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We demonstrate the widely-known but also widely not-acknowledged fact that traditional
sharp-edged weir theory is based on wildly incorrect assumptions and a misleading ap-
proach. Dimensional analysis is a more rational way of proceeding, and obtains the same
result as the hydraulic analysis much more simply and without assumptions.

Experimental results are then examined to determine the coefficient of discharge which
emerges from the analysis. Kindsvater and Carter (1957) presented results in the form of
a number of graphical curves, which are not so useful now. We approximate those curves
to give a formula which can be used to compute the flow over weirs. When compared with
the Swiss SIA formula from 1924, here converted to fully dimensionless form, both sets of
results are in good agreement. The formula obtained from Kindsvater and Carter’s figures is
slightly simpler.

This report is: Fenton, J. D. (2015) Calculating flow over rectangular sharp-edged
weirs, Alternative Hydraulics Paper 6, http://johndfenton.com/Papers/Calculating-flow-
over-rectangular-sharp-edged-weirs.pdf

1 Introduction

The calculation of the flow over sharp-crested weirs is one ofthe most useful applications of elementary
hydraulic theory, both in introducing students to the thought processes of hydraulics and providing one
of the most widely-used formulae for practical application. However, the application of the theory is
wrong, and its continued use, while often justified in the name of pragmatism, may do more to confuse
students than to educate them. The theory is usually rescuedby the introduction of a coefficient of
discharge which obscures the nature of the approximations.These facts are widely known. For example,
Rehbock (1929) stated: ”This formula is based on the fallacious assumption that water flows through the
entire cross-section”,i.e. that the top surface has not dropped down at all at the crest, and ”... a pressure
distribution ... is assumed, which is altogether differentfrom that which exists in the actual jet”, and ”the
fact that ... the nappe rises to a point ... above the weir crest is neglected entirely”. Yet many hydraulics
textbooks, some of an otherwise scholarly reputation, introduce the theory in apparent disregard of the
facts of the problem.

This note shows how the application of the theory is wrong, and suggests that it be no longer presented.
Next, the fundamental formulae are simply established using dimensional analysis. The majority of
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previous work has been for the two-dimensional case where the weir extends the whole width of the
(rectangular) channel. The effects of finite weir width wereincluded in a formula published in 1924
by the Schweizerischer Ingenieur- und Architekten-Verein(SIA), the Swiss Society of Engineers and
Architects. Kindsvater and Carter (1957) also studied the problem and presented results as figures, which
are not so convenient for calculations. Here we approximatethose results and generate mathematical
formulae which are easier to implement than the original graphical form. However, the results agree
quite well with the earlier Swiss formula, and both describethe experimental results quite satisfactorily.
The Swiss formula is here converted to full dimensionless form, and as it is simpler than the results of
Kindsvater and Carter, it is to be preferred if accuracy is important.

2 Traditional theory

Assumed pressure distribution
Notional actual pressure distribution

h

H

P

D

C

Figure 1: Side view of sharp-crested weir

Consider the flow problem as shown in Figure 1, which in this section we will consider to be two-
dimensional only, where a weir extends the whole width of the(rectangular) channel. A uniform flow
of dischargeq per unit width and depthd encounters the sharp-edged weir, whose crest at C is of height
P above the bed, such that the head over the weir isH. The flow springs clear of the weir at C, which
is where we place the co-ordinate origin. The notional pressure distribution is shown, increasing from
atmospheric (zero) at the crest to a maximum value and then decreasing back to zero at D vertically
above the crest on the upper nappe. In producing Figure 1 as ifthe bed and the surface were horizontal
we have made the reasonable assumption that gravity and friction in the flow upstream are in balance,
the flow is uniform, and we pretend that both bed and surface are actually horizontal. In a similar sense
we assume that the real slope would be roughly balancing friction losses and we make no allowance here
for them. Now we apply Bernoulli’s theorem along a streamline from a point far upstream at which the
elevation isY to a pointy above the crest where the velocity components are(u,v):

