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Abstract

The long wave equations for a straight slowly-varying channel on an arbitrary slope are derived using
the mass and momentum conservation equations in cartesian co-ordinates. The derivation attempts
to use a true hydraulic approach, where quantities are modelled as accurately but simply as possible.
This document is initially very similar to that of Fenton (2010), however in that document and all
other presentations, the long wave equations have been obtained for small slopes. For steep slopes
the hydrostatic approximation for pressure is not accurate and neither is the resistance formulation.
Here, corrected pressure and resistance formulations for finite slopes are introduced. Evaluating the
momentum contribution due to pressure is made rather easier by using the divergence theorem of
vector calculus. Then, in evaluating resistance, the Darcy-Weisbach formulation is shown to have
several advantages and the Gauckler-Manning approach is criticised. Although use is made of some
vector notation, there are few lengthy mathematical operations until it is necessary to relate the
derivatives of area to those of surface elevation. A useful result is obtained, however, where the
non-prismatic nature of a channel is shown to be simply approximated using the mean downstream
slope at a section. The long wave equations are presented in explicit useable form with various
combinations of variables, and similarly for steady flow, with different forms of the gradually-varied
flow equation. The expressions are valid also for finite slopes. For the special case of steady uniform
flow, generalised Chézy-Weisbach and Gauckler-Manning formulae for finite slopes are presented,
as well as a quickly-convergent numerical method for finding normal depth in any channel flow.

Revision History
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April 2016 In response to an enquiry from Tom Molls of David Ford Consulting Engineers, I have
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1. Introduction

The one-dimensional long wave equations are widely used in river and canal hydraulics and are the basis
of much hydraulic software. They are subject to limitations including both small longitudinal slopes and
curvatures. Their origin seems to have been earlier than the usually cited work of Saint-Venant. Dooge
(1987, p221) stated that the “first presentation of such a pair of equations would appear to be due either
to Dupuit ... or to Kleitz ... and refers to the case of a wide rectangular channel”. Saint-Venant obtained
a general mass conservation equation for a uniform waterway of any cross-sectional shape. However
his derivation of the momentum equation was just for a rectangular canal of constant width, although
he did retain a general resistance term. Dooge further wrote that according to Graeff in 1875 these
equations had been previously given in a report by Kleitz in 1858 that was circulated but not published.
Saint-Venant’s contribution beyond that of Dupuit and Kleitz has been modest, and it would seem unfair
to the earlier workers to continue to use the appellation ”Saint-Venant” for the equations. However,
it is interesting that the momentum equation of Dupuit/Kleitz/Saint-Venant, obtained on the basis of a
uniform rectangular canal, is in fact valid for the general case of a non-prismatic waterway of arbitrary
section.

Boussinesq (1877, p192 – eqn 155), which is described rather more accessibly by Jaeger (1956, p122 et
seq.), considered steady flow in a wide rectangular channel of varying longitudinal bed topography using
mass and momentum conservation. He went to one higher level of approximation, allowing for stream-
line curvature in determining the pressure, and obtained a third-order (now "Boussinesq") differential
equation.

Keulegan (1942) derived both momentum and energy formulations for steady flow, and stated a prefer-
ence for the momentum approach as it requires only the mechanism of resistance at the boundary and
not details of the energy loss processes. Keulegan & Patterson (1943) then considered unsteady motion
in a prismatic channel, obtaining the momentum equation, and then for a wide rectangular channel went
on to consider the higher Boussinesq approximation with dynamic effects due to streamline curvature.

Two later derivations of the long wave equations went to considerable lengths to make the treatments as
general as possible. Strelkoff (1969) considered the full Navier-Stokes equations and made an allowance
for turbulence in the form of time averaged Reynolds equations. Yen (1973) also developed a general
formulation, including viscosity, turbulence, fluid compressibility and inhomogeneity. In both cases the
general forms of the equations were not suitable for practical application, but both writers did go on
to present useable equations by making the usual reasonable hydraulic assumptions. Both derivations
used a coordinate system based on the bed of the waterway. In many natural streams the bed is poorly
known, and it is in general curved in the vertical plane. Such an approach should ideally have included
extra terms due to the curvature of the axes, as obtained by Dressler (1978). However, both formulations
would have been correct had they simply defined the streamwise axis to be horizontal. Later derivations
by Cunge, Holly & Verwey (1980, §2.1) and Lai (1986, pp182-3) did use cartesian coordinates and
obtained simpler derivations. Both presented results for different combinations of dependent variables.
However in the final presentations, both left some versions with derivatives of combinations of quantities
unexpanded and not in a form ready for use. Neither evaluated explicitly the so-called non-prismatic
contribution to the derivative of cross-sectional area.

This paper obtains the long wave equations for straight channels of otherwise arbitrary section and
topography. It tries to use a true hydraulic approach, where quantities are modelled as accurately but
simply as possible. The theory includes flow on steep slopes, overcoming the traditional limitation,
following Darvishi, Fenton, and Kouchakzadeh (2014), who considered the problem of flow with cur-
vature in rectangular channels, using a Boussinesq approach. They discovered that previous Boussinesq
and long wave theories have all used the hydrostatic approximation for the pressure in the water. In
the flow of a real fluid the vertical component of resistance is such that the isobars in the fluid are not
horizontal, but are more or less parallel to the free surface. This means that the pressure does not follow
a hydrostatic distribution, and further corrections to the equations are necessary. Also, previous work
has neglected the effects of the resistance force in the flow being not horizontal, but parallel to the bed.
While these effects are usually unimportant, as most streams have a small slope, in principle they should

2



The long wave equations for arbitrary slopes John D. Fenton

be understood.

Features of the derivation and results

• The equations can be obtained relatively concisely using the integral mass and momentum equations;
there are few detailed mathematical manipulations until it is necessary later to relate cross-sectional
area and surface elevation.

• The cross-sectional area and discharge arise naturally as the most fundamental dependent variables.
The mass conservation equation obtained in terms of them is exact for straight channels.

• The momentum equation requires additional assumptions, listed below.

