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Some guiding principles

• William of Ockham (England, c1288-c1348):
"when you have two competing theories that make similar predictions, the simpler one is the 

better”.
• Karl Popper (A-UK, 1902-1994)

Our preference for simplicity may be justified by his falsifiability criterion: We prefer simpler 
theories to more complex ones "because their empirical content is greater; and because they 
are better testable". In other words, a simple theory applies to more cases than a more complex 
one, and is thus more easily falsifiable.

• Kurt Lewin (D-USA, 1890-1947) "There is nothing so practical as a good theory" – stated in 1951.
• R. W. Hamming 1973: “The purpose of computing is insight, not numbers“

In engineering, however, we often need numbers. However, sometimes preoccupation with 
numbers obscures insight. Often we forget that we are modelling.

• Beauty Is Truth and Truth is Beauty
In 2004, Rolf Reber (University of Bergen), Norbert Schwarz (University of Michigan), and Piotr 

Winkielman (University of California at San Diego) suggested that the common experience underlying 
both perceived beauty and judged truth is processing fluency, which is the experienced ease with which 
mental content is processed. Indeed, stimuli processed with greater ease elicit more positive affect and 
statements that participants can read more easily are more likely to be judged as being true. Researchers 
invoked processing fluency to help explain a wide range of phenomena, including variations in stock 
prices, brand preferences, or the lack of reception of mathematical theories that are difficult to understand.



Some guiding principles (continued)

• We often lose sight of the fact that we are modelling.
• "It is EXACT, Jane" – a story told to the lecturer by a botanist colleague. The most 

important river in Australia is the Murray River, 2375 km, maximum recorded flow 3950 
cubic metres per second. It has many tributaries, flow measurement in the system is 
approximate and intermittent, there is huge biological and fluvial diversity and 
irregularity. My colleague, non-numerical by training, had just seen the demonstration by 
an hydraulic engineer of a computational model of the river. She asked: "Just how 
accurate is your model?". The engineer replied intensely: "It is EXACT, Jane".



Fluid Mechanics

• The three-dimensional equations of fluid mechanics govern practically all motion of air and 
water on the planet.

• The action of viscosity is to act as a momentum diffusion effect – imagine stirring a bucket of 
water into rotation with a rod if the fluid did not have viscosity

• In civil and mechanical engineering we can usually reduce the problem considerably:
• Our flows are usually so large and fast (large Reynolds number) that the flows are 

turbulent and the effects of viscosity are relatively small
• Our conduits are usually long and thin so that we can integrate across the flow and 

consider it to be a one-dimensional problem – consider pipes
• We use an empirical law (Darcy-Weisbach) to calculate the resistance to motion (shear 

stress on the boundary)
• Often the flow changes slowly in time, if at all, and we can consider it to be steady

• Does this apply to rivers?
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An elemental slice of a waterway:

The long wave equations

Using the integral theorems of fluid mechanics, the equations can be 
derived with surprisingly few assumptions or approximations, in terms of 
the integrated quantities, the cross-sectional area A and the discharge Q. It 
is important to use the control volume shown, extending into the air above 
the free surface.

A



A Q i
t x

∂ ∂
+ =

∂ ∂

1. Mass conservation equation - in terms of area and discharge

• A is the cross-sectional area, t is time, Q is discharge,  x is distance down the channel 
which is assumed straight for this work, and i is the inflow per unit length.

• Exact (most unusual in fluid mechanics!) for waterways which are not curved in plan.
• Linear!

Long wave equations



2. Momentum conservation equation
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• Now we apply this to the elemental slice of river shown in the previous figure
• The unsteady term becomes simply (and exactly!) 

• The fluid inertia term becomes                                where βis a coefficient

• Pressure gradient – we make the very simple and usually-accurate approximation that 
the pressure is hydrostatic, given simply by Depth of water above the pointp g= ρ ×

• Empirical horizontal shear force term (Darcy-Weisbachλ)
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The long wave equations
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• Two partial differential equations for the discharge Q and area A in terms of distance 
along the channel x and time t

• There is a huge industry around the world in the numerical solution of these 
equations. Every hydraulics (highway, sewage, etc) office has people solving these 
equations. A common and public program is HEC-RAS.

• The resistance term from the Darcy-Weisbach equation here is usually modelled 
using the Manning (Gauckler-Manning-Strickler) equation, despite the fact that the 
ASCE in 1963 recommended against it.

• The big unknown is the resistance coefficient. Without an accurate knowledge of 
that there is not much point in accurate numerical simulation …



Moody diagram
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• At least with this, there are results based on much laboratory evidence.
• Manning – there are very few laboratory or field results …



The Gauckler-Manning-Strickler formula for resistance

• The G-M-S formula is widely used – and abused. The resistance coefficient is dimensional, 
with units of 

• It is empirical at best, and has no theoretical justification. The manner in which a value is 
adopted in practice is most unsatisfactory. 

• Typical approaches include:
– An Australian approach – using the telephone “You did some work on River X years 

ago. What do you think the roughness is on River Y (10km from X) for the reach 
between A and B?” ).