1
2

U2+gH =
1
2

(

u2+v2)+
p
ρ
+gy, (1)

whereU(Y(y)) is the horizontal velocity far upstream which, as the flow in the channel is a shear flow,
is a function of the elevationY of the streamline there, which in turn depends ony, the elevation at the
crest of the particular streamline chosen,g is gravitational acceleration,p is the pressure in the fluid and
ρ is the fluid density. The assumptions widely made in the literature, explicitly or implicitly, are:

• The fluid velocity is horizontal over the crest and the vertical velocity component is neglected –
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the figure shows instead, how the fluid actually flows vertically upwards before being deflected
over the crest, and the assumption is nonsense;

• The pressure above the crest is hydrostatic – it is actually something as shown in Figure 1 by the
dashed line.

• The elevationyD = 2H/3 – this has not a lot of justification either.

• The upstream flow is irrotational, such thatU is independent ofy – ignoring the fact that the flow
upstream is a shear flow.

Hence, settingv= 0 andp= 0 in equation (1) gives an expression for the horizontal velocity above the
crest:

u=
√

U2+2g(H −y). (2)

Now, having obtained the velocity distribution, we integrate it from the crest C to the surface at D directly
above to obtain the discharge over the weir. Ifq is the discharge per unit width, then

q=

2H/3
∫

0

udy,

and on substituting equation (2) we obtain

q=

2H/3
∫

0

√

U2+2gH−2gydy=
2
3

√

2g
(

(

U2/2g+H
)3/2−

(

U2/2g+H/3
)3/2

)

. (3)

As U = q/d this is actually a transcendental equation forq which may be solved by direct iteration.
Commonly, the approach velocity head is ignored, such that we setU = 0 on the right side of equation
(3), giving

q≈ 0.81×
2
3

√

2gH3/2. (4)

The factor of 0.81 has been found experimentally to be too high, so usually simply a Coefficient of
DischargeCD is introduced and the expression written

q=
2
3
CD

√

2gH3/2. (5)

This is the expression which is traditionally used and whichhas been extensively investigated. The
coefficient of discharge in practice covers the fact that theunderlying assumptions are poor.

3 Analysis of McNownet al. results

McNownet al. (1953), amongst other problems, solved the problem of irrotational flow over a high weir,
d → ∞, and presented a Figure 13 showing the streamlines of the flow. We used that figure here to give
us an idea of the nature of the flow over the weir, even if the irrotational approximation was used. We
scaled the intercepts of the streamlines above the weir fromtheir diagram, and obtained the results shown
in Table 1, in whichψ/q is the value of the dimensionless stream function. The horizontal velocity is
obtained fromu= ∂ψ/∂y. We examined the nature of the data points and chose to fit a polynomial in
y/H with leading term varying like(y/H)3/2, such that after differentiation the polynomial representing
the horizontal velocity would vary like(y/H)1/2 such that the horizontal velocity is zero at the crest (as it
is in practice) but increases very quickly above that. We chose a polynomial with four terms, increasing
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ψ/q y/H

0 0.0000

1/64 0.0200

1/16 0.0580

1/4 0.1902

1/2 0.3750

3/4 0.5978

1 0.8505

Table 1: Position of streamlines above crest on Figure 13 of McNownet al.

by half a power each time, in terms ofy/H raised to powers of 3/2, 2, 5/2 and 3. We used a least-squares
procedure to determine the value of the coefficients, and found

ψ
q
= 6.65

( y
H

)3/2
−11.17

( y
H

)2
+7.33

( y
H

)5/2
−1.67

( y
H

)3
. (6)

The results are shown as a dotted line on Figure 2, and it can beseen that this equation does provide
a plausible fit to the seven data points, although at the scaleplotted the vertical slope with very high
curvature at the origin is not obvious.
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Figure 2: Stream function and velocity profiles above crest

