Hydraulics

Tutorial Sheet 1 – Drag on bodies

Unless advised otherwise, in all problems below the density of fresh water may be assumed to be $\rho=1000\,\mathrm{kg\,m^{-3}}$, the density of seawater $1025\,\mathrm{kg\,m^{-3}}$, the acceleration due to gravity $9.8\,\mathrm{m\,s^{-2}}$, and the kinematic viscosity of water to be $10^{-6}\,\mathrm{m^2\,s^{-1}}$.

- 1. What effects does gravity have on the nature of "internal" flows such as those we have been considering flow past bluff bodies *etc*, where there is no free surface?
- 2. The drag coefficient of a wide plate normal to a flow is approximately $C_{\rm D}\approx 2$. Let the free stream conditions be U_0 and p_0 . If the average pressure on the front of the plate is approximately equal to the stagnation pressure $p_0+\frac{1}{2}\rho U_0^2$, what is the average pressure on the rear? (Ans.: it is approximately $p_0-\frac{1}{2}\rho U_0^2$, so, less than the ambient).
- 3. A cylindrical chimney is $2 \, \mathrm{m}$ in diameter and $40 \, \mathrm{m}$ high. When it is subject to an $80 \, \mathrm{km} \, \mathrm{h}^{-1}$ storm wind, what is the force on it, and where does it occur? (The drag coefficient of a cylinder can vary between 0.3 and 1, depending on the Reynolds number; $\rho_{\mathrm{air}} = 1.2 \, \mathrm{kg} \, \mathrm{m}^{-3}$ at $20 \, ^{\circ}\mathrm{C}$).
- 4. A pizza delivery vehicle has a long thin rectangular sign on top aligned with the direction of travel. If the car travels at $50 \, \mathrm{km} \, \mathrm{h}^{-1}$, estimate (a) the force on the sign with no crosswind, and (b) discuss the effect of a crosswind.