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ABSTRACT: The simulation of rivers by one-dimensional models is examined. The German Federal Water-
ways Engineering and Research Institute’s model CasCade was applied to a comprehensive case study for a
long non-uniform section of the Rhine river with extensive floodplains. Results obtained show that the one-
dimensional long-wave equations are more accurate than often believed. Large real-time data sets allow model
calibration and optimisation beyond the matching of field data, and reproducing unsteady wave characteristics
over the whole flow regime. It is then shown theoretically that, possibly surprisingly, river junctions require
no special treatment in one-dimensional modelling. However some improvements are suggested – for curved
rivers, over flood-plains, and in the treatment of friction. It is concluded that one-dimensional models, including
the results of this paper, preserve a balance between requirements of accuracy and simplicity, and have much to
offer in the understanding of river systems.

1 INTRODUCTION
1.1 Rhine River engineering – the CasCade model

Figure 1. Rhine River at Ketsch near Heidelberg,
showing large flood plains, branches and lakes, be-
ing flow effective during high flows, but ineffec-
tive during low flows (Source: Landesmedienzen-
trum Baden-Württemberg)

The Rhine river (1320km, 2000m3s−1 average dis-
charge) is one of the longest and most important rivers
in Europe (www.iksr.de). Its watershed is highly pop-
ulated (about 50 million people) and connects the
world’s largest sea harbour (Rotterdam) with the in-
land European markets and its large and important
industrial complexes. Ships up to 3000 t can navi-
gate one of the most frequented waterways of the
world from Rotterdam to Basel (800km). The Rhine
is also an important ecological habitat, source of ma-
jor drinking water supplies and is of recreational
and cultural importance. River engineering therefore
has to guarantee optimised navigation conditions and
flood protection combined and balanced with natural
preservation (Figure 1). The German Federal Wa-
terways Engineering and Research Institute (BAW,
www.baw.de) is the central technical and scientific
governmental agency of the German Federal Min-
istry of Transport, Building and Urban Development
and the Federal Waterways and Shipping Administra-
tion. Its responsibilities are the operation and main-
tenance of federal waterways such as defining di-
mensions of fairways, regulating waterways struc-
tures or measures for stabilising the river bed. The
assessment concerning the short-term and long-term
hydraulic-morphological effects as well as the water
management and environmental aspects is realised us-
ing physical as well as one-dimensional and multi-
dimensional hydro-numerical models complementing
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one another.
A computer model for a 500km long section of

the river Rhine has been developed and operated
by the BAW using the in-house software CasCade,
a one-dimensional, hydro-numeric modelling system
for unsteady, unconfined flow conditions in branched
or meshed networks of rivers, canals and flood fields.
CasCade covers a major part of the river Rhine and
therefore allows a unique system-wide river analysis.
Its applications regard the following objectives:

• Real time flow dynamics - online computation of
water level elevation and depth: CasCade mod-
els can easily be connected to the Rhine wa-
ter gauge online-database, which is continuously
updated with real-time data. Unsteady model
runs include the previous flow history and use the
actual water level time-series as boundary condi-
tions at open boundaries. Additional water gauge
data furthermore allows for a real-time model ac-
curacy check. Waterway authorities already op-
erate these models to improve fairway defini-
tions, thus improving navigation conditions.

• Navigation dynamics - computation of ship
travel times: CasCade post-processors allow for
detailed data analysis. For example mean flow
velocities can be computed for the navigation
channel and used for further analysis of the
navigation dynamics, thus transformed into ship
travel times. Knowledge of unsteady hydrody-
namic features therefore allows for improved lo-
gistical handling and better traffic control.

• River bed dynamics - computation of mean shear
stress in main channel: CasCade post-processors
may also compute section-wise shear stress. A
system-wide analysis covering the whole flow
regime allows for defining critical sections re-
garding erosion or sedimentation, especially af-
ter large floods, thus providing important data re-
ducing the amount of costly field measurements
and improving maintenance programs.

• River engineering dynamics - simulation of im-
pacts of regulating waterways structures: The
continuously updated and operated model allows
for more accurate impact prediction beyond the
calibrated flow regimes (Figure 2). The model
is setup with all geometrical features regard-
ing the whole flow regime. Although changes
of regulating waterways structures are included
only in an aggregated sense and not as higher-
dimensional features, reasonable predictions are
possible due to the additional unsteady calibra-
tion of the model.