To obtain the velocity we differentiated to give an expression for ∂ψ/∂y and using the figure quoted by
McNownet al. thatq/

√

2gH3 = 0.408, we converted to non-dimensionalise the velocity in terms of the
head:

u
√

gH
= 5.76

( y
H

)1/2
−12.89

y
H

+10.57
( y

H

)3/2
−2.89

( y
H

)2
. (7)

Now to obtain the traditional approximation, we used equation (2) withU = 0 as the water is infinitely
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deep, and non-dimensionalising as above we obtained

u
√

gH
=
√

2(1−y/H). (8)

Both these equations for the velocity are plotted on Figure 2as solid lines, and it can be seen that the
conventional approximation used in weir theory, shown by the thin line, bears no relationship to the
detailed solution of the (irrotational) flow field. The two doagree aty= yD (= 0.851H in this example),
but that is where the pressure is atmospheric, and the assumption that that is the pressure over the whole
crest is at least valid at that point. What is really notable is that at the crest,y= 0, the agreement is very
poor. In a real fluid the velocity is zero there, because of viscosity and the fluid adhering to the wall of the
weir, while in the irrotational example here the horizontalvelocity is zero because at the crest the fluid
is travelling vertically upwards. Here, the assumption in conventional theory that the horizontal velocity,
the basis for discharge calculations, is equal to the magnitude of the fluid velocity, is clearly wrong.

We can gain a little more insight by calculating the volume flux over the weir. Using equation (6) with
y = 0.851H, the surface elevation found by McNownet al., we obtainψ/q = 0.999, quite acceptably
accurate, and using the fact thatq/

√

2gH3 = 0.408, we find that the dimensionless flux over the weir is
q/
√

gH3 = 0.408
√

2 = 0.577. We use equation (4), which is equivalent to equation (8)integrated, to
obtain

q
√

gH3
=

2
3

√
2
(

1− (1−yD/H)3/2
)

.

If we use the common and very rough approximation that there is no contraction above the weir,yD = H,
then we haveq/

√

gH3 = 0.943, very much in error, but if we take the conventional approximation,
equation (5), it would take a coefficient of discharge of 0.612, very close to the widely-assumed value,
to give the required value of 0.577. This numerical example seems to show how the incorrect theory is
brought to some measure of accuracy by the coefficient of discharge.

4 Dimensional analysis

The problem studied is an interesting example of one where dimensional analysis provides some insight
without recourse to the assumptions of the traditional method. In fact, it also shows how the traditional
method gives a result that works. We assume that the flow upstream is sufficiently large and fast that
we can neglect viscosity and initially consider the simplified two-dimensional problem and where the
channel can be assumed to be very deep. The variables of the problem areq, H, andg. We have three
variables and two physical dimensions involved, and so by the Buckinghamπ theorem we have a single
dimensionless quantity, which dimensional analysis gives

π1

(

q
√

gH3

)

= 0, (9)

where theπ1(. . .) indicates a functional relationship, which we can write as

q
√

gH3
= constant. (10)

The dimensional analysis has shown us thatq varies like
√

gH3/2 and if the constant is written as
2
√

2/3×CD, we have the traditional expression (5) with almost no physical assumptions. Dimensional
analysis has shown us that the relationship must be like this, which explains the practical success of the
conventional hydraulic approach – it simply had to come up with an expression like this.

In the more general case, for a channel of finite depth, two extra variables, the depthd and crest height
P are added. However they are connected byP = d−H so thatP/d = 1−H/d. Hence we have four
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variables and two physical dimensions involved, and so by the Buckinghamπ theorem we can obtain
two dimensionless quantities connected like

π2

(

q
√

gH3
,
H
P

)

= 0, (11)

showing that we can expressq/
√

gH3 as a function of the head over the weir relative to the crest height,
H/P, as used by several people, cited below. What this dimensional analysis did not tell us is that it is
much better to useq/

√

gH3 as a variable than, for exampleq/
√

gP3. In fact, we were led to the form
of equation (11) by the deep-channel approximation (9). Neither did dimensional analysis tell us that it
is appropriate to useH/P rather thanH/d, where we have followed earlier workers. It is obvious that
dimensional analysis has its share of problems too. However, the dimensional analysis has already given
more information than that provided by the traditional equation (5). We know that the coefficient of
dischargeCD depends onH/P. This functional dependence has been obtained experimentally by many
workers, however, Rehbock (1929), for example, obtained

CD = 0.605+0.08
H/d

1−H/d
= 0.605+0.08

H
P
.

