Hydraulics

Solution Sheet 8 — Dimensional analysis and similitude

1. Verify that the following expressions are dimensionally homogeneous:
a. theintegral energy expression for a length of pipe or channel

b. and the momentum expression for a force of fluid on a control surface.

(a) Energy integral equation for asimple inlet-outlet system:
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Asthe @) factors are common, we can ignore them, and just need to examine the dimensions of
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(b) Now the momentum integral equation:
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p;A; : Clearly has units of force MLT 2
n; hasno units
Fhody has units of force

Hence all terms are consistent.

2. Assuming that thethrust I of a screw propeller is dependent upon the diameter d, speed of advance

V, fluid density p, revolutions per second n and coefficient of viscosity 1,

a. Show that the thrust can be expressed by the equation

b.

o = T
pV2d2 T pVd V7

Interpret each of the terms in the equation.

Of relevance are

1 Thrust F
2 diameter d
3 Speed of advance %
4 Density of theliquid p
5 Rotation rate n
6 Dynamic viscosity of theliquid 1
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Wehave M, L, and T inthe variables, so that m = 3. We haven = 6 physical quantities so that

by the Buckingham II theorem we will have n — m

= 3 dimensionless variables. We choose

V, d, and p as our repeating variables, which involve al 3 dimensions.
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1) Thrust F: II; = V¥ di2p F, so that the dimensional equation is
p
MOLOTO — (LT~ 1) L2 (ML=3)" MLT 2,

and considering the exponent of each dimension in turn,

M 0=1i3+1
L : 0=1214+112—3i3+1
T : 0=—i; — 2,
From this we have immediately i1 = —2, i3 = —1, and solving the remaining equation,
12 = —2, giving
F
I = ——
1 pV2d27

which can be described as a dimensionless force.
(2) Rotation rate n: Iy = V7id/2 p’an,

MOLOTO — (LTfl)jl L]2 (ML73)j3 Tifl’

M : 0=j3+0
L @ 0=j1+72—3j3
T 0=—j—1,

andjg =0,j1 = —l,andj2 =1, sothat

d
H2 = HV:
which can be thought of as proportional to the ratio of the propeller tip velocity to the boat

velocity.
(3) Dynamic viscosity of the liquid p,

MOLOTO — (LTfl)kl Lk2 (ML73)]€3 MLilTiil’

M 0=ks+1
L : 0=k +ky—3ks—1
T O:—]ﬁ—l,

and ks =-1,k = —1, and ko = —1, S0 that

ol
I3 = —
3 de7
which istheinverse of the Reynolds number of the propeller based on the forward velocity and

diameter.

3. Thevariables controlling the motion of a ship through water are the drag force F, the speed U, the
length [, the fluid density p, dynamic viscosity of the water ., and gravitational acceleration g.

a.  Show that the force must be given by an expression of the form

E_ (g
pU2i2 "\ pul’U? )’

where f() isthe functional dependence which isto be determined experimentally.

b. Interpret each of the termsin the equation.
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c. A model boat of ascale 1 : 50 was measured in a towing tank to have a drag force of 0.27 N
when towed at a velocity of 0.91ms™!.
i. Ifitisassumed that most dragis not dueto friction but to the waves generated, estimate the
drag force on the protoype boat.

ii. Estimate the power required to propel the boat.

d. How might the expression in (a) be modified if the ship isin water of finite depth D?
Of relevance are

1 Dragforce F MLT?

2 Speed U LT !

3 Length I L

4 Density of theliquid p ML3

5 Gravitational acceleration g LTt

6 Dynamic viscosity of theliquid px  ML™IT—!

WehaveM, L, and T in the variables, so that m = 3. We haven = 6 physical quantities so that
by the Buckingham II theorem we will have n — m = 3 dimensionless variables. We choose
U, 1, and p as our repeating variables, which involve al 3 dimensions.