• Modelling dynamics - nesting/coupling optimi-
sation: A good knowledge of the system wide
river flow behaviour, covering local characteris-
tics over large discharge regimes allows optimis-
ing the complementary or coupled usage of ad-
ditional models (i.e. more dimensional models).
More detailed but costly 3-D hydrodynamic or
morphology models are therefore applied espe-
cially to these sections and flow-regimes, where
the 1-D model is passing its limits of applicabil-
ity, exceeding desired accuracies.

Figure 2. Short section of Rhine River showing wa-
terway structures (groynes) and natural characteris-
tics (islands), resulting in a strong change of the al-
ready complex flow characteristics during increas-
ing flows

1.2 Case-study – section from Speyer to Worms
A brief illustration of CasCade capabilities and lim-
itations is shown for the application on the Rhine
section from Speyer to Worms (Rhine-km 400.6 -
443.4). Along this streamwise 42.8 km there is an
approximate bed height difference of 6 m resulting
in an average bed slope of 0.015%. The width of
the main channel ranges from 200 to 350 m and
the depth from 2 m (during low flow conditions at
400− 900m3s−1) to 5 m (during medium flow condi-
tions at 900− 1600m3s−1). This river section is char-
acterised by its strong heterogeneity with partly very
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large flood plains (a few kilometres wide), including
side branches, lakes and other retention areas (Figure
1). Another part is almost canal-like, where the river
passes the cities of Mannheim and Ludwigshafen in-
cluding the junction with a major tributary river, the
Neckar (Figure 3).

Figure 3. Rhine-Neckar junction and model schema-
tisation as branched network

The BAW maintains an extensive database, where
topography and bathymetry data are available from
recent laser and sonar scans respectively, with high
spatial resolution. Cross-sections are extracted at each
100m distance in the streamwise direction and used
for the 1-D model setup. River sections separated by
islands or old river arms are modelled as separate
branches, leading to a looped network model (Fig-
ure 3). Aerial photographs, geographical and geolog-
ical maps, as well as navigational charts, allow lo-
cating and including important hydraulic structures
and features in the model. The model Pre-Processor
allows for subdividing cross-sections according to
main roughness characteristics: the main channel, the
floodplains, groyne fields or flow ineffective areas
(encroachment approach). Model calibration is usu-
ally done using longitudinal water level measure-
ments from recent field campaigns where ships trav-
elled with the flow velocity and recorded position and
elevation with high accuracy for low and medium
flow conditions. Further unsteady calibration is done
using the continuous water gauge recordings, with
stored data of the last 10 years. Results show, that
standard deviation of measured and calculated water
level elevations in the main channel are around 2−
4 cm for low flow conditions, 4− 10 cm for medium
flow conditions compared with the field campaign
data and even less difference for the unsteady data

compared with the water gauge time-series, also for
high flow events. Nevertheless higher discrepancies
can be observed at sections with strong curvature, at
junctions and large floodplains not necessarily only
due to limitations of 1-D modelling, but also to re-
strictions in the actual governing equations as seen by
running sensitivity analyses.

Improvements to the 1-D numerical models are
proposed, focusing on calibrating the model to ad-
equately represent the observed flow characteristics
and not only matching field data. Besides the attempt
to improve the 1-D model itself the presented modifi-
cations should also clearly be seen as extensions be-
yond the 1-D approach as an interface to either more
dimensional models or coupling to other models (hy-
drology, water quality, sediment transport, etc.).

1.3 Research needs and achievements
The simulation of flows and waves in rivers for a
long time has been undergoing a development in
terms of the sophistication of models which are ac-
tually applied, which has been related to computa-
tional facilities available. Once only steady gradually-
varied problems were studied. Then unsteady one-
dimensional problems were able to be simulated, fol-
lowed by two-dimensional problems. Methods such
as the development of the k− ε model and then Large
Eddy Simulation have meant that three-dimensional
turbulent problems can now be simulated over limited
domains. In general however, for practical problems
the data requirements are inordinate, and the actual
boundary conditions, the manner in which the fluid
encounters resistance, are little better modelled than
in the one-dimensional case.

Often field data is limited, and it is superfluous to
try to model in a more sophisticated manner than the
data warrants. This leads to the desirability of using
a relatively simple model, but by performing inverse
modelling (calibration) to extract the gross features
of physical parameters. The use of one-dimensional
modelling enables rather more physical understand-
ing. With more sophisticated models the plethora of
results often mean that physical intuition and under-
standing, perhaps the main benefit of computation,
are not forthcoming. Also, in many rivers such as the
Rhine, the physical extent is such that only a one-
dimensional model is feasible.

