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We demonstrate the widely-known but also widely not-acKedged fact that traditional

sharp-edged weir theory is based on wildly incorrect assiemg and a misleading ap-
proach. Dimensional analysis is a more rational way of prdoe, and obtains the same
result as the hydraulic analysis much more simply and witassumptions.

Experimental results are then examined to determine th#fiageat of discharge which
emerges from the analysis. Kindsvater and Carter (195%epted results in the form of
a number of graphical curves, which are not so useful now. ppecximate those curves
to give a formula which can be used to compute the flow overswéithen compared with
the Swiss SIA formula from 1924, here converted to fully disienless form, both sets of
results are in good agreement. The formula obtained fronds¢iater and Carter’s figures is
slightly simpler.

This report is: Fenton, J. D. (2015) Calculating flow over rectangular steaiged
weirs, Alternative Hydraulics Paper 6, http://johndfenttom/Papers/Calculating-flow-
over-rectangular-sharp-edged-weirs.pdf

1 Introduction

The calculation of the flow over sharp-crested weirs is on@@imost useful applications of elementary
hydraulic theory, both in introducing students to the thHaygrocesses of hydraulics and providing one
of the most widely-used formulae for practical applicatidhowever, the application of the theory is
wrong, and its continued use, while often justified in the aavhpragmatism, may do more to confuse
students than to educate them. The theory is usually redoyiede introduction of a coefficient of
discharge which obscures the nature of the approximatibimsse facts are widely known. For example,
Rehbock (1929) stated: "This formula is based on the fallaciassumption that water flows through the
entire cross-sectioni,e. that the top surface has not dropped down at all at the credt,.a a pressure
distribution ... is assumed, which is altogether diffefeoin that which exists in the actual jet”, and "the
fact that ... the nappe rises to a point ... above the weit 3egglected entirely”. Yet many hydraulics
textbooks, some of an otherwise scholarly reputationpthtce the theory in apparent disregard of the
facts of the problem.

This note shows how the application of the theory is wrongl, suggests that it be no longer presented.
Next, the fundamental formulae are simply establishedgudimensional analysis. The majority of
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previous work has been for the two-dimensional case wherevisir extends the whole width of the
(rectangular) channel. The effects of finite weir width wareluded in a formula published in 1924
by the Schweizerischer Ingenieur- und Architekten-Vergihd), the Swiss Society of Engineers and
Architects. Kindsvater and Carter (1957) also studied tbblpm and presented results as figures, which
are not so convenient for calculations. Here we approxirttadse results and generate mathematical
formulae which are easier to implement than the originaplgieal form. However, the results agree
quite well with the earlier Swiss formula, and both descthee experimental results quite satisfactorily.
The Swiss formula is here converted to full dimensionlesmfand as it is simpler than the results of
Kindsvater and Carter, it is to be preferred if accuracy ipontant.

2 Traditional theory

............. Assumed pressure distribution
— ——— Notional actual pressure distribution

H h

Figure 1: Side view of sharp-crested weir

Consider the flow problem as shown in Figlte 1, which in thistiese we will consider to be two-
dimensional only, where a weir extends the whole width of(tleetangular) channel. A uniform flow
of dischargey per unit width and deptd encounters the sharp-edged weir, whose crest at C is oftheigh
P above the bed, such that the head over the wdit.iShe flow springs clear of the weir at C, which
is where we place the co-ordinate origin. The notional presslistribution is shown, increasing from
atmospheric (zero) at the crest to a maximum value and thereasing back to zero at D vertically
above the crest on the upper nappe. In producing Fldure 1tlas fed and the surface were horizontal
we have made the reasonable assumption that gravity anidrrio the flow upstream are in balance,
the flow is uniform, and we pretend that both bed and surfae@etually horizontal. In a similar sense
we assume that the real slope would be roughly balancingpinitosses and we make no allowance here
for them. Now we apply Bernoulli's theorem along a streamlirom a point far upstream at which the
elevation isy to a pointy above the crest where the velocity componenty are):

1 1
“U%4gH=2

5 2(u2+v2)+g+gy, 1)

whereU (Y(y)) is the horizontal velocity far upstream which, as the flowtia thannel is a shear flow,
is a function of the elevatiol of the streamline there, which in turn dependsypthe elevation at the
crest of the particular streamline chosgris gravitational acceleratiom is the pressure in the fluid and
p is the fluid density. The assumptions widely made in thedtime, explicitly or implicitly, are:

e The fluid velocity is horizontal over the crest and the vettieelocity component is neglected —



the figure shows instead, how the fluid actually flows vetiyjcapwards before being deflected
over the crest, and the assumption is nonsense;

e The pressure above the crest is hydrostatic — it is actualtyeshing as shown in Figuké 1 by the
dashed line.

e The elevationyp = 2H /3 — this has not a lot of justification either.

e The upstream flow is irrotational, such thats independent of — ignoring the fact that the flow
upstream is a shear flow.