– Tables of values in books on open channels, given channel conditions, for example 
books by Barnes for the USA  or Hicks and Mason for New Zealand. The photograph is 
of the Columbia River at Vernita in Washington, taken from Barnes. It has the lowest 
roughness of all the examples in the book. It is 500m wide and has boulders of diameter 
… well it doesn't say. Pity, because it is the roughness size to river depth which 
determines the resistance characteristics. Presenting a picture is not much help – one 
has little idea of the underwater conditions and how variable they are.
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Behaviour of floods & long waves in rivers – the Telegrapher’s equation
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• Now in the spirit of obtaining insight rather than numbers, let us consider the behaviour of 
solutions of the long wave equations.

• If we linearise the equations we can show that solutions reduce to the single partial 
differential equation, the Telegrapher’s equation

where 0
0

0
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U

α = c0 is the kinematic wave speed and C0 the dynamic wave speed.

• In general, the behaviour in time is a complicated function of wave length. The system is 
an advection-diffusion-dispersion system.

• For long (slow) waves, the Telegrapher’s equation is dominated by the first two terms, 
and disturbances move as kinematic waves, dependent on the water speed.

• For rapidly-varying disturbances, the equation is dominated by the Wave Equation terms, 
for which solutions of this equation are composed of arbitrary disturbances travelling at 
the wave speed (vibration of beams, wires etc.), more dependent on the geometry.



The first and widely-held view of the nature of wave motion:

• Disturbances propagate at the dynamic wave speed, as most textbooks say.

• This is relatively fast

• It has some important implications: as wave speed increases with depth, higher 
points on a wave travel faster, and the wave steepens, becomes a flash flood, 
possibly becoming a bore.

• This is what happened in the recent disastrous events in Queensland in 
Toowoomba and the Lockyer Valley

View No. 1 of the nature of wave motion
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View No. 2 of the nature of wave motion

• Our second view of the nature of wave motion: In the limit of slow variation, 
disturbances often behave like slow-moving, diffusing quantities

• They propagate at a kinematic wave speed of roughly 1.5 times the water 
velocity, not at the dynamic wave speed which most textbooks say. 

• In many instances the diffusion is significantly larger than is customary in fluid 
mechanics, so that the motion appears to be diffusion-dominated and the concept 
of a wave speed may be relatively unimportant. 

• Hence, waves in many rivers do not behave like, well, waves of propagation, but 
are heavily diffusive.

• This is the behaviour of the large masses of water currently flowing over northern 
Victoria, where the rain continued for a long time, ground slopes are small, so that 
there is little opportunity for a bore to develop.

• The vast majority of floods are more of this nature.



To examine better the nature of wave propagation in waterways we used a dynamical 
program that solved the full long wave equations, forward in time along the channel. With a 
base flow of 10 m3/s, the inflow was increased smoothly (a Gaussian function of time) by 
25% and back down to the base flow over a period of about three hours. The program then 
simulated conditions in the canal.
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Example: Canal 2 of Clemmens et al. (1998)

Note heavily-diffusive 
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• The outflow hydrograph is indeed an 
advected and diffused version of the 
inflow.



View No 3 of the nature of wave motion – general case

• The general case has an important implication for our understanding of the nature of the 
propagation of waves, for it means that long waves in channels show the phenomenon of 
dispersion, as well as advection and diffusion, whereby different wavelengths travel at 
different velocities, and the whole behaviour is rather more complicated than generally 
believed.

• This makes “back-of-the-envelope” calculations for wave propagation possibly quite 
misleading.

• The apparent complexity of behaviour makes simple deductions difficult, in general.



Some floods in northern Victoria, Australia in January 
2011



Kerang



Kerang in northern Victoria

• My mother and I had gone from our farm into the town 25km away as she was in a 
precarious state of health, and we didn´t want to be cut off from the ambulance in case of 
emergency.

• It was quite a good arrangement, living with three intelligent women with a good wine 
cellar and where the cook was very good (and me tired of cooking for my mother and me) 
…

• At 5:30 am two days later the telephone rang, an automatic warning system, and we were 
advised to leave the town as 150m of levee bank were seeping and in danger of breaking, 
when the whole town would be flooded. 

• Worse, some 3km south of the town is a transformer station, which supplies electricity to 
20,000 people, and there was greater fear that it would fail, and along with it the water 
supply and the sewage system, mobile phone chargers, etc etc

• We escaped on the one road possible, into New South Wales, and then slowly south to 
Melbourne via a rather roundabout route, some 350km.

• The town of Kerang was completely surrounded by floodwater for two weeks, but the 
town levee bank and the transformer station levee still held.



Meeting of citizens
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Downstream of bridge – level is lower because of 
momentum loss



Measuring the water level



An important photo for the lecturer

• This shows flow past a eucalyptus tree, showing the dynamic mound on the left 
(upstream) side, and separation zone, giving a force on the tree, and reverse force –
resistance – to the flow. The dynamic mound of about 4cm corresponds (Bernoulli!) to a 
flow velocity of about 0.9 m/s that the lecturer observed



Blocking the highway bridge with sandbags



Later: the most vulnerable point of all – Transformer 
station









General view



The flood here is some 100km long x 40km wide



Cows free to graze on the highway, but must be milked



A simple road embankment changes the hydraulic conditions 
dramatically