In the case of the one-dimensional formulation,
however, there remain areas where theoretical devel-
opments have not developed as they might. This pa-
per examines several aspects of the one-dimensional
modelling used by CasCade and by other one-
dimensional computational models and tries to show
that there is still much that one-dimensional mod-
elling has to offer, especially if some of the suggested
improvements are made:
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• The one-dimensional long wave equations are
examined, and it is shown that they have fewer
essential approximations than has generally been
believed.

• Generalised long wave equations are presented
for curved rivers. The effects of curvature are ex-
amined.

• The problem of a junction of two rivers is con-
sidered, and it is shown that no special treatment
is necessary; the only modification of the model
necessary is that dynamic momentum flux of in-
coming streams should be included, and that this
will be small in many cases.

• Friction in rivers is considered and it is ob-
served that one-dimensional modelling is com-
mensurate with the information usually to hand.
However there has long been room for improve-
ment in the modelling of friction. It is shown
that the Weisbach friction formulation has ad-
vantages over the traditional Gauckler-Manning-
Strickler version, and it is shown how compound
friction can easily and rationally be included in
1-D models.

2 THE LONG WAVE EQUATIONS
2.1 Equations for straight channels
The one-dimensional equations usually used to model
flows and waves in rivers are the long wave or Saint-
Venant equations. They are a pair of partial differen-
tial equations for mass and momentum conservation,
shown here in terms of the surface elevation η and the
discharge Q, depending on distance along the chan-
nel x and time t, where the stream is assumed to be
straight. The equations are

∂η

∂t
+
1

B

∂Q

∂x
=

q

B
(1a)

∂Q

∂t
+ 2β

Q

A

∂Q

∂x
+

µ
gA − β

Q2B

A2

¶
∂η

∂x
=

β
Q2B

A2
S̄ − gA

Q |Q|
K2

+ βq q uq −
Q2

A

∂β

∂x
, (1b)

where
q is inflow volume per unit length,
B is width of surface,
A is cross-sectional area,
β is the Boussinesq momentum coefficient,
S̄ is mean bed slope at a section,
K is conveyance, giving the effect of friction,
βq is the Boussinesq coefficient of inflow, and
uq is the inflow x-component of velocity.

Fenton (2006) suggested that the derivation of the
equations can be made with few essential assump-
tions. The only non-trivial ones are not particularly
limiting. They are:

• Variation in the streamwise direction is slow,
such that pressure at a point is given by the
equivalent hydrostatic pressure due to the water
above that point, which is almost everywhere the
case, except in the vicinity of local structures;

• The friction forces are given by an empirical
formulae such as the Weisbach or Gauckler-
Manning-Strickler formulae for the section as
a whole, which in the absence of very detailed
knowledge of the roughness, nature, and drag
force of the bed, is a reasonable one; and

• The integral of the square of the horizontal ve-
locity over a section is approximated by βQ2/A,
where β is a coefficient of magnitude about 1.1;
this is a rough approximation, but the factor β
only occurs in terms which are of a relative mag-
nitude of the square of the Froude number F2 =
Q2B/gA3, which is small for many streams.

Generally the one-dimensional long wave equa-
tions are a good compromise between requirements of
accuracy, and the scarcity of data, especially the na-
ture of shear forces. Equation (1b) contains features
worthy of note:

• The quantity S̄ actually contains all the details of
the underwater topography, and with it the equa-
tions are valid for non-prismatic sections (Fenton
(2006). It is

S̄ = − 1
B

Z
B

∂Z

∂x
dy

+term from vertical diverging walls, (2)

where Z is the bed elevation, such that S̄ is ob-
viously the mean bed slope at a section. Some
formulations include a term like ∂A/∂h, usually
known as the non-prismatic contribution, but it
seems simpler to represent it in terms of the mean
slope. The form of equation (2) shows that to
evaluate it accurately, one needs to have a de-
tailed knowledge of the underwater topography.
In the case of the Rhine River, such a detailed
knowledge is available. But often this is not the
case, however, and the term is written only as a
representative slope of the river as a whole. As
this term is largely counterbalanced by the fric-
tion term, which is also usually poorly known,
this is quite justifiable.
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• The friction term gAQ |Q|/K2 is shown in terms
of the conveyance K, which is obtained from
friction laws:

K =
1

n

A5/3

P 2/3
= kSt

A5/3

P 2/3

=

r
8g

λ

A3/2

P 1/2
= C

A3/2

P 1/2
(3)

in which P is the wetted perimeter, and n, kSt, λ,
and C are respectively the roughness coefficients
of Manning, Strickler, Weisbach, and Chézy. The
friction term is based on boundary stress, which
is clear from the derivation of the Chézy and
Weisbach forms – what is most notable about
this formulation is that it is not based on energy,
and the dimensionless term Q |Q|/K2 is not an
”energy slope”, as described by many sources.