Hence, settingg = 0 andp = 0 in equation[(]l) gives an expression for the horizontal cigfaabove the

crest:
u=4/U2+2g(H-y). (2)

Now, having obtained the velocity distribution, we inteigra from the crest C to the surface at D directly
above to obtain the discharge over the weiq i$ the discharge per unit width, then

2H/3

q= / udy,

0
and on substituting equatio (2) we obtain

2H/3

q= / VU2 2gH — 2gydy— g\/?g ((UZ/Zng H)¥%— (U2/2g+ H/3)3/2> . 3)
0

As U = g/d this is actually a transcendental equation dowhich may be solved by direct iteration.
Commonly, the approach velocity head is ignored, such tlaset) = 0 on the right side of equation
(@), giving

g~ 0.81x %N/ng?’/Z. (4)

The factor of 081 has been found experimentally to be too high, so usuaihplgi a Coefficient of
DischargeC, is introduced and the expression written

2
q= 3Cov/2gH" (5)

This is the expression which is traditionally used and whiels been extensively investigated. The
coefficient of discharge in practice covers the fact thautigerlying assumptions are poor.

3 Analysis of McNownret al. results

McNownet al. (1953), amongst other problems, solved the problem ofati@ntal flow over a high weir,

d — o, and presented a Figure 13 showing the streamlines of the Yi@wused that figure here to give
us an idea of the nature of the flow over the weir, even if thetational approximation was used. We
scaled the intercepts of the streamlines above the weirtilheindiagram, and obtained the results shown
in Table[d, in whichy/q is the value of the dimensionless stream function. The bot& velocity is
obtained fromu = dy//dy. We examined the nature of the data points and chose to fityaqmial in
y/H with leading term varying likéy/H)2, such that after differentiation the polynomial represent
the horizontal velocity would vary likey/H )l/ 2 such that the horizontal velocity is zero at the crest (as it
is in practice) but increases very quickly above that. Wesehapolynomial with four terms, increasing



Y/q y/H

0 0.0000
1/64 0.0200
1/16 0.0580

1/4  0.1902
1/2  0.3750
3/4 0.5978

1 0.8505

Table 1: Position of streamlines above crest on Figure 13afitMvnet al.

by half a power each time, in termsyfH raised to powers of 22, 2, 52 and 3. We used a least-squares
procedure to determine the value of the coefficients, anddou

g y 3/2 A% y 5/2 Y3

q_6.65<H) —1117<H) +7.33(H) —1.67(H) . (6)
The results are shown as a dotted line on Fiddire 2, and it caedre that this equation does provide
a plausible fit to the seven data points, although at the gatateed the vertical slope with very high
curvature at the origin is not obvious.
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Figure 2: Stream function and velocity profiles above crest

To obtain the velocity we differentiated to give an expresdor dy/dy and using the figure quoted by
McNown et al. thatg/+/2gH3 = 0.408, we converted to non-dimensionalise the velocity imgeof the
head:
u y\1/2 y y\3/2 Y2
\/g_H—5.76(H) 12892 +1o.57(H> 2.89(H) . 7)

Now to obtain the traditional approximation, we used eque{Z) withU = 0 as the water is infinitely



deep, and non-dimensionalising as above we obtained

u

I \/_7 )

NG 2(1-y/H) (8)
Both these equations for the velocity are plotted on Fi§liaes olid lines, and it can be seen that the
conventional approximation used in weir theory, shown ke tthin line, bears no relationship to the
detailed solution of the (irrotational) flow field. The two dgree ay = yp (= 0.851H in this example),
but that is where the pressure is atmospheric, and the aisnntipat that is the pressure over the whole
crest is at least valid at that point. What is really notabléhat at the cresy,= 0, the agreement is very
poor. In a real fluid the velocity is zero there, because afosity and the fluid adhering to the wall of the
weir, while in the irrotational example here the horizontalocity is zero because at the crest the fluid
is travelling vertically upwards. Here, the assumptionamentional theory that the horizontal velocity,
the basis for discharge calculations, is equal to the madgmiof the fluid velocity, is clearly wrong.