• Cartesian co-ordinates are simple and require no special attention for axis curvature.

• Use of Gauss’ divergence theorem in evaluating the pressure contribution to the momentum equa-
tion gives a substantially simpler derivation, as it avoids difficulties of integrals over complicated
surfaces.

• The traditional hydrostatic approximation is abandoned, so as to generalize the results to flows on
finite slopes. Instead an equivalent approximation for the pressure is made assuming that locally all
isobars are parallel to the free surface, which is an isobar.

• An explicit form is given for a term due to a non-prismatic channel, expressed in terms of the local
mean downstream slope at a section. Often that is poorly-known, which shows that there is little
sense in giving detailed attention to the term and its precise calculation.

• The Darcy-Weisbach resistance formulation fits naturally with the momentum approach, so that
the resistance term appears with a clear physical significance in the momentum equation. This is
corrected to allow for the effects of finite slope.

• Three pairs of long wave equations are presented, each in terms of discharge plus one measure of
cross-section – the actual area (which is found to have an interesting advantage, that approximate
simulations can be performed without artificial inclusion of underwater topography), plus surface
elevation, plus a depth-like quantity, the elevation relative to an arbitrary axis.

• Three gradually-varied flow equations for steady flow are presented, each in terms of one of the three
measures of cross-section.

• In all cases, corresponding equations for small slopes are presented.

• Finally, for the special case of steady uniform flow, generalised Chézy-Weisbach and Gauckler-
Manning equations are obtained which are valid for all slopes.

Assumptions

The non-trivial assumptions in the derivation are, roughly in decreasing order of importance or limita-
tion:

1. Resistance to flow is approximated by the Darcy-Weisbach approach. The underlying flow is a
turbulent shear flow. Of course the Navier-Stokes equations are not being used.

2. The stream is assumed to be straight, such that effects of curvature of its course are ignored.

3. All surface variation is sufficiently long, but not necessarily of small slope, that the pressure through-
out the flow is given by a local uniform flow approximation valid for steep slopes.

4. The water surface across the stream is horizontal.

5. The effects of both non-uniformity of velocity over a section and turbulent fluctuations are approxi-
mated by a generalised Boussinesq momentum coefficient multiplying uniform contributions.

6. The fluid density is constant.
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2. Mass conservation equation
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Figure 1. Elemental length of channel showing moving control surface with its enclosed control volume

Consider figure 1, showing an elemental slice of straight channel of length ∆ with a control volume
formed by four surfaces – two stationary vertical faces transverse to the flow, the stationary stream
bed, and the possibly-moving free surface. Cartesian co-ordinates are used, which avoid mathematical
problems that bed-oriented co-ordinates introduce. The mass conservation equation for an arbitrarily
moving control surface and volume is (e.g. White (2009,§3.3):

d

d

Z
CV

dV +
Z
CS

ur·n̂d = 0 (1)

where the integrals are over CV, the control volume, and CS, its enclosing control surface,  is the fluid
density, dV is an element of volume,  is time, d is an element of the control surface, ur is the velocity
of a fluid particle relative to that of the control surface, n̂ is a unit normal vector directed outwards
such that ur·n̂ is the normal component of fluid velocity relative to the surface. It is this velocity that is
responsible for the transport of any quantity across the surface.

The first term in equation (1), is the rate of change of mass inside the elemental control volume. An
element of the control volume shown in figure 1 has volume dV = d∆, and so, assuming  constant
and taking constant quantities outside the integral we obtain


dV
d
= ∆




 (2)

where  is the cross-sectional area of the channel flow.

Considering the mass rate of flow crossing the boundary, there is no contribution on the solid stationary
bed as ur = u = 0 there. On the possibly-moving free surface the fluid particles remain on it, in
whatever manner it is moving, such that ur·n̂ = 0 there, and there is no mass transport across it either.
On the stationary vertical faces across the flow, ur = u, the actual fluid velocity. On the upstream
face ur·n̂ = −, where  is the -component of velocity at a point, and the minus sign is because the
velocity is opposite to the outwards normal which is upstream here. The contribution to the integral is
then − R


d, which for an incompressible fluid is simply −, where  is the volume rate of flow,

the discharge. The contribution to the second integral, on the downstream face, is of opposite sign and
in general has changed with . We write it as a Taylor series, giving the combination of the two:

− | + |+∆ = ∆



+ terms like (∆)2  (3)

Finally, an allowance is made for any fluid entering the control volume from rainfall, seepage, or tribu-
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taries, with a volume rate  per unit length and density , assumed to be the same as that already in the
channel. Its contribution is −∆ , negative because it is entering the control volume. Combining this
contribution and those of equations (2) and (3) to equation (1), dividing by ∆ and taking the limit as
∆→ 0 gives




+




=  (4)

Unusually in hydraulics, this is almost an exact equation. The only non-trivial assumption that has been
is that the channel is straight. No assumption regarding the flow has had to be made. It suggests that the
cross-sectional area  and discharge  are fundamental quantities. Below we will obtain equations also
in terms of surface elevation.

3. Momentum conservation equation

The conservation of momentum principle is now applied to the flow in the channel. Consider the -
component of the integral form of the momentum equation for a possibly-moving control volume (White
2009, §3.4):

d

d

Z
CV

dV +
Z
CS

 ur·n̂d =  (5)

where  is the component of force exerted on the fluid in the control volume by both body and surface
forces.

3.1 Fluid momentum terms

Here we consider the terms on the left of equation (5).

1. Unsteady term

Again using dV = d∆, and taking constant quantities outside the integral we obtain

d

d

Z
CV

 dV = ∆




Z


d = ∆



 (6)

in which no additional approximation has been made, as by definition, the discharge  =
R

d. It

is useful that this term has been able to be expressed simply and exactly in terms of , further evidence
for the utility of that quantity. As the term is linear for constant density, allowing for turbulence by
short-term time-averaging gives no additional terms if we ignore turbulent surface fluctuations.

