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Abstract

The long wave equations for a straight slowly-varying channel of small slope are derived using the
mass and momentum conservation equations in cartesian co-ordinates. The derivation attempts to
use a true hydraulic approach, where quantities are modelled as accurately but simply as possible.
Evaluating the momentum contribution due to pressure is made rather easier by using the divergence
theorem of vector calculus. Then, in evaluating resistance, the Darcy-Weisbach formulation is shown
to have several advantages and the Gauckler-Manning approach is criticised. Although use is made
of some vector notation, there are few lengthy mathematical operations until it is necessary to relate
the derivatives of area to those of surface elevation. A useful result is obtained, however, where the
non-prismatic nature of a channel is shown to be simply approximated using the mean downstream
slope at a section. The long wave equations are presented in explicit useable form with various
combinations of variables, and similarly for steady flow, with different forms of the gradually-varied
flow equation.

Two appendices are included. The first presents the concept of upstream volume. Using this, the
mass conservation equation is satisfied identically, giving the momentum equation as a single equa-
tion in terms of a single variable, which is probably more useful for theoretical work.

The second appendix contains a derivation of the equivalent energy conservation equation. It has
the same form as the momentum equation, but with more coefficients necessary to express integrals
in terms of mean quantities, and energy loss is more difficult to approximate than resistance in the
momentum formulation.
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1. Introduction

The one-dimensional long wave equations are widely used in river and canal hydraulics and are the basis
of much hydraulic software. They are subject to limitations including both small longitudinal slopes and
curvatures. Their origin seems to have been earlier than the usually cited work of Saint-Venant. Dooge
(1987, p221) stated that the “first presentation of such a pair of equations would appear to be due either
to Dupuit ... or to Kleitz ... and refers to the case of a wide rectangular channel”. Saint-Venant obtained
a general mass conservation equation for a uniform waterway of any cross-sectional shape. However
his derivation of the momentum equation was just for a rectangular canal of constant width, although
he did retain a general resistance term. Dooge further wrote that according to Graeff in 1875 these
equations had been previously given in a report by Kleitz in 1858 that was circulated but not published.
Saint-Venant’s contribution beyond that of Dupuit and Kleitz has been modest, and it would seem unfair
to the earlier workers to continue to use the appellation ”Saint-Venant” for the equations. However,
it is interesting that the momentum equation of Dupuit/Kleitz/Saint-Venant, obtained on the basis of a
uniform rectangular canal, is in fact valid for the general case of a non-prismatic waterway of arbitrary
section.

Boussinesq (1877, p192 – eqn 155), which is described rather more accessibly by Jaeger (1956, p122 et
seq.), considered steady flow in a wide rectangular channel of varying longitudinal bed topography using
mass and momentum conservation. He went to one higher level of approximation, allowing for stream-
line curvature in determining the pressure, and obtained a third-order (now "Boussinesq") differential
equation.

Keulegan (1942) derived both momentum and energy formulations for steady flow, and stated a prefer-
ence for the momentum approach as it requires only the mechanism of resistance at the boundary and
not details of the energy loss processes. Keulegan & Patterson (1943) then considered unsteady motion
in a prismatic channel, obtaining the momentum equation, and then for a wide rectangular channel went
on to consider the higher Boussinesq approximation with dynamic effects due to streamline curvature.

Two later derivations of the long wave equations went to considerable lengths to make the treatments as
general as possible. Strelkoff (1969) considered the full Navier-Stokes equations and made an allowance
for turbulence in the form of time averaged Reynolds equations. Yen (1973) also developed a general
formulation, including viscosity, turbulence, fluid compressibility and inhomogeneity. In both cases the
general forms of the equations were not suitable for practical application, but both writers did go on
to present useable equations by making the usual reasonable hydraulic assumptions. Both derivations
used a coordinate system based on the bed of the waterway. In many natural streams the bed is poorly
known, and it is in general curved in the vertical plane. Such an approach should ideally have included
extra terms due to the curvature of the axes, as obtained by Dressler (1978). However, both formulations
would have been correct had they simply defined the streamwise axis to be horizontal. Later derivations
by Cunge, Holly & Verwey (1980, §2.1) and Lai (1986, pp182-3) did use cartesian coordinates and
obtained simpler derivations. Both presented results for different combinations of dependent variables.
However in the final presentations, both left some versions with derivatives of combinations of quantities
unexpanded and not in a form ready for use. Neither evaluated explicitly the so-called non-prismatic
contribution to the derivative of cross-sectional area.

This paper obtains the long wave equations for straight channels of otherwise arbitrary section and
topography. It tries to use a true hydraulic approach, where quantities are modelled as accurately but
simply as possible.

Features of the derivation and results

• The equations can be obtained relatively concisely using the integral mass and momentum equations;
there are few detailed mathematical manipulations until it is necessary later to relate cross-sectional
area and surface elevation.

• The cross-sectional area and discharge arise naturally as the most fundamental dependent variables.
The mass conservation equation obtained in terms of them is exact for straight channels.
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• The momentum equation requires additional assumptions, listed below.

