
Hydraulics

Solution Sheet 10 – Pipe networks

1. Aviation fuel flows from tank A to tank B through two pipes connected in series. Determine the
discharge, given the data:

Pipe 1 Pipe 2
Length L 300m 240m
Diameter D 600mm 1m
Roughness 2mm 0.3mm
Total head loss∆H 6m
Kinematic viscosity ν 3× 10−6m2 s−1
Kentry 0.5
∆Hexpansion (U1 − U2)

2 /2g
Kexit = α 1.3

Use the Haaland approximation for the friction coefficient λ. (Ans: 0.79m3 s−1).
From the lecture notes on pipes in series,
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so that in this case we have

∆H =
Q2

2g

Ã
Kentry

A21
+

λ1L1/D1
A21

+

µ
1

A1
− 1

A2

¶2
+

λ2L2/D2
A22

+
α

A22

!
.

We have A1 = π/4× 0.62 = 0.283m2, A2 = π/4× 12 = 0.785, ε1 = d1/D1 = 0.002/0.600 =
0.0033, ε2 = d2/D2 = 0.0003/1 = 0.0003, such that
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The Haaland approximation is

λ1 =
1

1.82
log−210

µ³ ε1
3.7

´10/9
+
6.9

R1

¶
, whereR1 =

4Q1
νπD1

,

=
1

1.82
log−210

µ³ ε1
3.7

´10/9
+
6.9νπD1

4Q1

¶
=

1

1.82
log−210

Ãµ
0.0033

3.7

¶10/9
+
6.9× 3× 10−6π0.6

4Q

!

=
1

1.82
log−210

µ
0.00041 +

9. 754 6× 10−6
Q

¶
(2)

λ2 =
1

1.82
log−210

Ãµ
0.0003

3.7

¶10/9
+
6.9× 3× 10−6π × 1

4Q

!

=
1

1.82
log−210

µ
2.85× 10−5 + 1.63× 10

−5

Q

¶
(3)

37



Now we evaluate the three numbered equations in turn as an iteration process. We begin with (2),
initially ignoring the second term so that our first approximation is the fully rough, infinite Reynolds
number approximation:
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and it can be seen that the process has converged. The discharge is 0.79m3 s−1.

2. A new reservoir supplies water to a service reservoir 10 km away with a total supply head of 100m.
It is required to supply 200L s−1, at 20 ◦C (ν = 10−6m2 s−1). Initially allow for an entry loss of
K = 0.5 and an exit loss of α = 1.3. Use the Haaland approximation for λ.
a. Justify your decision to ignore entry and exit losses.

b. Design the pipeline, namely calculate the diameter necessary, if it is to be made of galvanised
iron with a roughness of d = 0.03mm, and round up to the nearest multiple of 25mm.

c. What is the unregulated discharge in the pipeline?

d. Calculate the head loss to be provided by a valve to regulate the flow to 200L s−1.

(Ans: 350mm, 217L s−1, 15m).
(a) We have
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We might expect λ to be something like 0.03 and D to be something like 0.2m. Hence the frictional
term will be approximately 0.03× 10000/0.2 = 1500, hence in comparison with 0.5 and 1.3 this is
completely dominant.
(b) The Weisbach equation then becomes
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and although λ is a function of D, it is not such a strongly varying one, and so we re-arrange this to
give an expression for D:

D = (0.331λ)1/5 , (4)

which we will use as part of an iteration scheme. The other part is the Haaland formula:
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Now we iterate on equations (4) and (5), assuming an initial λ = 0.03:
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Thus the iteration converged quickly, and we require a diameter of 339mm, so that the next largest
available size is 350mm.
(c) In this case the discharge is
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(d) Head loss if flow is 200L s−1.
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hence the valve must provide 100− 85 = 15m head loss.

3. (A worked version of this problem was included in the lecture notes – here it is modified slightly to
include automatic allowance for flow direction).
Three reservoirs are connected by pipelines which meet at a junction. The data for the reservoirs
and corresponding pipelines are

Reservoir/pipeline 1 2 3
Surface elevation H 30m 18m 9m
Pipe diameter D 1m 0.45m 0.6m
Area = πD2/4 0.785m2 0.159m2 0.283m2

Relative roughness d/D 0.0002 0.002 0.001
Pipeline length L 3000m 600m 1000m

Calculate the discharge in each of the three pipes, assuming a viscosity of ν = 10−6m2 s−1, and
neglecting all local losses.
Use formulae given in the lecture notes which automatically allow for changes in flow direction:

QiJ = A sign (Hi −HJ)

s
2g |Hi −HJ |
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,

where QiJ is the flow from reservoir i to junction J.
(Ans: Pipeline 1: 1.20m3 s−1 from the reservoir to the junction, Pipeline 2: 0.33m3 s−1 from
junction to the reservoir, and Pipeline 3: 0.873m3 s−1 from junction to reservoir)
Initially we assume an elevation of the total energy line at junction J: 20m, and to calculate the
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friction coefficients we assume fully rough flow in the Haaland formula:
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Hence flow is accumulating at the junction – we assume a higher value of head there, HJ = 25m
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Now the flow balance is better. We will use linear extrapolation to estimate the head at J required to
bring this to zero:
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It would seem that our guess was close enough, and we will not refine it further here with another
iteration, however we can refine the discharges using the same method of linear extrapolation to a
zero imbalance:
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Qrefined
2J = −0.333− (−0.013)× −0.333− (−0.178)−0.013− 0.816 = −0.331

Qrefined
3J = −0.875− (−0.013)× −0.875− (−0.72)−0.013− 0.816 = −0.873

Hence the flows are: Pipeline 1: 1.20m3 s−1 from the reservoir to the junction, Pipeline 2: 0.33m3 s−1
from junction to the reservoir, and Pipeline 3: 0.873m3 s−1 from junction to reservoir.
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