• The term βq q uq is the contribution to momen-
tum flux from lateral inflow. In many cases it is
poorly known, when it is not zero, but in the case
of a tributary, the βq is technically necessary to
express correctly the momentum transport. Some
texts write the whole term as q (uq −Q/A),
which is not correct (and is based on a double
counting of the momentum of the inflow as it en-
ters and leaves the control volume).

2.2 Channels curved in plan
Fenton and Nalder (1995) derived the one-
dimensional equations for the case where the
river is curved. A long-stream co-ordinate s was
used, generally expected to pass down the perceived
centre of the stream. The equations were obtained in
terms of the discharge Q, as for the straight-channel
case, but in terms of the cross-sectional area A
rather than the surface elevation η, which in this
case can vary across the channel due to centripetal
acceleration. The difference between the equations
obtained and the straight channel equations are linear
terms in two quantities, κnm = nm/r and κn̄ = n̄/r,
where κ = 1/r is curvature of the longitudinal s
axis along the river and r is the radius of curva-
ture, nm is the transverse distance between the s
co-ordinate axis chosen and the centre of the free
surface, and n̄ is the distance between the s axis
and the centroid of the cross-section. In addition to
the approximations for the straight-channel case,
also terms proportional to (nm/r)

2 and (n̄/r)2 are
ignored. That is, the extra approximation is that the
radius of curvature be rather larger than the channel
width. This level of approximation is similar to
the usual one for the conventional formulation of
the Saint-Venant equations for channels presumed

to be straight, where the approximation is that
(depth / disturbance length)2¿ 1. The equations are

(1− κnm)
∂A

∂t
+
∂Q

∂s
= q, (4a)

(1− κn̄)
∂Q

∂t
+ β

Q

A
(2 + 3(κnm− κn̄))

∂Q

∂s
+

µ
gA

B
− β

Q2

A2
(1 + 2(κnm− κn̄))

¶
∂A

∂s

= gAS̄ − gA
Q |Q|
K2

(1− κn̄) + βq q uq (4b)

where terms involving dκ/ds have been ignored, and
the inflow term has been simplified. The latter equa-
tion is slightly different from that in Fenton and
Nalder (1995). It includes the momentum coefficient
β and the friction term has been written more cor-
rectly in terms of conveyance rather than ”energy
slope”. The coefficient β may be important partic-
ularly in a curve where the longitudinal velocity is
greater on the inside of a curve than on the outside
so that β is rather larger than 1. In the original pa-
per no attempt was made to solve the field equations
to obtain the longitudinal or lateral velocity distribu-
tions – the momentum formulation does not require
that knowledge in detail.

Equations (4) are of a very similar nature to those
for straight channels, equations (1). The only differ-
ences are the presence of the dimensionless coeffi-
cients κnm and κn̄ in terms of curvature and cross-
channel dimensions. The behaviour of waves and
flows, the development of numerical methods, the be-
haviour and properties of those methods, and the re-
writing of software, all should be able to be relatively
simply done.

3 RIVER JUNCTIONS
3.1 The canonical problem – rectangular channels
Almost all research on river junctions has been for the
case of steady flow in two rectangular channels with
co-planar bottoms, where one enters the other, whose
width remains unchanged thereafter. The belief that
the problem is difficult, even for this relatively sim-
ple geometry, has stultified extension to more com-
plicated geometries and to the general unsteady case.
Here we examine a momentum approach to the prob-
lem, to guide our extension to more general problems.
The energy principle does not contribute much – all
that it yields is the energy loss, which is not as im-
portant as the relation between upstream and down-
stream depths that is obtained from momentum con-
siderations.

Consider a rectangular stream entering another at
an angle δ as shown in Figure 4. The main stream has
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Figure 4. Definition diagram for momentum analysis
of a junction of two uniform rectangular streams

the same width upstream and downstream of the junc-
tion. The plan of a vertical-sided control volume is
shown by a heavy dashed line and the flow force con-
tributions are shown by double-headed arrows. The
downstream face of the control surface has not been
taken across the region of separation, but it is sup-
posed sufficiently far downstream that the velocity de-
fect due to the separation has been substantially dissi-
pated.