• Cartesian co-ordinates are simple and require no special attention for axis curvature.

• Use of Gauss’ divergence theorem in evaluating the pressure contribution to the momentum equa-
tion gives a substantially simpler derivation, as it avoids difficulties of integrals over complicated
surfaces.

• An explicit form is given for a term due to a non-prismatic channel, expressed in terms of the local
mean downstream slope at a section. Often that is poorly-known, which shows that there is little
sense in giving detailed attention to the term and its precise calculation.

• The Darcy-Weisbach resistance formulation fits naturally with the momentum approach, so that the
resistance term appears with a clear physical significance in the momentum equation.

• Three pairs of long wave equations are presented, each in terms of discharge plus one measure of
cross-section – the actual area (which is found to have an interesting advantage, that approximate
simulations can be performed without artificial inclusion of underwater topography), plus surface
elevation, plus a depth-like quantity, the elevation relative to an arbitrary axis.

• Three gradually-varied flow equations for steady flow are presented, each in terms of one of the three
measures of cross-section.

Assumptions

The non-trivial assumptions in the derivation are, roughly in decreasing order of importance or limita-
tion:

1. Resistance to flow is approximated by the Darcy-Weisbach approach. The underlying flow is a
turbulent shear flow. Of course the Navier-Stokes equations are not being used.

2. The stream is assumed to be straight, such that effects of curvature of its course are ignored.

3. All surface variation is sufficiently long and slopes are sufficiently small that the pressure throughout
the flow is given by the hydrostatic pressure corresponding to the depth of water above each point.

4. The water surface across the stream is horizontal.

5. The effects of both non-uniformity of velocity over a section and turbulent fluctuations are approxi-
mated by a generalised Boussinesq momentum coefficient multiplying uniform contributions.

6. The fluid density is constant.

2. Mass conservation equation

Consider figure 1, showing an elemental slice of straight channel of length ∆ with a control volume
formed by four surfaces – two stationary vertical faces transverse to the flow, the stationary stream
bed, and the possibly-moving free surface. Cartesian co-ordinates are used, which avoid mathematical
problems that bed-oriented co-ordinates introduce. The mass conservation equation for an arbitrarily
moving control surface and volume is (e.g. White 2009,§3.3):

d

d

Z
CV

dV +
Z
CS

ur·n̂d = 0 (1)

where the integrals are over CV, the control volume, and CS, its enclosing control surface,  is the fluid
density, dV is an element of volume,  is time, d is an element of the control surface, ur is the velocity
of a fluid particle relative to that of the control surface, n̂ is a unit normal vector directed outwards
such that ur·n̂ is the normal component of fluid velocity relative to the surface. It is this velocity that is
responsible for the transport of any quantity across the surface.

The first term in equation (1), is the rate of change of mass inside the elemental control volume. An
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Figure 1. Elemental length of channel showing moving control surface with its enclosed control volume

element of the control volume shown in figure 1 has volume dV = d∆, and so, assuming  constant
and taking constant quantities outside the integral we obtain


dV
d
= ∆




 (2)

where  is the cross-sectional area of the channel flow.

Considering the mass rate of flow crossing the boundary, there is no contribution on the solid stationary
bed as ur = u = 0 there. On the possibly-moving free surface the fluid particles remain on it, in
whatever manner it is moving, such that ur·n̂ = 0 there, and there is no mass transport across it either.
On the stationary vertical faces across the flow, ur = u, the actual fluid velocity. On the upstream
face ur·n̂ = −, where  is the -component of velocity at a point, and the minus sign is because the
velocity is opposite to the outwards normal which is upstream here. The contribution to the integral is
then − R


d, which for an incompressible fluid is simply −, where  is the volume rate of flow,

the discharge. The contribution to the second integral, on the downstream face, is of opposite sign and
in general has changed with . We write it as a Taylor series, giving the combination of the two:

− | + |+∆ = ∆



+ terms like (∆)2  (3)

Finally, an allowance is made for any fluid entering the control volume from rainfall, seepage, or tribu-
taries, with a volume rate  per unit length and density , assumed to be the same as that already in the
channel. Its contribution is −∆ , negative because it is entering the control volume. Combining this
contribution and those of equations (2) and (3) to equation (1), dividing by ∆ and taking the limit as
∆→ 0 gives




+




=  (4)

Unusually in hydraulics, this is almost an exact equation. The only non-trivial assumption that has been
is that the channel is straight. No assumption regarding the flow has had to be made. It suggests that the
cross-sectional area  and discharge  are fundamental quantities. Below we will obtain equations also
in terms of surface elevation.
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3. Momentum conservation equation

The conservation of momentum principle is now applied to the flow in the channel. Consider the -
component of the integral form of the momentum equation for a possibly-moving control volume (White
2009, §3.4):

d

d

Z
CV

dV +
Z
CS

 ur·n̂d =  (5)

where  is the component of force exerted on the fluid in the control volume by both body and surface
forces.