In the three-dimensional case of a weir of finite widthb, with dischargeQm3s−1 in a channel of finite
width B, two more length scales are involved. We obtain the result

π3

(

Q

b
√

gH3
,
H
P
,
b
B
,
B
d

)

= 0, (12)

where we have chosen to represent the first term in terms ofQ/b, as suggested by the previous two-
dimensional results, whenq = Q/b. There is no experimental evidence for the effect of the channel
aspect-ratio termB/d, but it is possible that it has been overlooked.

Clearly it would be more appropriate to recognise the effects of viscosityν and to add a Reynolds-
number-like term

√

gH3/ν to each of the dimensionless groups (9), (11) and (12). Below, in considering
the Swiss Society of Engineers and Architects formulae we convert a term involvingH in metres to such
a form.

5 Kindsvater and Carter’s results

Kindsvater and Carter (1957) analysed a number of experimental results for rectangular sharp-edged
weirs in rectangular channels of varying dimensions. They found that all the results they analysed could
be presented in terms of a traditional 3/2 power law with certain corrections. They wrote

Q=Ce (b+kb)(H +kH)
3/2 , (13)

whereQ is the discharge;Ce is a coefficient of dimensions L1/2 T−1; b+kb is the effective width of the
weir, whereb is the actual width of the weir andkb is a dimensional quantity representing the effects of
viscosity and surface tension;H +kH is the effective head, whereH is the actual head over the weir and
kH is a dimensional quantity similar tokb.

All their results were presented in dimensional terms, using British units. They found thatCe andkb

could be presented as graphs, depending only on the dimensionless length ratios:H/P, the ratio of head
over the weir to height of the weir crest above the channel bottom, and onb/B, the ratio of weir width to
channel width. The results in the form of graphs are not so simple to implement in computer programs
and require some processing before implementing in the almost international standard of units in the
metric system. In this note we use Kindsvater and Carter’s results to generate mathematical formulae
which are easier to implement in computer programs than in the original form.
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We prefer to work with units of theSyst̀eme Internationale, and in dimensionless terms wherever pos-
sible. Instead of equation (13) we will write equation (12),neglectingB/d as a parameter, and using
traditional terminology based on the hydraulic analysis:

Q=
2
3

CD

√

2gbH3/2, (14)

whereCD is the dimensionless coefficient of discharge, a function ofH/P andb/B. It is a strong temp-
tation, following Kindsvater and Carter, to abandon the 2/3 and the

√
2, both of which are products of

the severe assumptions in the hydraulic analysis. We would,unlike Kindsvater and Carter, retain the
√

g
term so that theCD would be dimensionless. However, as we are relating this to previous work we choose
to retain the traditional notation. From equations (13) and(14) it can be seen that the dimensionlessCD

is obtained from Kindsvater and Carter’sCe by

CD =
3
4

√

2
g
Ce(1+kb/b) (1+kH/H)3/2 . (15)

We take the value ofg to be that at Atlanta where many of the experiments were performed. We use the
expression for the variation ofg with latitude, inSI units:

g
(

ms−2)= 9.806−0.026cos 2λ ,

whereλ is the latitude which is 33o44′ for Atlanta, givingg= 9.80ms−2. Converting to British units we
obtain the numerical version of equation (15):

CD = 0.1871Ce(1+kb/b) (1+kH/H)3/2 .