We can gain a little more insight by calculating the volume fiwer the weir. Using equatiofl(6) with
y = 0.851H, the surface elevation found by McNovet al., we obtainy//q = 0.999, quite acceptably
accurate, and using the fact thipt,/2gH3 = 0.408, we find that the dimensionless flux over the weir is
a/+/gH3 = 0.408/2 = 0.577. We use equatiof](4), which is equivalent to equafidrini@prated, to

obtain q 5

_c 2(1— 1—yp/H 3/2>.
If we use the common and very rough approximation that trsane icontraction above the wejp, = H,
then we havey/+/gH?® = 0.943, very much in error, but if we take the conventional agjpnation,
equation[(b), it would take a coefficient of discharge @12, very close to the widely-assumed value,
to give the required value of B77. This numerical example seems to show how the incornectry is
brought to some measure of accuracy by the coefficient ohdige.

4 Dimensional analysis

The problem studied is an interesting example of one whenemusional analysis provides some insight
without recourse to the assumptions of the traditional wekthin fact, it also shows how the traditional
method gives a result that works. We assume that the flowaapstiis sufficiently large and fast that
we can neglect viscosity and initially consider the simetiftwo-dimensional problem and where the
channel can be assumed to be very deep. The variables ofdbkempr areq, H, andg. We have three
variables and two physical dimensions involved, and so byBickinghanvt theorem we have a single
dimensionless quantity, which dimensional analysis gives

g _
m (\/ﬁ> —O7 (9)

where therg (.. .) indicates a functional relationship, which we can write as

4 __ constant. (10)

VOH3

The dimensional analysis has shown us thataries like \/§H3/2 and if the constant is written as
21/2/3 x Cp, we have the traditional expressidn (5) with almost no pratsassumptions. Dimensional
analysis has shown us that the relationship must be likeuliigh explains the practical success of the
conventional hydraulic approach — it simply had to come ujan expression like this.

In the more general case, for a channel of finite depth, twaesdriables, the deptthand crest height
P are added. However they are connectedPby d — H so thatP/d = 1—H/d. Hence we have four



variables and two physical dimensions involved, and so byBhckinghamrr theorem we can obtain
two dimensionless quantities connected like

q HY)
D <W7E> =0, (11)

showing that we can expregg./gH? as a function of the head over the weir relative to the creghie

H /P, as used by several people, cited below. What this dimeakamalysis did not tell us is that it is
much better to usg/+/gH? as a variable than, for exammﬁ\/gﬁ. In fact, we were led to the form
of equation[(IIL) by the deep-channel approximatign (9)tHéeidid dimensional analysis tell us that it
is appropriate to uskl /P rather tharH /d, where we have followed earlier workers. It is obvious that
dimensional analysis has its share of problems too. Howtwedimensional analysis has already given
more information than that provided by the traditional ¢mra(5). We know that the coefficient of
dischargeC, depends ord /P. This functional dependence has been obtained experittyebyamany
workers, however, Rehbock (1929), for example, obtained

H/d H
Co = 0.605+0.08 7 = 0605+ 0.08 5.

In the three-dimensional case of a weir of finite wiithwith dischargeQm?3s 1 in a channel of finite
width B, two more length scales are involved. We obtain the result

Q HbB B
7T3<b gH3’P’B’d>_0’ (12)

where we have chosen to represent the first term in terntd/bf as suggested by the previous two-
dimensional results, wheq = Q/b. There is no experimental evidence for the effect of the vhhn
aspect-ratio ternB/d, but it is possible that it has been overlooked.

ﬁ

Clearly it would be more appropriate to recognise the effedtviscosityv and to add a Reynolds-
number-like term\/gH3/v to each of the dimensionless groujps (B)] (11) (12). Betowonsidering
the Swiss Society of Engineers and Architects formulae weex a term involvingH in metres to such
a form.

5 Kindsvater and Carter’s results

Kindsvater and Carter (1957) analysed a number of expetahessults for rectangular sharp-edged
weirs in rectangular channels of varying dimensions. Thewd that all the results they analysed could
be presented in terms of a traditionglZ3power law with certain corrections. They wrote

Q= Ce (b+kp) (H +kn)*?, (13)

whereQ is the dischargeC, is a coefficient of dimensions{2T—1; b+ k;, is the effective width of the
weir, whereb is the actual width of the weir ang, is a dimensional quantity representing the effects of
viscosity and surface tensioH; + ky is the effective head, whei is the actual head over the weir and
ky is a dimensional quantity similar tg,.