3.1 Fluid momentum terms

Here we consider the terms on the left of equation (5).

1. Unsteady term

Again using dV = d∆, and taking constant quantities outside the integral we obtain

d

d

Z
CV

 dV = ∆




Z


d = ∆



 (6)

in which no additional approximation has been made, as by definition, the discharge  =
R

d. It

is useful that this term has been able to be expressed simply and exactly in terms of , further evidence
for the utility of that quantity. As the term is linear for constant density, allowing for turbulence by
short-term time-averaging gives no additional terms if we ignore turbulent surface fluctuations.

2. Momentum flux term

The second term on the left of equation (5),
R
CS

ur·n̂d, has no contribution from the material
boundaries on top and bottom of the control volume, the surface and the bed, as they are composed of
particles that move with and define the control surface such that the velocity of those particles relative
to the surface is ur = 0. On the stationary vertical face upstream, ur·n̂ = −, giving the contribution
−R


2 d, where the overbar has been introduced to denote a short term time averaging operation to

allow for turbulence. The downstream face at +∆ has a contribution of a similar nature, but where
both  and  have changed with . The difference between the two contributions is, again using a Taylor
series, simply

∆




Z


2 d+ terms like (∆)2 

Evaluating the area integral and the time mean requires a detailed knowledge of the flow distribution and
its turbulent nature that is almost always unavailable. Traditionally a Boussinesq momentum coefficient
 has been introduced to allow for the non-uniformity of velocity distribution. It should be used also
to allow for the effects of turbulence (Fenton 2005). If the velocity at a point is written as  = ̄ + 0,
where ̄ is the time mean velocity and 0 the fluctuating component, if we ignore fluctuations of the free
surface, then performing averaging over a short time interval the integral can be writtenZ



2 d =

Z


³
̄2 + 02

´


and introducing the more general definition of the momentum coefficient

 =
1

2

Z


³
̄2 + 02

´

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where  = , the mean component of -velocity averaged over the section, the contribution can be
written simply

∆




Z


2 d ≈ ∆




¡
2

¢
= ∆





µ

2



¶
 (7)

The remaining contribution to momentum flux is from inflow. In obtaining the mass conservation equa-
tion above, this was lumped together as an inflow  per unit length, such that the mass rate of inflow was
 ∆, (i.e. an outflow of − ∆). If this inflow has a mean streamwise velocity of  before it mixes
with the water in the channel, the contribution is

−∆   (8)

where  is the Boussinesq momentum coefficient of the inflow. The term is unlikely to be known
accurately or to be important in most places, except locally where a significant stream enters.

3.2 Forces – body and surface

1. Gravity

The gravitational force is vertical, such that with our cartesian co-ordinates the horizontal component is
zero, and there is no contribution to our -momentum equation. The manner in which gravity enters is
to cause the variation of pressure in the fluid, as we now calculate.

2. Pressure forces

The total pressure force on the fluid around the control surface is− R
CS

 n̂d, where  is the pressure, n̂
is the outward normal and the negative sign shows that the local force due to pressure acts opposite to it,
inwards on the fluid in the control volume. In this form the term is difficult to evaluate for non-prismatic
waterways, as the pressure and the highly-variable unit normal vector have to be integrated over all the
submerged faces of the control surface. Traditional derivations do this using some lengthy calculus, but
nevertheless ending with a simple result. It is obtained more easily if the term is evaluated using Gauss’
divergence theorem of vector calculus, replacing the integral over the rather complicated control surface
by a volume integral (e.g. Milne-Thomson 1968, §2.61, equation 3, but with a sign convention for n̂
opposite to ours), so that here

−
Z
CS

 n̂d = −
Z
CV

∇dV (9)

where ∇ is the vector gradient operator such that ∇ is a vector whose components are the pressure
gradients in each direction. For the elemental control volume across the channel this can then be simply
evaluated in terms of an integral across the section, and taking just the -component of ∇, , we
obtain

Pressure contribution to -momentum = −∆
Z
CV




d (10)

It is almost obvious that the net pressure force is given by the pressure gradient multiplied by ∆
integrated over the section, but without the formality of the mathematics one might be worried about
contributions at the bed and free surface.

This expression can be evaluated simply, making the hydrostatic approximation for small slopes, such
that the equivalent hydrostatic pressure is written  =  ( − ) where  is the elevation of a general
point, and  is the elevation of the free surface above that point. Differentiating to give the pressure
gradient gives  = , so that the horizontal pressure gradient in the water is due solely to

6



The long wave equations John D. Fenton

the free surface variation, and so the contribution is

−∆
Z





d ≈ −∆ 

Z





d ≈ −∆ 


 (11)

where we have assumed surface elevation  constant across the channel and taken its derivative outside
the integral.

3. Resistance forces

The forces of the boundary on the flow are incorporated using empirical results from turbulent shear
flows. The Darcy-Weisbach formulation here provides insights into the nature of the equations and
some convenient quantifications of the effects of resistance. The ASCE Task Force on Friction Factors
in Open Channels (1963) recommended its use, but that suggestion has been almost entirely ignored.
We will see that in the present force determination it is very useful, because it is directly related to stress
and force on the boundary. We will consider only the case for small slopes, where the square of the slope
is small compared with unity, accurate for almost all rivers and canals.

