Hydraulics

Tutorial Sheet 10 – Pipe networks

1. Aviation fuel flows from tank A to tank B through two pipes connected in series. Determine the discharge, given the data:

	Pipe 1	Pipe 2	
Length L	$300\mathrm{m}$	$240\mathrm{m}$	
Diameter D	$600\mathrm{mm}$	$1\mathrm{m}$	
Roughness	$2\mathrm{mm}$	$0.3\mathrm{mm}$	
Total head loss ΔH	6 m		
Kinematic viscosity ν	$3 \times 10^{-6} \mathrm{m^2 s^{-1}}$		
Kentry	0.5		
$\Delta H_{\mathrm{expansion}}$	$\left(U_1 - U_2\right)^2 / 2g$		
$K_{\text{exit}} = \alpha$	1.3		

Use the Haaland approximation for the friction coefficient λ . (Ans: 0.79 m³ s⁻¹).

- 2. A new reservoir supplies water to a service reservoir 10 km away with a total supply head of 100 m. It is required to supply 200 L s^{-1} , at 20 °C ($\nu = 10^{-6} \text{ m}^2 \text{ s}^{-1}$). Initially allow for an entry loss of K = 0.5 and an exit loss of $\alpha = 1.3$. Use the Haaland approximation for λ .
 - a. Justify your decision to ignore entry and exit losses.
 - b. Design the pipeline, namely calculate the diameter necessary, if it is to be made of galvanised iron with a roughness of d = 0.03 mm, and round up to the nearest multiple of 25 mm.
 - c. What is the unregulated discharge in the pipeline?
 - d. Calculate the head loss to be provided by a valve to regulate the flow to $200 \,\mathrm{L\,s^{-1}}$.

(Ans: 350 mm, 217 Ls^{-1} , 15 m).

3. Three reservoirs are connected by pipelines which meet at a junction. The data for the reservoirs and corresponding pipelines are

Reservoir/pipeline	1	2	3
Surface elevation H	$30\mathrm{m}$	$18\mathrm{m}$	$9\mathrm{m}$
Pipe diameter D	$1\mathrm{m}$	$0.45\mathrm{m}$	$0.6\mathrm{m}$
$Area = \pi D^2/4$	$0.785\mathrm{m}^2$	$0.159\mathrm{m}^2$	$0.283\mathrm{m}^2$
Relative roughness d/D	0.0002	0.002	0.001
Pipeline length L	$3000\mathrm{m}$	$600\mathrm{m}$	$1000\mathrm{m}$

Calculate the discharge in each of the three pipes, assuming a viscosity of $\nu = 10^{-6} \,\mathrm{m^2 \, s^{-1}}$, and neglecting all local losses.

Use formulae given in the lecture notes which automatically allow for changes in flow direction:

$$Q_{i\mathrm{J}} = A \operatorname{sign} \left(H_i - H_{\mathrm{J}} \right) \sqrt{\frac{2g \left| H_i - H_{\mathrm{J}} \right|}{\lambda L/D}},$$

where Q_{iJ} is the flow from reservoir *i* to junction J.

(Ans: Pipeline 1: $1.20 \text{ m}^3 \text{ s}^{-1}$ from the reservoir to the junction, Pipeline 2: $0.33 \text{ m}^3 \text{ s}^{-1}$ from junction to the reservoir, and Pipeline 3: $0.873 \text{ m}^3 \text{ s}^{-1}$ from junction to reservoir).

4. Repeat Question 3 using Excel Solver. Was it easier?