All their results were presented in dimensional terms, gi®nitish units. They found thate andky
could be presented as graphs, depending only on the dinmessdength ratiodd /P, the ratio of head
over the weir to height of the weir crest above the channebbutand orb/B, the ratio of weir width to
channel width. The results in the form of graphs are not s@k&ino implement in computer programs
and require some processing before implementing in the sdlimternational standard of units in the
metric system. In this note we use Kindsvater and Cartesglt®to generate mathematical formulae
which are easier to implement in computer programs thanertfyinal form.
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We prefer to work with units of th&yséme Internationaleand in dimensionless terms wherever pos-
sible. Instead of equation (113) we will write equatign](12¢glectingB/d as a parameter, and using
traditional terminology based on the hydraulic analysis:

Q= 2Coy/2bH?, (14

whereG; is the dimensionless coefficient of discharge, a functiol i andb/B. It is a strong temp-
tation, following Kindsvater and Carter, to abandon th& and they/2, both of which are products of
the severe assumptions in the hydraulic analysis. We waulike Kindsvater and Carter, retain thya
term so that th€, would be dimensionless. However, as we are relating thissaigus work we choose
to retain the traditional notation. From equations (13) @) it can be seen that the dimensionl€ss
is obtained from Kindsvater and CarteCs by

Co = 2\/5 o (14 ko/b) (1+ ki /H)¥2. (15)

We take the value df to be that at Atlanta where many of the experiments were padd. We use the
expression for the variation gfwith latitude, inSl units:

g (ms?) =9.806—0.026cos 2,

where) is the latitude which is 3314 for Atlanta, givingg = 9.80ms 2. Converting to British units we
obtain the numerical version of equatién](15):

Co = 0.1871C, (14 kyp/b) (1+ ki /H)¥2.

6 Formulae for practical use based on experimental results

Now we examine some of the assumptions and obtain a sequeapproximate formulae so that all of
the expressions can be programmed without table look-ugedoes.

6.1 Width correctiorky,

b/B k(f) ke (m)
0.2 0.008 0.0024
0.5 0.010 0.0031
0.8 0.014 0.0043
1.0 -0.003 -0.0009

Table 2: Values ok, taken from Figure 8 of Kindsvater and Carter and
converted to metres.

Table[2 and Figurg]l 3 show the four numerical values from i@uof Kindsvater and Carter, converted
from feet to metres. It can be seen that the numerical madgstare small (less than 5mm), of some
significance for laboratory experiments, but not very int@atr in practice. Nevertheless for complete-
ness we seek to interpolate these data points to expgess a function of the relative width/B. We

tried using low order polynomials, but these were genenafigatisfactory in describing the relatively
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Figure 3: Width correctioky

slow variation for smalb/B and rapid variation as the full width is approached. We fotlrad the most
plausible function which mimicked the curve which Kinderaand Carter drew through their points,
was a polynomial of degree 5. Several different limitatiemsthe polynomial were tried (as there are
only four data points only four independent coefficientsaailable). Finally, the best mimicry of the
data points, showing no variation in the limitla&8 — 0, as expected for a quantity expressing the effect
of channel width, was found to be obtained by requiring atlimgivalue of 00024m atb/B =0, as in
the case of Bos (1989, Figure 5.4), as well as a gradient ofthere. This information is sufficient to
determine all six coefficients of the fifth-degree polyndmM/e used the simple procedure of divided
differences for interpolating unequally-spaced datapgishe algorithms presented in Fenton (1994 - a
more scholarly presentation of the theory is given by Conti de Boor, 1980) for interpolation using
function and derivative information. The procedure yieldlee function

b2 b3 b\* b\®
kb(m):0.0024+0.0016<§> —o.0210<§> +0.0776<§> —0.0615<§> . (16)

The coefficients are specified to a higher accuracy than rsiggrin reasonable because their oscillating
signs makes the evaluation of the polynomial liable to radierrors. It can be seen in Figure 3 that the
equation seems to perform a smooth and plausible interpolaf the data points. It should be noted,

however, that Kindsvater and Carter stated: "the authdkta@eledge some uncertainty regarding the
generality of the curve in (their Figure 8) ... Neverthelabgs adequacy of the effective-width concept
was demonstrated by the successful eliminatioh @ an independent variable ...".

6.2 Head correctioky

Kindsvater and Carter found, for all their tests, that a tamsvalue of
ky = 0.001m a7)

was "adequate to compensate for fluid-property effectsaeléo the head” but they noted that this
might be situation dependent. In any case, it is such a smoalhtify that in practice this may not be
important.