Consider the expression for the shear force  on a pipe wall (e.g. §6.3 of White 2009)

 =


8
 2

where the Weisbach coefficient  is a dimensionless resistance factor (for which the symbol  is often
used, but here we follow the terminology of fundamental researchers in the field in the first half of
the twentieth century), and  is the mean velocity in the pipe. Such an expression follows from a
dimensional analysis of the problem, suggesting its fundamental nature. The denominator 8 follows
from the original introduction of  in the Darcy-Weisbach formula for head loss in a pipe, with a term
2 in the expression for head and a term 4 in the relationship between head loss and  . The coefficient
 is simply related to Chézy’s resistance coefficient  by 8 = 2. Here we use it for a channel
to calculate the mean stress around the perimeter. We make the small-slope approximation, and so we
write  ≈  = , the mean -component of velocity over the section. To calculate the total force,
we write 2 as − || such that the direction of the force is always opposite to the flow direction, and
we multiply the stress by  ∆, the elemental area of the channel boundary in figure 1, where  is the
wetted perimeter, to give

Resistance force = −∆
8

 ||
2

 (12)

3.3 Collecting all terms in the momentum equation

Now all contributions to the momentum equation (5) are collected, from equations (6), (7), (8) on the
left, and (11) and (12), contributions to , on the right. Dividing by ∆, and bringing all derivatives
of dependent quantities to the left and others to the right, gives the momentum equation:




+





µ

2



¶
+ 




= −

8

 ||
2

+   (13)

The equation in this form is simple and shows the significance of each term. Previous presentations
using the small slope approximation have scarcely gone beyond this stage (for example Cunge et al.
1980, pp16-17; Lai 1986, pages 182-3), and did not expand the inertia term 

¡
2

¢
. That is

easily performed, and we obtain




+ 2








− 

2

2



+ 




= −

8

 ||
2

+   −
2


0() (14)

where 0() = dd. The discharge has emerged as being fundamental in this integrated momentum
formulation, the only time derivative being . However the equation is not yet in useable form,
for the derivatives of cross-sectional area  and surface elevation  are not independent. In
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fact, some of the more important practical steps lie before us, in the relating of these quantities, which
requires some effort.

3.4 Discussion of the resistance term

The significance of the resistance term, −8× || 2 is clear, written as a dimensionless coeffi-
cient multiplied by wetted perimeter times second power of the mean velocity, giving the force per unit
length divided by density.

The resistance coefficient  has been extensively investigated (ASCE Task Force on Friction Factors in
Open Channels 1963). Yen considered the results presented and obtained a convenient formula in terms
of the relative roughness and the Reynolds number of the flow (Yen 2002, equation 19):

 =

µ
−2 log10

µ


12
+
195

09

¶¶−2
 (15)

where  =  ( ) is the relative roughness,  is the equivalent sand-grain diameter and  =

 is the channel Reynolds number with  the kinematic viscosity. Yen stated that his formula was
applicable for   30 000 and   005.

This explicit formula for computing resistance seems to provide a solution to some of the problems
identified by the ASCE Task Force. It treats both smooth and rough boundaries, and for non-vegetated
streams at least seems to be superior to that of using values of Manning’s coefficient  often obtained
roughly by using tables or pictures from books. For streams where vegetation provides an important
contribution to resistance, it does not help, but recent research on the effects of vegetation in streams has
certainly used the framework of fluid drag, which can be fitted into the Darcy-Weisbach formulation. As
 is dimensionless, it is not necessary to modify any formulae if one uses non-S.I. units.

If one wanted to add an allowance for resistance such as that due to vegetation or bed-forms, one advan-
tage of the Weisbach formulation, being directly related to force, is that one can linearly superimpose
contributions so that in a more complicated situation, the resistance contributions can be simply com-
bined, including the perimeter over which they act:

 =
X


 (16)

Another simple example where a formula such as this would be useful is a glass-walled laboratory flume
with a rough bed, which would cause difficulties for Gauckler-Manning, which is not based on rational
mechanics. An idea of the problems which its empiricism causes is given by the different formulae for
the compound Manning coefficient , all found in one recent report on resistance in streams:

 =
X


 or  =

³X

2

´12
or

1


=

µX


1

2

¶12
 (17)

The report presented different recommendations in the report as to when each method would be pre-
ferred. There was no weighting according to the fraction of perimeter for each contribution.