2. Momentum flux term

The second term on the left of equation (5),
R
CS

ur·n̂d, has no contribution from the material
boundaries on top and bottom of the control volume, the surface and the bed, as they are composed of
particles that move with and define the control surface such that the velocity of those particles relative
to the surface is ur = 0. On the stationary vertical face upstream, ur·n̂ = −, giving the contribution
−R


2 d, where the overbar has been introduced to denote a short term time averaging operation to

allow for turbulence. The downstream face at +∆ has a contribution of a similar nature, but where
both  and  have changed with . The difference between the two contributions is, again using a Taylor
series, simply

∆




Z


2 d+ terms like (∆)2 

Evaluating the area integral and the time mean requires a detailed knowledge of the flow distribution and
its turbulent nature that is almost always unavailable. Traditionally a Boussinesq momentum coefficient
 has been introduced to allow for the non-uniformity of velocity distribution. It should be used also
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to allow for the effects of turbulence (Fenton 2005). If the velocity at a point is written as  = ̄ + 0,
where ̄ is the time mean velocity and 0 the fluctuating component, if we ignore fluctuations of the free
surface, then performing averaging over a short time interval the integral can be writtenZ



2 d =

Z


³
̄2 + 02

´


and introducing the more general definition of the momentum coefficient

 =
1

2

Z


³
̄2 + 02

´


where  = , the mean component of -velocity averaged over the section, the contribution can be
written simply

∆




Z


2 d ≈ ∆




¡
2

¢
= ∆





µ

2



¶
 (7)

The remaining contribution to momentum flux is from inflow. In obtaining the mass conservation equa-
tion above, this was lumped together as an inflow  per unit length, such that the mass rate of inflow was
 ∆, (i.e. an outflow of − ∆). If this inflow has a mean streamwise velocity of  before it mixes
with the water in the channel, the contribution is

−∆   (8)

where  is the Boussinesq momentum coefficient of the inflow. The term is unlikely to be known
accurately or to be important in most places, except locally where a significant stream enters.

3.2 Forces – body and surface

1. Gravity

The gravitational force is vertical, such that with our cartesian co-ordinates the horizontal component is
zero, and there is no contribution to our -momentum equation. The manner in which gravity enters is
to cause the variation of pressure in the fluid, as we now calculate.

2. Pressure forces, including effects of finite slope

The total pressure force on the fluid around the control surface is− R
CS

 n̂d, where  is the pressure, n̂
is the outward normal and the negative sign shows that the local force due to pressure acts opposite to it,
inwards on the fluid in the control volume. In this form the term is difficult to evaluate for non-prismatic
waterways, as the pressure and the highly-variable unit normal vector have to be integrated over all the
submerged faces of the control surface. Traditional derivations do this using some lengthy calculus, but
nevertheless ending with a simple result. It is obtained more easily if the term is evaluated using Gauss’
divergence theorem of vector calculus, replacing the integral over the rather complicated control surface
by a volume integral (e.g. Milne-Thomson 1968, §2.61, equation 3, but with a sign convention for n̂
opposite to ours), so that here

−
Z
CS

 n̂d = −
Z
CV

∇dV (9)

where ∇ is the vector gradient operator such that ∇ is a vector whose components are the pressure
gradients in each direction. For the elemental control volume across the channel this can then be simply
evaluated in terms of an integral across the section, and taking just the -component of ∇, , we
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obtain

Pressure contribution to -momentum = −∆
Z
CV




d (10)

It is almost obvious that the net pressure force is given by the pressure gradient multiplied by ∆
integrated over the section, but without the formality of the mathematics one might be worried about
contributions at the bed and free surface.





 sin 
 cos 

Resistance force/unit mass





 cos  

Figure 2. Forces per unit mass acting on a fluid particle in a gradually-varied open channel flow

The usual hydraulic approximation for the pressure  is that the pressure distribution is hydrostatic. That
is not so in flow over a finite slope. Consider figure 2 for a slowly varying flow, where surface and bed are
not necessarily parallel. The surface is an isobar, and in the upper part of the flow, isobars will be parallel
to that. Nearer the bed that may not be quite the case, but the real value is difficult to establish without
solving the whole flow problem. We consider variation of pressure on a line perpendicular to the free
surface, given by the local normal co-ordinate  as shown. The component of gravity in that direction
is − cos , where  is the local surface slope. From the Euler equation for equilibrium, the Navier-
Stokes equation with viscosity neglected (e.g. White 2009, §2.2) we have  =  (− cos  − ),
where  is the acceleration of fluid particles in direction . This is small and we neglect it, giving
 = − cos . Integrating this and requiring that  = 0 when  = 0, gives  = − cos . It
follows that at a point vertically  below the surface, such that  = − cos ,

Pressure at a depth  below the surface:  ≈  cos2  (11)

The expression is a known exact result for uniform flow (Chow 1959, §2-10 and Henderson 1966, eqn
2-2). Even though the result looks like the traditional hydrostatic one, but with a cos2  modification,
it cannot be called a hydro-static approximation, as the vertical component of resistance leading to the
isobars being tilted actually comes from the flow, and the terminology "static" is no longer available to
us. It might be termed the "local uniform flow approximation", corresponding to a uniform flow with
the slope of the free surface. It is not exact, but in a spirit of modelling, it is the next best approximation
after the hydrostatic one.

Now we write the result in terms of surface elevation . For a point in the fluid of elevation , above
which the surface elevation is , such that  =  − , and expressing the cosine function in terms of the
surface slope  = , such that cos2  = 1

¡
1 + 2

¢
, gives the expression for pressure in the fluid

in a gradually-varied flow

 =
 ( − )

1 + 2
 (12)

as used by Darvishi, Fenton & Kouchakzadeh (2014). To substitute into equation (10) we now have to
differentiate with respect to , which will also give contributions from the denominator, with products
of first and second derivatives of the surface elevation. However in making a long wave approximation
here, we have ignored such curvature terms in obtaining the pressure, and so we continue to do so,
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giving




≈ 
1 + 2

 (13)

This is constant over a cross-section, so that integration with respect to area  to give the contribution to
the momentum equation is trivial and so from equation (10) the contribution to the channel momentum
flux is then

−∆
Z





d = −∆ 

1 + 2
 (14)

3. Resistance forces, including effects of finite slope

The forces of the boundary on the flow are incorporated using empirical results from turbulent shear
flows. The Darcy-Weisbach formulation here provides insights into the nature of the equations and
some convenient quantifications of the effects of resistance. The ASCE Task Force on Friction Factors
in Open Channels (1963) recommended its use, but that suggestion has been almost entirely ignored. In
the present force determination it is very useful, because it is directly related to stress and force on the
boundary.