6.3 Formulae for coefficient of dischar@e
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Figure 4: Experimental results with lines of best fit

Kindsvater and Carter presented in their Figure 10 a sefiiees on a graph giving the relationship
between theiC, and the relative heaH /P and relative widttb/B. Here we attempt to obtain a single
mathematical function approximating all the informatiarthieir original figure. The lines on their figure
were presented with relatively little justification, so twef we go further we examine here the nature of
their approximation of the data by considering their Fig@rene of the cases where they did present
the raw data, which is here shown as Fidure 4. On our figure we platted their dimension#l, and

its variation with relative head, for a constant widthigB = 1, as well as the straight line which they
plotted, with no apparent calculation, as representingiiperimental points, given by

H
Ce=322+047. (18)

We performed a least-squares analysis of the data aftengdbbff their figure, and found that it was
best approximated by the function

H
Ce=3.209+0.397 5. (19)

which clearly is close to their expression, and which is plstted on Figur€l4. If this agreement between
their apparently sketched line of best fit and our least+sguanalysis were to be repeated throughout
all the tests, one would have some confidence in their resultswe will proceed on this basis. We note
that several of the results most distant from the curve (itiolg the four points on the far right below
the curve) were obtained from a weir of width only 3cm, hanadlievant to practical applications. If we
subtract the points from that series, the line of best fit ading to least-squares analysis is actually

H
Ce=3192+0.424 5. (20)

still not very different, and which is plotted as a dotteetlon Figuré¥%. We conclude that we have enough
faith in the results as plotted on their Figure 10 to proce#l aur mathematical approximation.

All variation with H /P on their Figure 10 was linear. We took the lines on that figure &ith a scale
measured the intercepts ldt/P = 0, and the gradients of the lines. Converting to the dimens#s
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b/B Equations foiC,
0.2 05895-0.0020H/P
0.4 05911+ 0.0060H /P
0.6 05943+0.0183H/P
0.8 05962+ 0.0438H /P
0.9 05989+ 0.0638H /P
1.0 06026+ 0.0741H /P

Table 3: Equations for lines on Figure 10 of Kindsvater andé&taon-
verted to dimensionle<$s,

coefficient of discharg€, by using equation (23) we obtain the results presented ifeTab Similar
equations have been presented by Bos (1989, Table 5.2) eés timear equations appear to be adequate
in describing the variation with relative hebiy P, our problem now is to approximate the variation with
b/B of the coefficients in them. We represent the equations as

H
Co = a(b/B)+B(b/B) 5. (21)
and the individual numerical values af and 8 shown on the table are plotted on Figlte 5 for the
and Figuré b for the8. Also plotted on each are the recomputed values from equsaf®) and[(20), to

provide some measure of variation which might be expectedraranalysis of the results.

O. 605 T T T T T T T T T
Experiment +
Recomputed o
Equation (22])
0.600 $
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0.590

0585 1 1 1 1 1 1 1 1 1
0O 01 02 03 04 05 06 07 08 09 1

b/B

Figure 5: Variation ofx with b/B

To approximate the variation af and 3 as functions ofb/B we considered using linear functions,
however these did not seem to represent the data as wellyamight, and in both cases we chose an
equation of the fornag + a, (b/B)Z, with the coefficientsy anda, to be determined by a least-squares
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Figure 6: Variation of3 with b/B

procedure. The results we obtained are:

2

a = +0.589+0.013 (g) (22)
b 2

B = —0.008+0.083<§> , (23)

which are shown plotted on Figuries 5 aid 6. It is believedtti@thoice of quadratic variation with no
linear variation likea; (b/B) is appropriate and represents the trend of the points indases.

Combining the two expressions in equatidng (22) (23) aguation[(2l1) we have a general expres-
sion for the coefficient of discharge and its variation withative width and head of the weir:

H [/b)\? H
Co =0589-0.0085 + (5 | (0013+00837 ), (24)

which is a least-squares mathematical approximation tbrtee on figure 10 of Kindsvater and Carter.

For a weir which extends the width of the channek= B, with no end contractions, equation 124)
becomesC, = 0.602+ 0.075H /P. For this full-width case Rehbock obtain&d = 0.605+ 0.08H /P,
showing how the results agree.