The flow force M, consisting of a static component,
the hydrostatic force and a dynamic component, the
momentum flux, across a planar part of a control sur-
face, where the velocity crosses the section perpendic-
ularly is M = ρ (gAhc + βQ2/A) n̂, where symbols
are the same as above, with the addition of hc, the
depth of the centroid of the section below the surface,
such that Ahc is the first moment of area of the sec-
tion about a transverse axis at the water level, and n̂ is
a unit vector, normal to the section, directed outwards
from the control volume.

The vertical boundaries across which momentum
flows, with the corresponding reference letters on
Figure 4, are a transverse Upstream face across the
stream, a similar Downstream face, a Lateral stream
entering at an angle of δ to the main stream, the side of
the main stream Opposite to the inflowing stream, and
the side Adjacent to it. The analysis we are about to
perform assumes that the square of the Froude num-
ber of the incoming flow at L is not large so that the
disturbances to the free surface are also not large.

It is the dynamic contribution from L that is the
most important factor in the analysis. If we consider
a momentum balance transverse to the main stream,
then by a simple theorem from hydrostatics, the com-
ponent of a static force on any surface is equal to the
component of the static force on a projection of that
surface perpendicular to the component direction (e.g.
§2.6 of White (2003). This means that the static com-
ponent from L in the transverse direction is approx-
imately equal to that on the rectangular section from
the junction point j to w3, and the component from the
wall W is approximately equal to that on the projec-

tion w2w3. Hence the static component of the whole
lateral entry region is approximately that of a hypo-
thetical wall from j to w2, just as if the tributary were
not there. This leaves the only transverse contribution
that of the dynamic contribution from the tributary,
which can only be balanced by the force contribution
from O being slightly larger than that from A and jw2,
so that the water level along O opposite the tributary
will be slightly higher and the water level along the
junction and A will be slightly lower – the transverse
dynamic contribution causes the river locally to tilt
slightly transversely. While this seems to violate the
initial assumption that the water level does not vary
much because of the tributary, the overall deduction
that the effect is small for small Froude number is
true.

Similarly, if we consider longitudinal flow force,
along the main stream, it can be seen that the longi-
tudinal static contribution on L will be approximately
equal to the contribution due to its projection, the ver-
tical rectangle marked on the surface by w1w3, while
the contribution on the wall W is only static, and has
the same projection area but its contribution is the
reverse of that due to L, and so the static contribu-
tions almost completely cancel each other out, and the
only flow force contribution to the inflowing stream is
its dynamic component in the longitudinal direction,
which will be usually relatively small.

To quantify this, we write the longitudinal momen-
tum balance, assuming that on each contributing face
the water level is constant, but not for the moment as-
suming that hW = hL, to give, after re-arrangement:

1
2
Bh2D +

βDQ
2
D

gBhD

−
µ
1
2
Bh2U +

βUQ
2
U

gBhU

¶
−

cos δ
βLQ

2
L

gbhL

+ 1
2
b cos δ

¡
h2W− h2L

¢
= 0, (5)

in which b is the width of the tributary. A good ap-
proximation is that the water level in both confluent
streams is the same, such that hL = hU, which is sup-
ported by evidence (Hager (1987, citing Favre and
Vischer). The last term in (5) shows mathematically
the approximate balance between the contribution of
the wall and that due to the lateral stream. However
the actual depth along the wall is not known a priori,
although in many cases, the water surface drops very
little as the tributary enters the main stream, and so
hW ≈ hL. As a first approximation a factor γ = hW/hL

could be introduced in the spirit of Hager (1989), and
a numerical value slightly less than 1 assigned. The
result is an equation connecting hU and hD in terms
of all the β and Q of the three component streams.
If we were to make the further approximation that all
the dynamic terms, of magnitude proportional to the
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square of the Froude number, then the solution of the
momentum equation is simply hD ≈ hU.

3.2 Unsteady flow through junctions of arbitrary
section

Figure 5. Definition diagram for momentum analysis
of a junction of two irregular natural streams

Consider a natural river junction as shown in Fig-
ure 5. The treatment here is of some generality, so we
abandon the nomenclature of Upstream and Down-
stream, and prefer to identify the channels as 1, 2 and
3. Shown is a possible control volume with vertical
planar flow boundaries C1, C2, and C3.

