be designed for tension.

– How large is 315N? Well, a human being of mass 80 kg has a gravitational force of 80 ×
9.8 ≈ 780N, so it is approaching half the weight of a person. Presumably this means that the
nozzle on the end of the hose would try to pull the hose out straight, and if there is nothing
anchoring it, then the firemen must. It sounds like a challenge.

– Note that the contribution of the pressure force at 1 was positive, as expected, but that the
contribution of the velocity difference to the force was negative. Is that right? Well, the
momentum of the fluid leaving the nozzle is ρβQ2/A, which we can write as ρβQU , where
U is the velocity, and because of the constriction the velocity leaving is greater than the
incoming velocity, hence positive momentum has been given to the fluid, and the effect of
fluid on the nozzle is indeed a negative force.

– One student asked a good question – what is the difference between the force on a gradually
tapering nozzle and one which might converge quite abruptly? The answer is, according to
the above theory, no difference, because the shape of the nozzle has not entered our calcula-
tions at all. The pressure at 1 is caused only by the difference in velocities between 1 and 2,
and the force only by that pressure plus the difference in momenta between 1 and 2.

6. A nozzle at a wheat terminal is capable of delivering 0.7 bags per second into the hold of a ship.
(One bag has a mass of 82 kg and a volume of 110L). The nozzle is circular in section with a
diameter of 30 cm, and is directed downwards and away from the wharf at an angle of 45◦. Draw
a control volume for the stream of wheat and the hold of the ship. If six such nozzles are operating,
estimate the force on the ship and what is its horizontal component tending to move the ship away
from the wharf? (Ans: 375N, 265N).
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