6 Formulae for practical use based on experimental results

Now we examine some of the assumptions and obtain a sequence of approximate formulae so that all of
the expressions can be programmed without table look-up procedures.

6.1 Width correctionkb

b/B kb (ft) kb (m)

0.2 0.008 0.0024

0.5 0.010 0.0031

0.8 0.014 0.0043

1.0 -0.003 -0.0009

Table 2: Values ofkb taken from Figure 8 of Kindsvater and Carter and
converted to metres.

Table 2 and Figure 3 show the four numerical values from Figure 8 of Kindsvater and Carter, converted
from feet to metres. It can be seen that the numerical magnitudes are small (less than 5mm), of some
significance for laboratory experiments, but not very important in practice. Nevertheless for complete-
ness we seek to interpolate these data points to expresskb as a function of the relative widthb/B. We
tried using low order polynomials, but these were generallyunsatisfactory in describing the relatively
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Figure 3: Width correctionkb

slow variation for smallb/B and rapid variation as the full width is approached. We foundthat the most
plausible function which mimicked the curve which Kindsvater and Carter drew through their points,
was a polynomial of degree 5. Several different limitationson the polynomial were tried (as there are
only four data points only four independent coefficients areavailable). Finally, the best mimicry of the
data points, showing no variation in the limit asb/B→ 0, as expected for a quantity expressing the effect
of channel width, was found to be obtained by requiring a limiting value of 0.0024m atb/B = 0, as in
the case of Bos (1989, Figure 5.4), as well as a gradient of zero there. This information is sufficient to
determine all six coefficients of the fifth-degree polynomial. We used the simple procedure of divided
differences for interpolating unequally-spaced data, using the algorithms presented in Fenton (1994 - a
more scholarly presentation of the theory is given by Conte and de Boor, 1980) for interpolation using
function and derivative information. The procedure yielded the function

kb (m)= 0.0024+0.0016

(

b
B

)2

−0.0210

(

b
B

)3

+0.0776

(

b
B

)4

−0.0615

(

b
B

)5

. (16)

The coefficients are specified to a higher accuracy than mightseem reasonable because their oscillating
signs makes the evaluation of the polynomial liable to roundoff errors. It can be seen in Figure 3 that the
equation seems to perform a smooth and plausible interpolation of the data points. It should be noted,
however, that Kindsvater and Carter stated: ”the authors acknowledge some uncertainty regarding the
generality of the curve in (their Figure 8) ... Nevertheless, the adequacy of the effective-width concept
was demonstrated by the successful elimination ofb as an independent variable ...”.

6.2 Head correctionkH

Kindsvater and Carter found, for all their tests, that a constant value of

kH = 0.001m (17)

was ”adequate to compensate for fluid-property effects related to the head” but they noted that this
might be situation dependent. In any case, it is such a small quantity that in practice this may not be
important.
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6.3 Formulae for coefficient of dischargeCD
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Figure 4: Experimental results with lines of best fit

Kindsvater and Carter presented in their Figure 10 a series of lines on a graph giving the relationship
between theirCe and the relative headH/P and relative widthb/B. Here we attempt to obtain a single
mathematical function approximating all the information in their original figure. The lines on their figure
were presented with relatively little justification, so before we go further we examine here the nature of
their approximation of the data by considering their Figure9, one of the cases where they did present
the raw data, which is here shown as Figure 4. On our figure we have plotted their dimensionalCe and
its variation with relative head, for a constant width ofb/B= 1, as well as the straight line which they
plotted, with no apparent calculation, as representing theexperimental points, given by

Ce = 3.22+0.4
H
P
. (18)

We performed a least-squares analysis of the data after scaling it off their figure, and found that it was
best approximated by the function

Ce = 3.209+0.397
H
P
, (19)

which clearly is close to their expression, and which is alsoplotted on Figure 4. If this agreement between
their apparently sketched line of best fit and our least-squares analysis were to be repeated throughout
all the tests, one would have some confidence in their results, and we will proceed on this basis. We note
that several of the results most distant from the curve (including the four points on the far right below
the curve) were obtained from a weir of width only 3cm, hardlyrelevant to practical applications. If we
subtract the points from that series, the line of best fit according to least-squares analysis is actually

Ce = 3.192+0.424
H
P
, (20)

still not very different, and which is plotted as a dotted line on Figure 4. We conclude that we have enough
faith in the results as plotted on their Figure 10 to proceed with our mathematical approximation.