In this case the solid boundaries that give contribu-
tions to the momentum from hydrostatic forces, are
irregular, complicated, and very difficult to evaluate,
if indeed the bottom topography is known at all well.
However for rectangular channels in both transverse
and longitudinal directions it was seen above that
significant cancellations and simplifications occurred.
That suggests further exploration for the case of irreg-
ular geometry. The reason is to be found in Gauss’ Di-
vergence Theorem in one of its lesser-known forms,
(#2.61, equation 3 of Milne-Thomson (1968) to re-
place the integral of the pressure contributions over
all parts of the control volume by an integral of the
pressure gradient through the volume, as used by Fen-
ton (2006) in a derivation of equations (1). Gauss’ re-
lation isZ

CS

p n̂dS =
Z

CV

∇pdV. (6)

The basic approximation throughout river hydraulics
is that the pressure distribution is equal to the equiva-
lent static head of water above, such that at any point
with elevation z, and where η is the water surface el-
evation above, p = ρg (η− z), and ∇p is the vector
with components ρg (∂η/∂x,∂η/∂y,−1). As we will
not consider vertical momentum here, we can take
just the x and y components of the right side of (6),
such that∇2 = (∂/∂x,∂/∂y) and use these results to

give the pressure force P2 in the two-dimensional hor-
izontal plane on the fluid in the control volume:

P2 =
Z

CS

∇2 pdV = ρg

Z
As

h∇2η dAs (7)

where the last term is the integral over the surface
area As of the junction, of the depth h times the sur-
face gradient. In this form the contribution can be ap-
proximated readily without gross error, in the spirit of
much river hydraulics. If we take the component of
the net pressure force along part of the control vol-
ume, and just consider the x-component along the
volume, in a slice of length ∆x and elementary vol-
ume ∆V , the term becomes, as ∂h/∂x is closely con-
stant across the width,

ρg

Z
As

h
∂η

∂x
dAs = ρg

∂η

∂x
∆V = ρg

∂η

∂x
A∆x, (8)

and this results in the term gA∂η/∂x in the momen-
tum equation for the channel, (1b). This underlying
simplicity leads us to suggest that for all the physi-
cal processes governing motion in the junction, there
is nothing which requires special modelling if mo-
mentum is considered. Energy is quite different, be-
cause the mixing of two streams at an angle to each
other causes extra losses. For momentum, however,
all processes are similar to those which occur in the
body of the river itself. The process of friction drag is
similar, although extra currents will cause some minor
differences.

Figure 6. The schematisation which can be used in
practice at a junction of two irregular natural streams

In the case of a junction of two rectangular chan-
nels, the water surface slope does vary around the
junction, and for higher speed flow, it does dip as
it passes the sharp corner w2 in Figure 4. However,
for natural junctions as in Figure 5 we assert that the
river surface shows little unusual variation, and that
it becomes possible to do away with the concept of a
special control volume at the junction. It seems eas-
ier and in keeping with the usual one-dimensional ap-
proach to rivers if instead, the river junction is consid-
ered as a junction between different one-dimensional
streams, as shown in Figure 6. This might have been
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the simplest and most obvious approach from the be-
ginning, but the junction problem has been tradition-
ally believed to be too complicated for such a simple
representation.

The CasCade model already incorporates this rep-
resentation in its looped network formulations. A ma-
jor problem for the actual case study, as presented
previously, has been the lack of data regarding the
lateral inflow volume flux. There is no rating curve
existing for the Neckar tributary nearby the junction,
because of the influence by the Rhine river superim-
posed on the unknown discharge control by upstream
hydropower plants. Furthermore it is not possible to
develop a rating curve for a long section upstream of
the junction, due to the influence of the Rhine dis-
charge on Neckar water levels and even more impor-
tant, the influence of the Neckar discharge on Rhine
water levels. A calibrated CasCade model was there-
fore used to artificially develop a rating surface at
the junction point. Given downstream water level and
discharge, together with given upstream discharge al-
lows computing the Neckar flow and upstream water
levels for both. An a priori calculation of the rating
surface using Equation (5) would improve the mod-
eling of junctions considerably, which still has to be
proven.

In view of this apparent simplicity, it seems that
the only consideration at a junction is to include the
dynamic momentum contribution from the tributaries.
Equation (5) for rectangular channels clearly contains
a dynamic contribution from the inflow that becomes,
after multiplying through by g:

cos δ
βLQ

2
L

bhL

(9)

that does affect the main stream. Here we examine
the adequacy of the inflow term βq q uq in the general
momentum equation (1b) to represent this. We mul-
tiply by the length of the finite computational length
∆x in the downstream river. It is clear that βq = βL,
q∆x = QL, and uq = cos δQL/bhL, and the expres-
sions are equivalent. Hence we suggest that the only
effort or modification necessary to allow for a river
junction is to add the dynamic momentum contribu-
tion as an inflow contribution, such that over the first
computational length the term βq q uq be incorporated
as a total contribution of cos δ βLQ

2
L/AL where the

subscripts L pertain to the lateral stream and δ is the
angle it makes with the downstream channel.