That notwithstanding, we mention other explicit forms of the resistance term including those of Chézy
and Gauckler-Manning. For the different formulations to agree for steady uniform flow:



8
=



2
=

2 13

13
=



2St

 13

13
 (18)

where  is the Chézy coefficient,  the Manning coefficient, and St the Strickler coefficient. For
Gauckler-Manning, the resistance term in the momentum equation (14) becomes:

−2 ||
43

73
 (19)
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The indices 43 and 73 seem just a little fussy. In some applications the conveyance of the stream
 = 1×53 23 has been used so that the resistance term becomes

− ||
2

 (20)

The term is to do with resistance to fluid motion, and has nothing to do gravity – the presence of  here
and in equation (19) is an artefact from the original Gauckler-Manning equation which does not include
gravity, even though it is the driving force. Manning’s  implicitly contains , as does Chézy’s .

Possibly because of the non-trivial nature of the Manning form, a more vague way of writing the re-
sistance term that has been used is −f , where f is called the "friction slope". That is apparently
a dangerous procedure, for in some works (e.g. Lyn & Altinakar 2002) f has been assumed to be a
constant even where  and  vary. More importantly, in terms of understanding, this has led to it being
mistaken for an energy slope, which it is not. It comes from the shear force on the perimeter. The
Weisbach form as it appears in the momentum equation (14) seems simple and clear.

4. Relationships between area and elevation derivatives

The momentum equation contains time and space derivatives of  and . To be able to express the
equations in terms of derivatives of one or the other, we have to relate them. Consider the integral for
area

 =

LZ
R

( − ) d (21)

where  = ( ) is the bed elevation, and the right and left waterlines are defined by the intersections
between the side surfaces  = LR( ) and the free surface  =  ( ) such that the limits are
 = LR(  ( )), using notation "L/R" in the subscript showing that either or both can be taken.

The derivative of area with respect to time is obtained from Leibniz’ theorem for the derivative of an
integral, which gives




=

Z L

R




d + ( − L)

L


− ( − R)

R




where ( − L) is the water depth at the left bank and ( − R) that at the right. Both the last two terms
are zero in most situations where the bank is sloping. The only way that they contribute is if the sides of
the channel are vertical and are moving with time. This seems unlikely, and so they will be neglected. It
has already been assumed that the free surface is level across the channel, so that the integrand  is
independent of  and can be taken outside the integral, giving




= 




 (22)

where  = L − R is the surface width.

Now the  derivative of  is considered. Differentiating equation (21) with respect to  and using
Leibniz’ theorem again:




=

LZ
R




d

| {z }
I

−
LZ

R




d

| {z }
II

+ ( − L)
L



¯̄̄̄


− ( − R)
R



¯̄̄̄
| {z }

III

 (23)

where, as  and  are functions of  and , both  and  imply that  is considered con-
stant. The bed elevation  is a function of  and , so  implies  is constant, and it is just a
streamwise derivative, the local bed slope. A slightly different notation | has been necessary for
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the -derivatives of R(  ( )) and L(  ( )), to show that  is held constant, as here using just
 would imply  constant. Now we evaluate each of the terms in the expression:

Term I: We have assumed that free surface elevation  is constant across the channel, so that the first
term becomes simply (L − R)  =  .

Term II: The second term is the integral across the channel of the downstream bed slope. We introduce
the symbol ̃ for the local mean downstream bed slope evaluated across the section:

̃ = − 1


LZ
R




d (24)

defined with a minus sign such that in the usual situation where the bed slopes downwards in the direction
of , so that  decreases, ̃ will be positive. If the bottom geometry is precisely known, this can be
precisely evaluated, however it is much more likely to be only approximately known and a typical bed
slope of the stream used. With this definition, the term in equation (23) can be just written +̃.

Term III: this term is zero almost everywhere. It is the contribution from the integrand at each limit
multiplied by the derivative of the limit. The contributions in equation (23) are:

¡
 − LR

¢ LR


¯̄̄̄


= ( − )LR

Ã
LR


+

LR



¯̄̄̄
=()





!
 (25)

The factor
¡
 − LR

¢
is the water depth at the banks. We now consider different geometric cases:

1. The usual case for natural streams and most canals, with sloping ( i.e. not vertical) banks:

 − LR = 0

and so in this common case the contribution of the whole term is zero.

2. If a side is vertical, then LR
¯̄
=()

= 0 so the second term in the brackets in equation (25)

is zero and we are left with the contribution
¡
 − LR

¢
LR. We have to consider two cases

for this.
a. The usual case for a vertical sided channel such as a flume or race or lock: the walls are parallel to

the -axis, so that they neither converge nor diverge, then LR = 0 and so the contribution
of the whole term is zero again.

b. The rare case where the channel walls are both vertical and converging or diverging, such that
LR is not zero, in something like a Parshall flume (although one would be careful about
applying long wave theory in such a case).

As that last case, with a diverging vertical wall such that LR is independent of , is the only possibility
for a non-zero contribution, we can replace the partial derivatives by ordinary derivatives, and we write
the net contribution of the last two terms in equation (23) as V :

V = ( − L)
dL

d
− ( − R)

dR

d
 (26)

the symbol V used to refer to Vertical side walls. For such vertical walls it is highly probable that we are
dealing with a man-made structure, so that the bed is transversely horizontal too, such that in that case
L = R = , and using the depth  =  −  we obtain

V = 

µ
dL

d
− dR
d

¶
= 

d

d


Almost everywhere, of course, V = 0.