7 The SIA formula

In 1924 theSchweizerischer Ingenieur- und Architekten-Ver@ihy), the Swiss Society of Engineers
and Architects, published a Standard containing the faligvexpression (which we have here converted
from the dimensional expression presented in KindsvatdrGarter and a particular case presented by
Rehbock):

Co = (0.578+0.037 <g>2+ 3'?22843ib£'2)2> <1+o.5<g>4<%>2>, (25)
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in which the last term in the first bracket allows for real flefflects, and the coefficient 1000 is actually
a dimensional one of units M. Here, we presume that those real fluid effects are due tositycand
replace the 1009 by the expression in terms of a Reynolds number to the pO\BeOI)’47(gH3/v2) 1/3,
accurate to 1% fog = 9.8m andv = 1 x 10 °m?s~1. The full SIA expression is then, in dimensionless
terms:

b2 3.615— 3 (b/B)? 1<b>4< H/P )2
Co = [ 0578+0.037( = “(=2) (—5=) ). (@6
( >ret 7<B> +O.O47(gH3/V2)1/3+1.6 t2l8) \irhjp (20)

— K&C: quuation (DZII)
0.8} - STA: equation (26]) b/B=1.0

Co

04+ -

0.2+ -

00 1 1 1 1
0.0 04 0.8 12 16 20

H/P

Figure 7: Comparison of formulae for relative widifiB varying from 0.2 to 1 in steps of 0.2

We now compare the predictions of the Kindsvater and CarterSdA formulae. We ignore the correc-
tions k, andky specified in units of length in the former, and somewhat dsudeseH = 0.5m in the
viscous term of the latter so that the first bracketed terngiraéion [26) becomes 585+ 0.031 (b/B)?.
The results are plotted on Figurk 7, for a range of widths fog®= 0.2 to 1, and for a range of relative
weir heights fromH /P = 0 to 2, although the stated restriction on equation (25) Wwasit be limited

to H/P < 1, namely where the weir occupies up to half the channel déptian be seen that the agree-
ment between the two expressions is relatively close. Kiategs and Carter noted that the Swiss formula
agreed reasonably well with their results, but that "the plaxity of the formula is a deterrent to its use,
and the limits of applicability specified by the SIA prevetstlheing a comprehensive solution for a full,
practical variety of notch weirs”.

In fact, the evidence was to the contrary, that the Swissesgwn was at least an explicit formula,
whereas the original Kindsvater and Carter results wersgpted only as lines on a graph, which have
only now in this present work been approximated by equaticobminating in the relatively simple

equation[(24).

In many practical situations the geometric situation ifeatmore complicated than that of the exper-
iments, which were for smooth rectangular channels termthy a smooth planar end containing a
single rectangular notch. The variability in results caubg differences of configuration would be
rather greater than between the formula which we have aataand the SIA formula. There is little to
choose between the two approaches, but equdiidn (24) isesimp
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8 Conclusions and recommendations

We have shown just how poor the traditional assumptionseottteory of sharp-edged weirs are, and have
suggested that dimensional analysis is more rational aighitiul than the traditional physical approach.
Then we considered the effects of end corrections and nbeedxperimental results of Kindsvater and
Carter that the Francis end correction formula is not adeui&/e then obtained convenient mathematical
approximation formulae for their results. We also congdethe Swiss SIA formula, and the formulae
presented here based on Kindsvater and Carter’s results laftlr is slightly simpler. Both could be
used, to give an idea of the magnitude of uncertainty.

However, one might end on an iconoclastic note, that theatran of C, is so relatively small that, in
practical situations where the weir might not be smoothherdhannel not be rectangular, or the weir
not be a simple notch — it might be one of two or more as part afgel structure and there might be
piers between them — it might usually be reasonable simphssome a consta@} = 0.64, say, and to
use the expression

Q= \%CD\/Z—ngW2 ~ 0.6,/gbH¥2.
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9 Notation

Latin Symbols

ap, a1, & coefficients in polynomial

B width of channel

b width of weir

be effective width of weir

Co coefficient of discharge

Ce dimensional coefficient of discharge
depth of water in channel

g gravitational acceleration

H head over weir

He effective head over weir

kp correction to weir width

KH correction to head

L length dimension

P height of crest above channel bottom

p pressure

Q discharge over weir

q discharge per unit width

T time dimension

U velocity of flow upstream

(u,v) velocity components, horizontally and vertically

Y elevation of streamline upstream

y vertical co-ordinate with origin at the crest

Vb elevation of water surface above the crest

Greek Symbols

a function ofb/B appearing in expression fax,

B function ofb/B appearing in expression fax,

A latitude

m(...) function of arguments

1] stream functionu = dy/dy, v= —0dy/ox

p fluid density
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