Consider the expression for the magnitude of the shear force  on a pipe wall (e.g. §6.3 of White 2009)

 =


8
 2 (15)

where the Weisbach coefficient  is a dimensionless resistance factor (for which the symbol  is often
used, but here we follow the terminology of fundamental researchers in the field in the first half of
the twentieth century), and  is the mean velocity in the pipe. Such an expression follows from a
dimensional analysis of the problem, suggesting its fundamental nature. The denominator 8 follows
from the original introduction of  in the Darcy-Weisbach formula for head loss in a pipe, with a term
2 in the expression for head and a term 4 in the relationship between head loss and  . The coefficient
 is simply related to Chézy’s resistance coefficient  by  = 82.





 

̃bed










∆

̃bed



∆

∆



Figure 3. Cross-section of channel with an elemental slice inclined at an angle ̃bed corresponding to the mean
downstream bed slope at that section

To calculate the resistance force around the wetted perimeter of the channel, trying to make no approx-
imation as to slope, we consider an elemental volume across the channel shown in figure 3, inclined at
an angle to the horizontal of ̃bed, corresponding to the local mean downstream slope ̃ such that

tan ̃bed = ̃

Here we have not stated how we define ̃ in terms of bed geometry; the precise definition will be given
in equation (31) below.

To evaluate  we use equation (15) and consider  to be the mean velocity parallel to the local bed, the
velocity most analogous to that in a pipe. The mean streamwise velocity is written as  ≈  cos ̃bed
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in terms of the mean horizontal velocity  = . Equation (15) becomes

 =


8

()2

cos2 ̃bed
=



8

2

2

³
1 + tan2 ̃bed

´
=



8

2

2

³
1 + ̃2

´


To calculate the force per unit length we multiply this mean stress by the area ∆ over which it
acts, where  is the wetted perimeter in the plane of the inclined section, as shown in figure 3. As the
force so calculated is parallel to the local bed, we then multiply by cos ̃bed = ∆∆ to give the 

component:

Component of resistance in  direction = −∆
8

 ||
2

³
1 + ̃2

´
 (16)

where we have replaced 2 by− || such that the direction of the stress is always opposite to the flow
direction.

Now we have to obtain the perimeter  in the plane of the inclined section from conventional vertical
measurements of bed elevation. Consider an element of perimeter d consisting of a transverse com-
ponent d which is the same in the normal ( ) and vertical ( ) planes, but any element with a d
component has a different projection on the two planes. A simple example is a rectangular section of
width  and vertical depth : the projection of the bottom  onto a normal section is still  while
each side has a projection onto the normal of  cos , giving  = + 2 cos , while  = + 2.

More generally, we can write

d =

q
(d)2 + (d)2 =

q
(d)2 + cos2  (d)2 whereas

d =

q
(d)2 + (d)2

where  is the bed elevation. We see that  and  are not simply related by a constant factor of
cos , and although any of several approximations are possible, in general for simplicity we leave the
result, equation (16) written in terms of  itself, as we leave other section properties such as area 

unevaluated until required for a particular channel. If a value of  were required, to evaluate it we can
write the result in two forms, either integrating with respect to the transverse co-ordinate  across the
channel, or with respect to , from the lowest point of the section min to the surface :

 =

Z


q
1 + cos2  (dd)2 d or (17a)

=

Z
min

q
(dd)2 + cos2  d (17b)

In general, the first form, equation (17a) might be more useful, as usually bed elevation  is specified as
a function of transverse co-ordinate . For the special case of a trapezoidal channel of horizontal bottom
width  and batter slopes  : 1 (H:V) such that dd =  on the sides, it is convenient to break the
integral up into three parts, dealing with the horizontal bottom separately, simply giving  , and to use
equation (17b) for the sides to give

 = + 2

Z
0

p
2 + cos2  d = + 2

p
2 + cos2  (18)

Special cases are:

• A rectangular channel,  = 0,  = + 2 cos , as obtained simply above.

• For small slopes, when cos  ≈ 1,  = + 2
p
2 + 1 =  .
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3.3 Collecting all terms in the momentum equation

Now all contributions to the momentum equation (5) are collected, from equations (6), (7), (8) on the
left, and (14) and (16), contributions to , on the right. Dividing by ∆, and bringing all derivatives
of dependent quantities to the left and others to the right, gives the momentum equation:




+





µ

2



¶
+



1 + 2




= −

8

 ||
2

³
1 + ̃2

´
+   (19)

The equation in this form is simple and shows the significance of each term. Previous presentations
using the small slope approximation have scarcely gone beyond this stage (for example Cunge et al.
1980, pp16-17; Lai 1986, pages 182-3), and did not expand the inertia term 

¡
2

¢
. That is

easily performed, and we obtain




+ 2
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2

2



+



1 + 2




= −
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2

³
1 + ̃2

´
+   −

2


0() (20)

In the case of the usual small slope approximation we neglect terms in 2 and ̃2, and set  =  ,
giving




+ 2








− 

2

2



+ 




= −

8

 ||
2

+   −
2


0() (21)

where 0() = dd. The discharge has emerged as being fundamental in this integrated momentum
formulation, the only time derivative being . However the equation is not yet in useable form,
for the derivatives of cross-sectional area  and surface elevation  are not independent. In
fact, some of the more important practical steps lie before us, in the relating of these quantities, which
requires some effort.

3.4 Discussion of the resistance term

The significance of the resistance term, −8 ×  || 2 (written here in its small slope form) is
clear, written as a dimensionless coefficient multiplied by wetted perimeter times second power of the
mean velocity, giving the force per unit length divided by density.