Collecting contributions from Terms I, II, and III: the relationship between area and elevation deriv-
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atives, equation (23), is written




= 




+̃ +V  (27)

The quantity ̃ contains contributions from what has been called the "non-prismatic" term, which
in other presentations has usually been written in vague terms like |=const and has not been
explicitly evaluated. The slope ̃, based on the formal definition, equation (24), allows for the fact
that the effective mean slope in a non-prismatic stream is different from that of a prismatic one even if
the talweg has the same slope. In any case, the bed geometry is rarely able to be evaluated with any
accuracy, and instead in practice, a typical local stream slope might often be used and non-prismatic
effects ignored.

5. Three forms of the long wave equations

Presentations elsewhere have given equations in terms of the mean horizontal velocity  in the flow.
We do not, believing it to be insufficiently important, as there are very few problems where  might be
specified as a boundary condition. In practical problems usually volume flow rate  is more important.
If velocities were required as results, they could be trivially obtained from .

Here we present three versions of the momentum equation, all in terms of , with alternatives for the
remaining dependent variable.

5.1 Equations in terms of ()

We have observed that the mass conservation equation, equation (4), is exact for a straight channel,
suggesting that  is a fundamental quantity. This form may not be so important practically, but for some
theoretical studies it is useful to use the two integrated quantities  and  as dependent variables. As
well, there is an interesting aspect to the formulation, such that one can model a channel approximately
with relatively little detailed or assumed knowledge of the underwater topography, explained here after
the presentation of the equations.

Collecting equations (4) and (14), and using equation (27) to eliminate  from the latter, gives the
long wave equations in terms of  and :




+




=  (28a)




+ 2








+

µ



− 

2

2

¶



= 

µ
̃ +

V




¶
− 

8

 ||
2

+   −
2


0() (28b)

where derivatives of dependent variables have been taken to the left and all others to the right, and of
course, almost everywhere the right side is significantly simpler, where V , , and 0() are zero. In
many situations the dominant terms in the equation are the remaining terms on the right, in terms of bed
slope ̃ and resistance coefficient . Often neither the details of the underwater topography leading to
̃, nor the value of the resistance coefficient  are accurately known. This may make one wonder about
the necessity of including a value of  not equal to 1, or a value of 0() at all.

In practice, in a channel where the geometry is well-known, at each computational value of   =
0 1   , one might know the slope ̃ and the functional relationships (), () and (), probably
in discrete form, from which one could obtain the corresponding () and () also in discrete form.
However, it is much more likely that the underwater geometry is poorly known, and so the trouble of go-
ing to assumed forms of dependence on  is questionable. The formulation of equations (28a) and (28b)
in terms of  allows an approximate procedure that is commensurate with the accuracy of knowledge
of the whole problem. One could assume approximate values of ̃, and approximate, possibly constant,
values of  and  at each computational point , which for most streams are not going to vary much
with flow anyway. Then to calculate the initial values of  at computational points along the stream one
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could assume notional approximate values of  at the points, with the given initial constant flow  and
perform a simulation with the equations until the incorrect values flow out of the computational domain
and values of  became steady. These could then be used as initial values for real simulations with
varying input discharge with time at the upstream boundary. Hence, using  one can perform model
simulations with relatively little information required or artificially included.

5.2 Equations in terms of ()

Surface elevation is an important quantity in practice, so we will present a formulation in terms of it.
We use equation (22) to eliminate  from equation (4) and use equation (27) again, this time to
eliminate  from the momentum equation (14):




+
1






=




 (29a)




+ 2








+

µ
− 

2

2

¶



= 

2

2

³
̃ +V



´
− 

8

 ||
2

+   −
2


0() (29b)

5.3 Equations in terms of a depth-like variable 

Many works present the equations in terms of a quantity  referred to as "depth", which is an ambiguous
and uncertain quantity, especially for natural streams. Here we define it to be the surface elevation
relative to a reference axis possibly associated with the bottom of the stream, which could be chosen to
be the bed of a canal or the thalweg in a river if that were sufficiently well known. It does not have to be
a straight line in the vertical plane.

It should be pointed out, however, that using area  might be a better alternative to using , as it contains
some of the advantages of , such as being constant for uniform flow, and varying relatively little in most
streams for non-uniform flow, but it does not require the definition of an axis.