All variation with H/P on their Figure 10 was linear. We took the lines on that figure and with a scale
measured the intercepts atH/P = 0, and the gradients of the lines. Converting to the dimensionless
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b/B Equations forCD

0.2 0.5895−0.0020H/P

0.4 0.5911+0.0060H/P

0.6 0.5943+0.0183H/P

0.8 0.5962+0.0438H/P

0.9 0.5989+0.0638H/P

1.0 0.6026+0.0741H/P

Table 3: Equations for lines on Figure 10 of Kindsvater and Carter con-
verted to dimensionlessCD

coefficient of dischargeCD by using equation (23) we obtain the results presented in Table 3. Similar
equations have been presented by Bos (1989, Table 5.2). As these linear equations appear to be adequate
in describing the variation with relative headH/P, our problem now is to approximate the variation with
b/B of the coefficients in them. We represent the equations as

CD = α (b/B)+β (b/B)
H
P
, (21)

and the individual numerical values ofα andβ shown on the table are plotted on Figure 5 for theα
and Figure 6 for theβ . Also plotted on each are the recomputed values from equations (19) and (20), to
provide some measure of variation which might be expected ina re-analysis of the results.
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Figure 5: Variation ofα with b/B

To approximate the variation ofα and β as functions ofb/B we considered using linear functions,
however these did not seem to represent the data as well as they might, and in both cases we chose an
equation of the forma0+a2 (b/B)2, with the coefficientsa0 anda2 to be determined by a least-squares
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Figure 6: Variation ofβ with b/B

procedure. The results we obtained are:

α = +0.589+0.013

(

b
B

)2

(22)

β = −0.008+0.083

(

b
B

)2

, (23)

which are shown plotted on Figures 5 and 6. It is believed thatthe choice of quadratic variation with no
linear variation likea1(b/B) is appropriate and represents the trend of the points in bothcases.

Combining the two expressions in equations (22) and (23) as in equation (21) we have a general expres-
sion for the coefficient of discharge and its variation with relative width and head of the weir:

CD = 0.589−0.008
H
P
+

(

b
B

)2(

0.013+0.083
H
P

)

, (24)

which is a least-squares mathematical approximation to thelines on figure 10 of Kindsvater and Carter.

For a weir which extends the width of the channel,b = B, with no end contractions, equation (24)
becomesCD = 0.602+0.075H/P. For this full-width case Rehbock obtainedCD = 0.605+0.08H/P,
showing how the results agree.

7 The SIA formula

In 1924 theSchweizerischer Ingenieur- und Architekten-Verein(SIA), the Swiss Society of Engineers
and Architects, published a Standard containing the following expression (which we have here converted
from the dimensional expression presented in Kindsvater and Carter and a particular case presented by
Rehbock):

CD =

(

0.578+0.037

(

b
B

)2

+
3.615−3 (b/B)2

1000H +1.6

)(

1+0.5

(

b
B

)4( H/P
1+H/P

)2
)

, (25)
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in which the last term in the first bracket allows for real fluideffects, and the coefficient 1000 is actually
a dimensional one of units m−1. Here, we presume that those real fluid effects are due to viscosity, and

replace the 1000H by the expression in terms of a Reynolds number to the power 2/3, 0.047
(

gH3/ν2
)1/3

,
accurate to 1% forg= 9.8m andν = 1×10−6m2s−1. The full SIA expression is then, in dimensionless
terms:

CD =

(

0.578+0.037

(

b
B

)2

+
3.615−3 (b/B)2

0.047(gH3/ν2)1/3+1.6

)(

1+
1
2

(

b
B

)4( H/P
1+H/P

)2
)

. (26)

0.0

0.2

0.4

0.6

0.8

0.0 0.4 0.8 1.2 1.6 2.0

C
D

H/P

b/B= 1.0

b/B= 0.2

K&C: equation (24)
SIA: equation (26)

Figure 7: Comparison of formulae for relative widthb/B varying from 0.2 to 1 in steps of 0.2

We now compare the predictions of the Kindsvater and Carter and SIA formulae. We ignore the correc-
tions kb andkH specified in units of length in the former, and somewhat crudely useH = 0.5m in the
viscous term of the latter so that the first bracketed term in equation (26) becomes 0.585+0.031(b/B)2.
The results are plotted on Figure 7, for a range of widths fromb/B= 0.2 to 1, and for a range of relative
weir heights fromH/P= 0 to 2, although the stated restriction on equation (25) was that it be limited
to H/P≤ 1, namely where the weir occupies up to half the channel depth. It can be seen that the agree-
ment between the two expressions is relatively close. Kindsvater and Carter noted that the Swiss formula
agreed reasonably well with their results, but that ”the complexity of the formula is a deterrent to its use,
and the limits of applicability specified by the SIA prevent its being a comprehensive solution for a full,
practical variety of notch weirs”.

In fact, the evidence was to the contrary, that the Swiss expression was at least an explicit formula,
whereas the original Kindsvater and Carter results were presented only as lines on a graph, which have
only now in this present work been approximated by equations, culminating in the relatively simple
equation (24).

In many practical situations the geometric situation is rather more complicated than that of the exper-
iments, which were for smooth rectangular channels terminated by a smooth planar end containing a
single rectangular notch. The variability in results caused by differences of configuration would be
rather greater than between the formula which we have obtained and the SIA formula. There is little to
choose between the two approaches, but equation (24) is simpler.
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8 Conclusions and recommendations

We have shown just how poor the traditional assumptions of the theory of sharp-edged weirs are, and have
suggested that dimensional analysis is more rational and insightful than the traditional physical approach.
Then we considered the effects of end corrections and noted the experimental results of Kindsvater and
Carter that the Francis end correction formula is not accurate. We then obtained convenient mathematical
approximation formulae for their results. We also considered the Swiss SIA formula, and the formulae
presented here based on Kindsvater and Carter’s results. The latter is slightly simpler. Both could be
used, to give an idea of the magnitude of uncertainty.

However, one might end on an iconoclastic note, that the variation ofCD is so relatively small that, in
practical situations where the weir might not be smooth, or the channel not be rectangular, or the weir
not be a simple notch – it might be one of two or more as part of a larger structure and there might be
piers between them – it might usually be reasonable simply toassume a constantCD = 0.64, say, and to
use the expression

Q=
2
3

CD

√

2gbH3/2 ≈ 0.6
√

gbH3/2.
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9 Notation

Latin Symbols

a0, a1, a2 coefficients in polynomial

B width of channel

b width of weir

be effective width of weir

CD coefficient of discharge

Ce dimensional coefficient of discharge

d depth of water in channel

g gravitational acceleration

H head over weir

He effective head over weir

kb correction to weir width

kH correction to head

L length dimension

P height of crest above channel bottom

p pressure

Q discharge over weir

q discharge per unit width

T time dimension

U velocity of flow upstream

(u,v) velocity components, horizontally and vertically

Y elevation of streamline upstream

y vertical co-ordinate with origin at the crest

yD elevation of water surface above the crest

Greek Symbols

α function ofb/B appearing in expression forCD

β function ofb/B appearing in expression forCD

λ latitude

π1(. . .) function of arguments

ψ stream function:u= ∂ψ/∂y, v=−∂ψ/∂x

ρ fluid density
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