The resistance coefficient  has been extensively investigated (ASCE Task Force on Friction Factors in
Open Channels 1963). Yen considered the results presented and obtained a convenient formula in terms
of the relative roughness and the Reynolds number of the flow (Yen 2002, equation 19):

 =

µ
−2 log10

µ


12
+
195

09

¶¶−2
 (22)

where  =  ( ) is the relative roughness,  is the equivalent sand-grain diameter and  =

 is the channel Reynolds number with  the kinematic viscosity. Yen stated that his formula was
applicable for   30 000 and   005.

This explicit formula for computing resistance seems to provide a solution to some of the problems
identified by the ASCE Task Force. It treats both smooth and rough boundaries, and for non-vegetated
streams at least seems to be superior to that of using values of Manning’s coefficient  often obtained
roughly by using tables or pictures from books. For streams where vegetation provides an important
contribution to resistance, it does not help, but recent research on the effects of vegetation in streams has
certainly used the framework of fluid drag, which can be fitted into the Darcy-Weisbach formulation. As
 is dimensionless, it is not necessary to modify any formulae if one uses non-S.I. units.

If one wanted to add an allowance for resistance such as that due to vegetation or bed-forms, one advan-
tage of the Weisbach formulation, being directly related to force, is that one can linearly superimpose
contributions so that in a more complicated situation, the resistance contributions can be simply com-
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bined, including the perimeter over which they act:

 =
X


 (23)

Another simple example where a formula such as this would be useful is a glass-walled laboratory flume
with a rough bed, which would cause difficulties for Gauckler-Manning, which is not based on rational
mechanics. An idea of the problems which its empiricism causes is given by the different formulae for
the compound Manning coefficient , all found in one recent report on resistance in streams:

 =
X


 or  =

³X

2

´12
or

1


=

µX


1

2

¶12
 (24)

The report presented different recommendations in the report as to when each method would be pre-
ferred. There was no weighting according to the fraction of perimeter for each contribution.

That notwithstanding, we mention other explicit forms of the resistance term including those of Chézy
and Gauckler-Manning. For the different formulations to agree for steady uniform flow (for the tradi-
tional small slope approximation):



8
=



2
=

2 13

13
=



2St

 13

13
 (25)

where  is the Chézy coefficient,  the Manning coefficient, and St the Strickler coefficient. For
Gauckler-Manning for small slopes, the resistance term in the momentum equation (21) becomes:

−2 ||
43

73
 (26)

The indices 43 and 73 seem just a little fussy. In some applications the conveyance of the stream
 = 1×53 23 has been used so that the resistance term becomes

− ||
2

 (27)

The term is to do with resistance to fluid motion, and has nothing to do gravity – the presence of  here
and in equation (26) is an artefact from the original Gauckler-Manning equation which does not include
gravity, even though it is the driving force. Manning’s  implicitly contains , as does Chézy’s .

Possibly because of the non-trivial nature of the Manning form, a more vague way of writing the re-
sistance term that has been used is −f , where f is called the "friction slope". That is apparently
a dangerous procedure, for in some works (e.g. Lyn & Altinakar 2002) f has been assumed to be a
constant even where  and  vary. More importantly, in terms of understanding, this has led to it being
mistaken for an energy slope, which it is not. It comes from the shear force on the perimeter. The
Weisbach form as it appears in the momentum equation (20) seems simple and clear.

4. Relationships between area and elevation derivatives

The momentum equation contains time and space derivatives of  and . To be able to express the
equations in terms of derivatives of one or the other, we have to relate them. Consider the integral for
area

 =

LZ
R

( − ) d (28)

where  = ( ) is the bed elevation, and the right and left waterlines are defined by the intersections
between the side surfaces  = LR( ) and the free surface  =  ( ) such that the limits are
 = LR(  ( )), using notation "L/R" in the subscript showing that either or both can be taken.
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The derivative of area with respect to time is obtained from Leibniz’ theorem for the derivative of an
integral, which gives




=

Z L

R




d + ( − L)

L


− ( − R)

R




where ( − L) is the water depth at the left bank and ( − R) that at the right. Both the last two terms
are zero in most situations where the bank is sloping. The only way that they contribute is if the sides of
the channel are vertical and are moving with time. This seems unlikely, and so they will be neglected. It
has already been assumed that the free surface is level across the channel, so that the integrand  is
independent of  and can be taken outside the integral, giving




= 




 (29)

where  = L − R is the surface width.

Now the  derivative of  is considered. Differentiating equation (28) with respect to  and using
Leibniz’ theorem again:




=

LZ
R




d

| {z }
I

−
LZ

R




d

| {z }
II

+ ( − L)
L



¯̄̄̄


− ( − R)
R



¯̄̄̄
| {z }

III

 (30)

where, as  and  are functions of  and , both  and  imply that  is considered con-
stant. The bed elevation  is a function of  and , so  implies  is constant, and it is just a
streamwise derivative, the local bed slope. A slightly different notation | has been necessary for
the -derivatives of R(  ( )) and L(  ( )), to show that  is held constant, as here using just
 would imply  constant. Now we evaluate each of the terms in the expression:

Term I: We have assumed that free surface elevation  is constant across the channel, so that the first
term becomes simply (L − R)  =  .

Term II: The second term is the integral across the channel of the downstream bed slope. We introduce
the symbol ̃ for the local mean downstream bed slope evaluated across the section:

̃ = − 1


LZ
R




d (31)

defined with a minus sign such that in the usual situation where the bed slopes downwards in the direction
of , so that  decreases, ̃ will be positive. If the bottom geometry is precisely known, this can be
precisely evaluated, however it is much more likely to be only approximately known and a typical bed
slope of the stream used. With this definition, the term in equation (30) can be just written +̃.