We let the elevation of the reference axis be 0() and then in general  ( ) =  ( ) + 0() and
the derivatives are  =  and  =  − 0 (), where 0 is the slope of the axis
(positive in the usual downward-sloping channel sense) 0 = −0. Substituting these into the
mass conservation equation (29a) and the momentum conservation equation (29b) gives




+
1






=




 (30a)




+ 2








+

µ
− 

2

2

¶




= 0 + 
2

2

³

³
̃ − 0

´
+V

´
− 

8

 ||
2

+   −
2


0() (30b)

6. Steady gradually-varied flow equations

Any of the above formulations can be trivially modified for the case of steady flow, to give a pair
of ordinary differential equations. In this case any of the forms of the mass conservation equation
has the solution  =  (0) +

R 
0
 (0) d0. If there is no distributed inflow , then the solution is

 =  (0) = constant. We can now use  || = 2 in the momentum equations as the flow is
unidirectional, and consider 0() = 0 to give, from equation (28b)

d

d
=


³
̃ +V


´
−  28

1− F2
 (31)

12



The long wave equations John D. Fenton

where F2 = 23 is the square of the Froude number. In terms of , equation (29b) gives

d

d
=


³
̃ +V


´
− 

8





1F2 − 
 (32)

In terms of the depth-like quantity  =  − 0, equation (30b) becomes

d

d
=

0 + 
³
̃ +V

 − 0

´
F2 − 

8




F2

1− F2
 (33)

The expressions here are valid for non-prismatic channels, using the generalised definition of slope ̃ in
equation (24). Other presentations usually give an equation like (33) for prismatic channels, such that
̃ = 0, and where the symbol f is used for the resistance term. We prefer to keep it explicit; it also
shows how simple it is. It is interesting that for wide channels,  ≈ , all variation with the dependent
variable on the right of the differential equations (32) and (33) is in F2 = 23.

7. Conclusions

The long wave equations for a straight slowly-varying channel of small slope have been derived using the
integral mass and momentum conservation equations. Pairs of equations have been presented for three
combinations of variables: cross-sectional area and discharge (); surface elevation and discharge
(); and finally using a depth-like quantity , which is surface elevation relative to an arbitrary axis
possibly associated with the bed, also plus discharge, (). Gradually varied flow equations for steady
flow with constant discharge have been presented, which are ordinary differential equations in terms of
each of , , and .
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Appendix A. Formulation in terms of upstream volume

A.1 Elimination of mass conservation equation

Here we introduce a quantity  so that we can express two dependent variables  and  in terms of
derivatives of  , which satisfies the mass conservation equation identically. This reduces the number
of dependent variables to one, and reduces the number of equations to one, the momentum equation.
Although that will be helpful in theoretical studies, for computations the two-equation system is probably
still more useful.

Consider the volume of water  ( ) contained in a stream between the upstream boundary 0 and the
general point :

 ( ) =

Z 

0

(0 ) d0

Differentiating with respect to  and using Leibniz’ rule it follows that the cross-sectional area is given
by the spatial derivative

 =



 (A-1)

Now consider the time rate of change of volume which is increasing upstream due to inflow, and de-
creasing due to volume leaving by passing the general point. Hence,




=  − (A-2)

where  ( ) is the net volume rate at which fluid is entering/leaving the channel from inflow. This has
contributions from the inflow at the upstream end of the stream (0), and distributed inflow  per unit
length of channel such that

 = (0) +

Z 

0

(0 ) 0 (A-3)

Including the term (0 ) on the right here has been suggested by Fatemeh Soroush (2011, Personal
Communication), such that  can now more consistently be understood as the total volume in the chan-
nel. Fenton, Oakes & Aughton (1999) and Barlow, Fenton, Nash & Grayson (2006) used a different
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definition. Substituting equation (A-3) into equation (A-2) and solving for  gives

 = (0 ) +

Z 

0


¡
0 

¢
d0 − 


 (A-4)

Substituting for  from this and for  from equation (A-1) into the mass conservation equation (28a)
gives





µ




¶
+





µ
(0) +

Z 

0

(0 ) 0 − 



¶
= 

and evaluating the left side we obtain , such that the equation is identically satisfied. This is not so
surprising as it is a conservation-of-volume equation for the incompressible fluid.

A.2 Momentum equation in terms of upstream volume 

A single equation in terms of upstream volume  is obtained by substituting the relationships (A-1) and
(A-4) into the momentum conservation equation (28b):

2

2
+ 2





2


+

µ

2

2
− 

()

¶
2

2

− ()
8

Ã
 (0 ) +

R 
0
(0) d0 − 



!2
+ ̃

= 

µ
2




− 

¶
+

 (0 )


+

Z 

0




d0 − 


V
 +

2


0() (A-5)

where for notational simplicity, single symbols  and  have been retained in non-derivative terms
and in the resistance term the usual 2 has been used instead of the formally more general  ||.
The momentum equation has become a second-order partial differential equation in terms of the single
variable  . To solve problems numerically, this formulation is probably not of much practical help; as
it is a second order equation in time, one would probably use an auxiliary variable  and solve it
as two first order equations anyway. However, the formulation as a single equation makes theoretical
manipulations easier and provides insight into the nature of the equations and their solutions.

Appendix B. Energy conservation equation

Here the energy equation is derived using a similar approach to above, so that comparisons can be made
with that based on momentum conservation. It will be found to require more coefficients to approximate
integrals, plus there is the difficulty of approximating various forms of energy dissipation which occur
throughout the fluid, rather than momentum loss at the boundary.