This problem is so similar to the last one mathematically (although the actual physical vari-
ables are different) that we will simply adopt the dimensionless force and viscosity numbers
from the previous question

F 1%
=— d II3=——
pV212 an BTV

which are the dimensionless drag and dimensionless viscosity, the inverse of the ship Reynolds
number. Thisleaves uswith

(2) Gravity F: I, = U’ 172 pis g, so that the dimensional equation is

IT;

MOLOTO — (LT~ L (ML=3)" LT 2,

and considering the exponent of each dimension in turn,

M 0=73
L 0=ji+j2—-3j3+1
T : 0=—71—2,

From thiswe haveimmediately j; = —2, j3 = 0, and solving the remaining equation, j; = +1,
giving

gl
= m7
which is dimensionless gravity, or the Froude number of the ship raised to the power —2. Itis
more fundamental in this form. Hence we have

(e 9
pU212 T\ pUl’ U2 )"’

() If weignore viscosity, then for dynamical similitude we must have both F'/pU?12? and gl /U?
the same in each case. Considering the latter we have

glm glp Up Ly
—— = == suchthat — = /= =+v50="7.07
Uz, U]?’ U, I, ’
Uy = 707xU,="707x091=6.43

1Ty
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and for the force,
F,, F,

pURIZ, — pU2IZ

such that

272 3
_ PUp Ly :l_p = 503,
PURL T

L, = 0.27 x 50° = 33.8kN

&S 3’1j|~§q

Now for the power P, which is equal to force by velocity,

L S R
P, B F Um_l;_{27

P, = P, x5072=0.27x0.91 x 5072 = 217kW

(d) Now, if the water depth also were added, the only modification would be one more dimen-
sionless number [/ D — thisis obvious, and there is no need to repesat the analysis:

Y ST

pU212 7\ pUl’ U2’ D
However, this also means that in the three numbers above, we could replace [ by D in any or
all of them, and thisis where a certain judgement is necessary. For large valuesof [/ D it might

be possible that it is the depth D which might be more important in the dimensionless gravity
term. The following is a possible re-arrangement:

F_ (9D L
pU212 " \pUl’ U2’ D

4. A V-notch weir is a vertical plate with a notch of angle 6 cut into the top of it and placed across
an open channel. Theliquid in the channel is backed up and forced to fflow through the notch. The
discharge @ is some function of the elevation H of the upstream liquid surface above the bottom of
the notch. The discharge also depends upon gravity g and upon the vel ocity of approach 1} to the
weir.

a.  Usethe Buckingham IT theorem to show that there are three governing dimensionless parame-
ters, and that the discharge equation may be expressed in the form:

_Q
(gHS)l/Q

where f() isthe functional dependence which isto be determined experimentally.

= f(Vo/(gH)'?,0),

b. Inpracticeitisfound that the approach velocity is not very important. Ignore the effect of that
velacity to estimate theratio of dischargein thefull scaleweir to that in a geometrically-similar
laboratory weir at ascaleof 1 : 10.

Of relevance are

1 Discharge Q LT
2 Angleof notch 6 1

3 Velocity of approach Vo LT!
4  Elevation above notch H L

5 Gravitational acceleration g  LT—!

We have only L, and T in the variables, so that m = 2. We have n = 5 physical quantities
so that by the Buckingham II theorem we will have n — m = 3 dimensionless variables. We
choose g, H, and 0 as our repeating variables. However, it isimmediately obvious that 0 itself
is dimensionless and we will choose this as one of theI1.

30



(1) Discharge Q: II; = ¢** H*2(Q, so that the dimensional equation is
LOTO = (LT=2)" L% x L3 T,

and considering the exponent of each dimension in turn,

L : 0=1i1+1i2+3
T : 0=-2i—1,
Fromthiswehavei; = —1/2,iy = —5/2, and
mo—2
gH?®

(2) Approach velocity Vy: II, = g H%Vj, so that the dimensional equation is
LOTO = (LT %) L= x LT,

and considering the exponent of each dimension in turn,

L 0=1%1+122+1
T : 0=-2i—1,
Fromthiswehavei; = —1/2,iy = —1/2, and
Vo
H2 — T
vgH

and aswe have II; = 6, we have

Q
GHE F(Vo/(gH)Y?,0).
Now, for two geometrically-similar weirs (6 the same) and ignoring the effect of approach
velocity, we have

B
(gHp)Y? (gHD)V?’
5/2

% = <%) = 10°/%2 = 316.
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