Term III: this term is zero almost everywhere. It is the contribution from the integrand at each limit
multiplied by the derivative of the limit. The contributions in equation (30) are:

¡
 − LR

¢ LR


¯̄̄̄


= ( − )LR

Ã
LR


+

LR



¯̄̄̄
=()





!
 (32)

The factor
¡
 − LR

¢
is the water depth at the banks. We now consider different geometric cases:

1. The usual case for natural streams and most canals, with sloping ( i.e. not vertical) banks:

 − LR = 0

and so in this common case the contribution of the whole term is zero.

12



The long wave equations for arbitrary slopes John D. Fenton

2. If a side is vertical, then LR
¯̄
=()

= 0 so the second term in the brackets in equation (32)

is zero and we are left with the contribution
¡
 − LR

¢
LR. We have to consider two cases

for this.
a. The usual case for a vertical sided channel such as a flume or race or lock: the walls are parallel to

the -axis, so that they neither converge nor diverge, then LR = 0 and so the contribution
of the whole term is zero again.

b. The rare case where the channel walls are both vertical and converging or diverging, such that
LR is not zero, in something like a Parshall flume (although one would be careful about
applying long wave theory in such a case).

As that last case, with a diverging vertical wall such that LR is independent of , is the only possibility
for a non-zero contribution, we can replace the partial derivatives by ordinary derivatives, and we write
the net contribution of the last two terms in equation (30) as V :

V = ( − L)
dL

d
− ( − R)

dR

d
 (33)

the symbol V used to refer to Vertical side walls. For such vertical walls it is highly probable that we are
dealing with a man-made structure, so that the bed is transversely horizontal too, such that in that case
L = R = , and using the depth  =  −  we obtain

V = 

µ
dL

d
− dR
d

¶
= 

d

d


Almost everywhere, of course, V = 0.

Collecting contributions from Terms I, II, and III: the relationship between area and elevation deriv-
atives, equation (30), is written




= 




+̃ +V  (34)

The quantity ̃ contains contributions from what has been called the "non-prismatic" term, which
in other presentations has usually been written in vague terms like |=const and has not been
explicitly evaluated. The slope ̃, based on the formal definition, equation (31), allows for the fact
that the effective mean slope in a non-prismatic stream is different from that of a prismatic one even if
the talweg has the same slope. In any case, the bed geometry is rarely able to be evaluated with any
accuracy, and instead in practice, a typical local stream slope might often be used and non-prismatic
effects ignored.

5. Three forms of the long wave equations

Presentations elsewhere have given equations in terms of the mean horizontal velocity  in the flow.
We do not, believing it to be insufficiently important, as there are very few problems where  might be
specified as a boundary condition. In practical problems usually volume flow rate  is more important.
If velocities were required as results, they could be trivially obtained from .

Here we present three versions of the momentum equation, all in terms of , with alternatives for the
remaining dependent variable.

5.1 Equations in terms of ()

We have observed that the mass conservation equation, equation (4), is exact for a straight channel,
suggesting that  is a fundamental quantity. This form may not be so important practically, but for some
theoretical studies it is useful to use the two integrated quantities  and  as dependent variables. As
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well, there is an interesting aspect to the formulation, such that one can model a channel approximately
with relatively little detailed or assumed knowledge of the underwater topography, explained here after
the presentation of the equations.

Collecting equations (4) and (20), and using equation (34) to eliminate  from the latter, gives the
long wave equations in terms of  and :




+




=  (35a)




+ 2








+

µ


1 + 2
− 

2

2

¶




=


1 + 2

µ
̃+

V


¶
− 

8

 ||
2

³
1 + ̃2

´
+   −

2


0() (35b)

where derivatives of dependent variables have been taken to the left and all others to the right, and in
which  = 1×− ̃−V , and of course, almost everywhere the right side is significantly
simpler, where V , , and 0() are zero. In many situations the dominant terms in the equation are
the remaining terms on the right, in terms of bed slope ̃ and resistance coefficient . Often neither
the details of the underwater topography leading to ̃, nor the value of the resistance coefficient  are
accurately known. This may make one wonder about the necessity of including a value of  not equal to
1, or a value of 0() at all.

Now we make the usual approximation in equation (35b), ignoring terms in ̃2 and 2 and taking  =

 , giving the small slope approximation to the momentum equation:




+ 2








+

µ



− 

2

2

¶



= 

µ
̃+

V


¶
− 

8

 ||
2

+   −
2


0() (36)

In practice, in a channel where the geometry is well-known, at each computational value of   =
0 1   , one might know the slope ̃ and the functional relationships (), () and (), probably
in discrete form, from which one could obtain the corresponding () and () also in discrete form.
However, it is much more likely that the underwater geometry is poorly known, and so the trouble of go-
ing to assumed forms of dependence on  is questionable. The formulation of equations (35a) and (35b)
in terms of  allows an approximate procedure that is commensurate with the accuracy of knowledge
of the whole problem. One could assume approximate values of ̃, and approximate, possibly constant,
values of  and  at each computational point , which for most streams are not going to vary much
with flow anyway. Then to calculate the initial values of  at computational points along the stream one
could assume notional approximate values of  at the points, with the given initial constant flow  and
perform a simulation with the equations until the incorrect values flow out of the computational domain
and values of  became steady. These could then be used as initial values for real simulations with
varying input discharge with time at the upstream boundary. Hence, using  one can perform model
simulations with relatively little information required or artificially included.

5.2 Equations in terms of ()

Surface elevation is an important quantity in practice, so we will present a formulation in terms of it.
We use equation (29) to eliminate  from equation (4) and use equation (34) again, this time to
eliminate  from the momentum equation (20):




+
1






=




 (37a)




+ 2








+

µ


1 + 2
− 

2

2

¶




= 
2

2

³
̃ +V

´
− 

8

³
1 + ̃2

´  ||
2

+   −
2


0() (37b)
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Again, ignoring terms in ̃2 and 2, taking  =  we obtain the small slope approximation to the
momentum equation:




+2








+

µ
− 

2

2

¶



= 

2

2

³
̃ +V

´
− 

8

 ||
2

+   −
2


0() (38)

5.3 Equations in terms of a depth-like variable 

Many works present the equations in terms of a quantity  referred to as "depth", which is an ambiguous
and uncertain quantity, especially for natural streams. Here we define it to be the surface elevation
relative to a reference axis possibly associated with the bottom of the stream, which could be chosen to
be the bed of a canal or the thalweg in a river if that were sufficiently well known. It does not have to be
a straight line in the vertical plane.