4 THE CALCULATION OF FRICTION
4.1 Friction formulations
The Gauckler-Manning-Strickler equation is empiri-
cal – it has no theoretical justification. It is simple and
describes friction for a river cross-section as a whole.
Rouse (1937) wrote

“. . . hydraulicians have been forced to
rely to a great extent upon empirical rela-
tionships for the expression of energy loss
due to turbulence; and as empiricism is at
best a rather haphazard means to an end,
such relationships in themselves are seldom
likely to suggest the correct nature of un-
derlying physical principles. Thus it is that
the subject of hydraulics now finds itself
somewhat hobbled in its thought by those
very methods which contributed greatly to
its prestige in past generations.

However, an alternative was already at hand,
Keulegan (1938) noted that the theoretical investiga-
tions of Prandtl and von Kármán, and the experimen-
tal work of Nikuradse, led to rational formulas for ve-
locity distribution and hydraulic resistance for turbu-
lent flow in circular pipes in terms of the dimension-
less Weisbach friction coefficient λ. He went on to
show how similar rational formulas could be deduced
for open channels, although rather than allowing for
a general treatment by allowing for the local depth to
vary over a section, he adopted the overall section hy-
draulic radius as the characteristic length.

The optimism of the 1930s was misplaced – the
Gauckler-Manning-Strickler law continues to appear
as some sort of universal standard, such that experi-
mental and field results are related to it, arbitrary for-
mulae are used to apply it to compound sections and
more general problems, and books and tables are pub-
lished suggesting that friction can be calculated from
visual similarity with other rivers. There are a num-
ber of arbitrary formulae for calculating the effective
friction coefficient for a section, not based on ratio-
nal criteria. Indeed the ASCE Task Force on Friction
Factors in Open Channels (1963) wrote:

“Many engineers have become accus-
tomed to using Manning’s n for evaluat-
ing frictional effects in open channels. At
the present stage of knowledge, if applied
with judgement, both n and λ are probably
equally effective in the solution of practical
problems. The design engineer who prefers
to use n in his (sic) computations should
continue to do so, but he should recognize
the limitations on his method ... It is be-
lieved that experimental measurements of
friction in open channels over a wide range
of conditions are better correlated and un-
derstood by the use of λ. Furthermore, λ is
commonly used by engineers in many other
branches of engineering and probably pro-
vides the only basis for pooling all experi-
ence on frictional resistance in both open
and closed conduits. It is recommended,
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therefore, that engineering teachers and re-
search workers emphasize the use of the
friction factor λ ...

Clearly the Task Force believed that Manning’s n
was sufficiently entrenched in practice that it could
continue to be used but that it was desirable for re-
searchers and teachers to move the profession in the
direction of λ.

4.2 A drag-force approach to channel friction
The resistance to flow in open channels has often been
thought of, incorrectly, in energy terms, giving rise
to the concept of energy gradient. Energy dissipation
processes are internal to the flow and are complicated
and difficult to describe and quantify. However the
concepts of the Chezy resistance coefficient C and
the closely allied Weisbach coefficient λ are derived
from considerations of wall stress, hence momentum.
Also, research into the effects of vegetation on flow
has used a momentum approach, in terms of drag
forces on individual elements, which has usually then
been converted to an equivalent overall Gauckler-
Manning-Strickler roughness by processes whose va-
lidity is doubtful.

Using momentum/drag it is possible to unify ef-
fects due to boundary roughness, bed-forms, vegeta-
tion, and structures – using the empirical Gauckler-
Manning-Strickler law that is not possible. Consider
the combined drag force ∆T on a number of discrete
roughness elements and/or vegetation elements in an
elemental slice of channel of length ∆x:

∆T =
ρ

2

X
CDv

2a, (10)

where the summation is over all the drag-producing
elements, each of projected area a normal to the flow
of local velocity v and with drag coefficient CD. The-
oretically the sum contains a huge number of terms
of small quantities (every sand grain, for example).
It is not intended that the sum ever be actually eval-
uated, it is here only as a representation. If the local
velocity v is assumed given by a factor γ related to
the mean horizontal velocity in the channelQ/A, then
v2 = γQ2/A2, and

∆T =
ρ

2

Q2

A2

X
CDγa. (11)

The mean shear stress on the channel wall is given by
(p63, Montes (1998):

τ 0 = ρ
λ

4

(Q/A)2

2
, (12)

where λ is the Weisbach friction coefficient, so that,
using τ 0 = ∆T/P∆x gives λ expressed in terms of
the drag components:

λ =
4
P

CDγa

P∆x
. (13)

This gives a fluid-dynamical explanation for the be-
haviour of λ, and shows how it is actually made up of
local components, and how a rational theory of chan-
nel friction becomes possible:

• In general, the elements of the sum
P

CDγa will
vary around the boundary, as the bed material
changes, as vegetable matter of a different kind
grows at the edges, as the local value of γ de-
pends on the local depth, and so on.