Consider the energy conservation equation (White 2009, §3.7), where there is no heat added or work
done on the fluid in the control volume:





Z
CV

 dV +
Z
CS

(+ ) ur·n̂d = 0 (B-1)

where  is the internal energy per unit mass of fluid, which in hydraulics is the sum of potential and
kinetic energies  =  +

¡
2 + 2 + 2

¢
2. The first term in equation (B-1) becomes





Z
CV

 dV = 



Z
CV



µ
 +

1

2

¡
2 + 2 + 2

¢¶
dV (B-2)
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The contribution of the first term  using the elemental control volume in figure 1 is





Z
CV

 dV = ∆




Z


 d

The integral is simply the first moment of area of the cross-section about the transverse  axis. If the
surface rises by an amount  then the change in the first moment of area is simply   ( + 2),
and in the limit  → 0 the second part goes to zero, giving the contribution

∆



 (B-3)

The contribution of the second term in the integrand of equation (B-2) is more difficult to obtain, as we
have the problem of integrating the square of the velocity over the section and taking the time mean:

∆

2





Z


(2 + 2 + 2) d

To approximate this we introduce a coefficient 0 here, defined by the generalised Coriolis coefficient
(e.g. Fenton 2005):


+2 = 

+2

+1
=

Z


(2 + 2 +2)  d (B-4)

where  expresses the integral of the square of the wave speed weighted with respect to . The
contribution of the second term in equation (B-2) is then

∆

2





µ
0

2



¶
 (B-5)

The second term in equation (B-1) gives zero contribution on all the transverse boundaries where ur·n̂ =
0. On the upstream face its contribution is, using the hydrostatic pressure contribution  = ( − ):Z



(+ ) un̂d = −
Z


µ
 +

1

2
(2 + 2 + 2)

¶
d

As surface elevation  is a constant at any section, it is constant over the integral, and the contribution
of the first term in the integrand is

−
Z


 d = −
Z


d = −

again where fluctuations of the free surface have been ignored. The second term in the integrand again
cannot be evaluated exactly, and we use kinetic energy coefficient 1 as defined in equation (B-4) such
that we write Z



(2 + 2 + 2) d = 1
3 = 1

3

2


It is surprising that for many years an integral just in terms of 3 was used to calculate this contribution.
Strelkoff (1969, eqn 21) used the correct definitions in terms of integrals of kinetic energy; Fenton (2005)
noted that turbulent contributions should be included.

The total contribution on the upstream face is now

−
µ
+ 1

3

22

¶


The contribution on the downstream face will be positive, and composed of a term like this plus its
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derivative with respect to , times ∆. The net contribution from upstream and downstream faces is
then

∆




µ
+ 1

3

22

¶
 (B-6)

Adding the terms (B-3), (B-5) and (B-6) and dividing by ∆ we obtain the contribution to the equation
thus far as





+

0

2





µ
2



¶
+





µ
+ 1

3

22

¶
 (B-7)

Now consider energy entering due to the inflow. Let the head of this be , then the net rate of energy
flow leaving the control volume is

−∆  (B-8)

In practical problems it is quite possible that the incoming velocity head will be destroyed by mixing,
and just the elevation head  should be used here.

Now we have to include energy losses, diffused through the fluid, which are more complicated than the
momentum losses which are due just to the action of momentum exchange at the boundary. Here we
can use the expression for the resistance force (12) −∆ (8) || 2 and multiply by the mean
velocity at a section  to give the rate of energy dissipation, however the location, mechanisms, and
rate of the energy losses are different from the momentum losses so we use a different coefficient as, for
example, Yen (1973, after his equation 66):

−e
8

2

2
∆× 


 (B-9)

where e is a dimensionless energy loss coefficient in the same spirit as  for the stress around the
boundary. The momentum and energy coefficients  = e would agree in the case of uniform steady
flow. Adding contributions (B-7), (B-8) and (B-9) and regrouping:





+

0

2





µ
2



¶
+





µ
+ 1

3

22

¶
= − e

8

2 ||
3



which is the equivalent of the unexpanded momentum equation (13), but here the time derivatives are
more complicated. Expanding and using equation (28a) to eliminate , (29a) for , (27) for
, and dividing by  gives the conservation of energy equation

0



+

µ
− 1

2

2

¶



+

0 + 31

2








=

1
2

2
̃ − e

8

 ||
2

+

µ
0

2

22
−  + 

¶



+ 1

2

2
V
 −

2

2

1


(B-10)

This can be compared with the momentum equation (29b)




+

µ
− 

2

2

¶



+ 2








= 

2

2
̃ − 

8

 ||
2

+   + 
2

2
V
 −

2


0()

The structure of the two equations is the same. The differences lie in the coefficients and in the nature
of the inflow term on the right. If all 0, 1 and  were unity the only difference would be between the
inflow terms, and the  and e, which are known to be equal for uniform flow. It is the assertion of this
work, however, that the energy dissipation is generally more complicated than momentum loss at the
boundary, and the coefficient e has to describe more complicated processes than  from the boundary
stresses. The momentum approach is to be preferred.
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