It should be pointed out, however, that using area  might be a better alternative to using , as it contains
some of the advantages of , such as being constant for uniform flow, and varying relatively little in most
streams for non-uniform flow, but it does not require the definition of an axis.

We let the elevation of the reference axis be 0() and then in general  ( ) =  ( ) + 0() and
the derivatives are  =  and  =  − 0 (), where 0 is the slope of the axis
(positive in the usual downward-sloping channel sense) 0 = −0. Substituting these into the
mass conservation equation (37a) and the momentum conservation equation (37b) gives




+
1






=




 (39a)




+ 2








+

µ


1 + ( − 0)
2
− 

2

2

¶




=
0

1 + ( − 0)
2
+ 

2

2

³

³
̃ − 0

´
+V

´
− 

8

³
1 + ̃2

´  ||
2

 (39b)

where for brevity we have not shown the inflow term or the  term. They are the same as in all
the above equations. Now ignoring squares of slope terms, and taking  =  gives the small slope
approximation to the momentum equation:




+ 2








+

µ
− 

2

2

¶



= 0 + 

2

2

³

³
̃ − 0

´
+V

´
− 

8

 ||
2

 (40)

6. Generalised steady gradually-varied flow equations

Any of the above formulations can be trivially modified for the case of steady flow to give a pair of
ordinary differential equations. In this case any of the forms of the mass conservation equation has
the solution  =  (0) +

R 
0
 (0) d0. If there is no distributed inflow , then the solution is  =

 (0) = constant. Equation (35b) in terms of area  becomes very long, so we will not present its
steady version. The small slope approximation is

d

d
=

̃ −  28

1− F2
 (41)

where F2 = 23 is the square of the Froude number.

In the momentum equation (37b) in terms of , where we can now use  || = 2 as the flow is
unidirectional, we set  = 0 to giveµ

1

1+ (dd) 2
1

F2
− 

¶
d

d
= 

µ
̃+

V


¶
− 

8





³
1 + ̃2

´
 (42)
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The equation now has the unpleasant property that when multiplied out, it is a cubic equation for dd
that cannot be solved by elementary means. As an approximation we replace the square of the surface
slope by that of the bed slope in the troublesome term on the left, probably not a bad approximation
where slopes are large and flow supercritical, such as on spillways, we obtain

d

d
=


³
̃ +V 

´
− 

8





³
1 + ̃2

´
1

1 + ̃
2

1

F2
− 

 (43)

Many streams are wide, such that  ≈ , and almost the only dependence on the dependent variable 
in the right side of the equation is in the Froude number term 1F2 in the denominator. The small slope
approximation is

d

d
=


³
̃ +V 

´
− 

8





1F2 − 
 (44)

In terms of the depth-like quantity  =  − 0, the equation obtained from equation (39b) becomes
rather complicated, and is still a cubic. Instead, we go straight to the small slope approximation

d

d
=

0 + 
³
̃ +V  − 0

´
F2 − 

8




F2

1− F2
 (45)

Other presentations usually give an equation like (45) for prismatic channels, where ̃ = 0, and where
the symbol f is used for the resistance term. We prefer to keep it explicit – and it is simple anyway. It
is interesting that for wide channels,  ≈ , all variation with the dependent variable on the right of the
differential equations is in F2 = 23.

The expressions here are all valid for non-prismatic channels, using the generalised definition of slope
̃, equation (31).

7. Generalised uniform flow equations for a finite slope

7.1 Generalised Chézy-Weisbach and Gauckler-Manning formulae

Further simplification of equation (45) for uniform flow on a constant slope , such that dd = 0 and
̃ = 0 =  yields the generalised Weisbach and Chézy formulae for steady flow on a finite slope, now
with the factor 1

¡
1 + 2

¢
and with wetted perimeter  measured around a planar section normal to

the mean local bed slope:

 =
1

1 + 2

s
8



3


 (46a)

=


1 + 2

s
3


 (46b)

where  is the cross-sectional area as measured conventionally over a vertical section (figure 3). Using
equation (25) gives the generalised Gauckler-Manning formula

 =
1



1

1 + 2
53


23


√
 (47)

in SI units. The steep slope corrections will usually only be important on spillways and chutes, but there
is a certain cultural value in knowing that the general expressions exist.
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7.2 Formulae for trapezoidal sections

As spillways and chutes are likely to be of a simple cross-section, here we present the modified Weisbach
and Gauckler-Manning formulae for a trapezoidal section of bottom width  , batter slopes  : 1 (H:V),
and depth , substituting  =  ( + ), and  from equation (18)  =  + 2

p
2 + cos2 ,

where  is the constant slope angle such that  = tan , and using cos2  = 1
¡
1 + 2

¢
. From equation

(46a) we obtain the finite-slope Weisbach formula for a trapezoidal section, giving ():

 =

r
8



√


1 + 2
( ( + ))32³

 + 2
p
2 + 1 (1 + 2)

´12  (48)

Similarly, the Gauckler-Manning formula (47) gives

 =
1



√


1 + 2
( ( + ))53³

 + 2
p
2 + 1 (1 + 2)

´23  (49)

As  is always specified in units of m−13 s, if British units are used elsewhere in equation (47), the well-
known factor of 03048−13 = 1486must be inserted into the numerator. A similar correction would be
necessary for Chézy’s  in equation (46b). No such modification is necessary for the Weisbach form,
equation (46a), as  is dimensionless and the equation is dimensionally consistent, whichever units are
used. Another more theoretical than a practical advantage of the Weisbach formula is that gravitational
acceleration  appears explicitly, and in the unlikely case that it were necessary, one could use the value
appropriate to latitude, varying between 978 ms−2 at the equator and 983 ms−2 at the poles. One
has to say, more in keeping with the accuracy with which we know the resistance, using a value of
 = 10 ms−2 would not be inappropriate! In both the Chézy and Gauckler-Manning formulae,  is
implicitly contained in the resistance coefficients  and .