• Clearly the drag coefficient terms can be added
linearly so that we could write it as a finite sum
of various contributions

λ = λ1 + λ2 + . . . , (14)

where 1, 2, etc might denote gravel on bed, reeds
at the side, and so on, each of which can be de-
termined separately by research.

• In the case of the Gauckler-Manning-Strickler
equation it is not at all clear how individual com-
ponents should be combined, and there are sev-
eral alternatives.

• With some research and experience it would be
possible to calculate the sum, and hence the fric-
tion coefficient λ, from a knowledge of bed ma-
terials of the same form.

• In general, the sum and hence the friction factor
λ, will be a function of depth and flow. It, unlike
Manning’s n (Strickler’s kSt), is not expected to
be constant. Its variability is an expression that
we are modelling the actual physics. We do not
expect a magic constancy for such a complicated
problem.

In the case of a channel with particles of sand or
gravel, we can use previous research which has ob-
tained expressions for λ. Colebrook and White pro-
posed an implicit equation for λ in a pipe in terms
of relative roughness k/D, the equivalent sand grain
roughness divided by the pipe diameter D,and the
Reynolds number R = UD/ν. For channels this can
be used with D = 4A/P (Henderson (1966, p93).
As λ appears implicitly in the equation, it has been
thought of as being more difficult than it really is. To
try to overcome this Moody (1944) produced a well-
known chart for λ as a function of R, with k/D as
a parameter; it is not always known that most of the
results are simply those corresponding to the Cole-
brook and White equation. The best solution of all is
to use the explicit approximation produced by Haa-
land (1983):

λ =
1

1.82
log−210

Ãµ
k/D

3.7

¶10/9
+
6.9

R

!
, (15)
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where again, D = 4A/P for a channel.

4.3 Use in practice
In equation (3) the conveyance K in terms of λ is
given by

K =

r
8g

λ

A3/2

P 1/2
(16)

so that in the 1-D momentum equations (1b) and (4b)
the friction term appears as

−gAQ |Q|
K2

= −λP Q |Q|
8A2

, (17)

with an extra curvature factor in the latter case. The
friction coefficient λ appears linearly, as does perime-
ter P , as they are directly related to the force on the
boundary, to which the whole term corresponds. If the
boundary were a compound boundary, for example,
or with different roughness elements, one could write
the friction term in terms of a sum

−
µP

i

λiPi

¶
Q |Q|
8A2

. (18)

If this approach were adopted, it may be less neces-
sary to resort to 2-D or 3-D modelling, as the char-
acteristics of the whole cross-section are incorporated
in this 1-D model.

5 CONCLUSIONS
The simulation of rivers has been examined, by one-
dimensional models in general, and by the program
CasCade in particular. Extensive data management
allows for analysis of real-time flow dynamics cou-
pled with navigation dynamics, river bed dynamics
and impact analysis of regulating waterway struc-
tures. The governing equations have been shown to
require few limiting assumptions. Furthermore the
problem of the confluence of two or more natural
streams has been considered, and the problem has
been shown to be able to be approximated by conven-
tional one-dimensional approaches, with the incorpo-
ration of the momentum from and to any tributaries
or effluent streams. The problem of simulating flood-
plain flows was considered, and it was concluded that
even though the one-dimensional approach does not
solve the problem as well as might be desired, irregu-
larities of roughness, channel and geometry are such
that no great sophistication is warranted and further
developments of a simple nature are warranted. Meth-
ods for calculating friction have been considered, and
it has been suggested that the Weisbach formulation
is characterised by its universal applicability beyond
the main channel hydraulics. It is concluded that the
knowledge of frictional characteristics in the bed and
the floodplains of a river, and the detailed geometry of

both, are usually so limited that the one-dimensional
model represents a good compromise between re-
quirements of fidelity of simulation and the greatly in-
creased effort and intrinsic limitations of highly accu-
rate simulation by two- and three-dimensional mod-
els.
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