7.3 Numerical solution for uniform depth

For years the author has taught a numerical method to students which gives a simple way of solving for
uniform depth, which until now has only been used for the small slope approximation. It is to observe
that channel width and wetted perimeter are relatively slowly varying functions of depth , and so if we
divide both sides of equation (46a) by 32 and re-write, showing quantities which are functions of :

 =

Ã

¡
1 + 2

¢s 

8

!23

13
 ()

()
 (50)

which is in the form of  as a function of  – but which is a slowly varying function, such that if we put
in an approximate value of  on the right, evaluate it to give an updated value of  on the left which we
again substitute on the right and repeat, the process should quickly converge. Similarly, if we use the
Gauckler-Manning form we obtain the computational scheme

 =

Ã


¡
1 + 2

¢
√


!35

25
 ()

()
 (51)

An initial rough estimate can be made by assuming that the only contribution to area and perimeter is
that above the flat bottom and neglecting finite slope effects

 ≈ 1


53 so that  ≈

µ




¶35
 (52)

As an example we take a value of  = 0012 (concrete),  = 10m,  = 05,  = 05,  = 05m,
not untypical for a chute, equation (49) giving  = 1450 m3s−1. Now to work in reverse to solve for
normal depth, we take that value of discharge and use equation (52),  ≈ 0350m. The first evaluation
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of equation (51) gives  = 0498m, the second gives the correct value of  = 0500m. The method
works for many section shapes, including circular sewers. Here it worked particularly quickly because
the walls are steep and  is small so that width is almost constant.

A very different example is that of a canal with gently-sloping banks and longitudinal slope,  = 2,
 = 00005,  = 0025,  = 10m,  = 2m, for which we obtain  = 32495 m3s−1. Using this in
the initial estimate, equation (52),  = 0222m (not very good, ignoring the resistive effects of the wide
banks – we might have estimated it better ourselves), and then iterating with equation (51) we obtain the
sequence of approximations 2157, 1984, 2002, 2000m.

8. Conclusions

The long wave equations for a straight slowly-varying channel have been derived using the integral
mass and momentum conservation equations. For flow on finite slopes it has been necessary to correct
the traditional assumption of hydrostatic pressure. Pairs of equations have been presented for three
combinations of variables: cross-sectional area and discharge (); surface elevation and discharge
(); and finally using a depth-like quantity , which is surface elevation relative to an arbitrary axis
possibly associated with the bed, also plus discharge, (). Gradually varied flow equations for steady
flow with constant discharge have been presented, which are ordinary differential equations in terms of
each of , , and . Finally generalised Chézy-Weisbach and Gauckler-Manning equations for steep
slopes have been presented. Of course, there are few open channel problems for which effects of steep
slope are important. Those exceptions, for which flow will almost always be super-critical, include flows
on spillways and chutes, for which it may be necessary to go to the higher approximation of Boussinesq
equations anyway. Nevertheless, the knowledge of the generalised equations and their derivation may
be of some interest and possible use.

References

ASCE Task Force on Friction Factors in Open Channels (1963), Friction factors in open channels, J.
Hydraulics Div. ASCE 89(HY2), 97–143.

Boussinesq, J. V. (1877), Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants
à l’Académie des Sciences, Paris 23, 1–680. URL: http://gallica.bnf.fr/ark:/12148/bpt6k56673076

Chow, V. T. (1959), Open-Channel Hydraulics, McGraw-Hill, New York.

Cunge, J. A., Holly, F. M. & Verwey, A. (1980), Practical Aspects of Computational River Hydraulics,
Pitman, London.

Darvishi, E., Fenton, J. D. & Kouchakzadeh, S. (2014), Boussinesq-type momentum equations valid for
steep slopes. Submitted for publication.

Dooge, J. C. I. (1987), Historical development of concepts in open channel flow, in G. Garbrecht, ed.,
Hydraulics and Hydraulic Research: A Historical Review, Balkema, Rotterdam, pp. 205–230.

Dressler, R. F. (1978), New nonlinear shallow flow equations with curvature, J. Hydraulic Research
16, 205–222.

Fenton, J. D. (2005), On the energy and momentum principles in hydraulics, in Proc. 31st Congress
IAHR, Seoul, pp. 625–636.

Fenton, J. D. (2010), The long wave equations, Technical report, Alternative Hydraulics Paper 1. URL:
http://johndfenton.com/Papers/01-The-long-wave-equations.pdf

Henderson, F. M. (1966), Open Channel Flow, Macmillan, New York.

Jaeger, C. (1956), Engineering Fluid Mechanics, Blackie, London.

Keulegan, G. H. (1942), Equation of motion for the steady mean flow of water in open channels, J. Res.
Nat. Bureau Standards 29, 97–111.

18



The long wave equations for arbitrary slopes John D. Fenton

Keulegan, G. H. & Patterson, G. W. (1943), Effect of turbulence and channel slope on translation waves,
J. Res. Nat. Bureau Standards 30, 461–512.

Lai, C. (1986), Numerical modeling of unsteady open-channel flow, in B. Yen, ed., Advances in Hydro-
science, Vol. 14, Academic.

Lyn, D. A. & Altinakar, M. (2002), St. Venant–Exner equations for near-critical and transcritical flows,
J. Hydraulic Engineering 128(6), 579–587.

Milne-Thomson, L. M. (1968), Theoretical Hydrodynamics, fifth edn, Macmillan, London.

Strelkoff, T. (1969), One-dimensional equations of open-channel flow, J. Hyd. Div. ASCE 95(HY3), 861–
876.

White, F. M. (2009), Fluid Mechanics, seventh edn, McGraw-Hill, New York.

Yen, B. C. (1973), Open-channel flow equations revisited, J. Engng Mech. Div. ASCE 99(EM5), 979–
1009.

Yen, B. C. (2002), Open channel flow resistance, J. Hydraulic Engineering 128(1), 20–39.

19


