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Preface

A major dilemma in fl ood estimation is that the data 
on the largest observed fl oods, which should carry 
the greatest amount of information relevant to the 
estimation of extreme fl oods, are also the ones with the 
lowest level of accuracy and reliability. The inadequacy 
of rating curves, used to convert measured water levels 
to estimated fl ow rates, is a major source of the error.

Rating curve errors impose severe limitations on further 
improvements in fl ood estimation methods. They 
introduce bias into both at-site and regional fl ood 
frequency estimates and make it diffi cult to identify 
the true degree of non-linearity in catchment response 
to storm rainfall. Accordingly, improvements in the 
determination of the high fl ow end of rating curves 
is regarded as vital to further improvements in the 
reliability of fl ood estimates and was a major objective 
of Project FL3.

In this report, a number of issues with regard to rating 
curve determination are addressed. By building on 
basic hydraulic principles, this report demonstrates 
that existing practices are inadequate and the authors 
document a number of techniques to improve current 
practice.

Robert Keller
Project Leader
Initial CRC Flood Hydrology Program (1997-99)
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Abstract

The calculation of river fl ow from measurements of 
surface elevation (stage) is a fundamental problem 
in river engineering that has been surprisingly little 
investigated. Existing International and Australian 
Standards refl ect this lack of knowledge. The usual way 
in which stage and fl ow at a station are shown as being 
related is via a rating curve. Yet, the concept of a unique 
rating curve at a station is theoretically fl awed. The 
hydraulics of river fl ow show that slope as well as stage 
is a determinant of fl ow, and in principle it would be 
best also to measure the slope at a gauging station, and 
use this also to calculate discharge. In practice the 
slope often does not vary much over a range of fl ows 
and rates of changes of fl ow at a point; the reasonable 
and convenient assumption is implicitly made that fl ow 
and stage are connected by a unique relationship that 
can be represented by a rating curve. Unfortunately 
the accuracy of this approach is rarely examined in 
practice. 

This report considers a number of aspects of the problem 
of representing stage and discharge measurements 
and using them to calculate fl ow from subsequent 
stage measurements. A critique of existing Standards 
is presented. The hydraulics of fl ow in channels and 
at gauging stations is considered. Procedures are 
described which could be implemented if slope also 
were measured. As this is rarely done, a method is 
developed here which gives a correction to the fl ow 
calculated from a rating curve allowing for the variation 
of elevation (and slope) with time. This provides a 
correction to the well-known Jones method. Formulae 
are presented to estimate when these unsteady effects 
are signifi cant. For most gauging stations they are small, 
and a unique rating curve is a good approximation. 
Nevertheless the unsteady corrections are simply 
implemented, and a number of practical details for that 
are presented here.

A theoretical model is developed for a river with a 
gauging station affected by a local control. This is used 
to give an expression for the rating curve for low fl ows. 
Another expression is given for higher fl ows when the 
local control washes out, and the channel itself provides 
the control. The theory for both these ranges shows that 
in many cases the stage will vary approximately like the 
square root of discharge. This can be used to calculate 
an approximate rating curve in the absence of other 
information, or preferably, together with one or two 
ratings, to calibrate such a model. It is suggested that 
in presenting and approximating rating curves, plotting 
the square root of discharge against the stage has some 
advantages. Many data points from gaugings should 
plot roughly as a straight line, which can help the 
determination of the cease-to-fl ow point, as well as the 
possible extrapolation of the curve at high fl ows. It is 
shown how global approximation of the rating data can 
be implemented via a robust numerical method.
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Summary

The usual measurement of the state of a river at a 
gauging station is that of the stage, the surface elevation. 
While this is important in determining the danger of 
fl ooding, the volume fl ow rate past the gauging station is 
also important, notably to hydrologic investigations and 
practical operations with a river. Stage and discharge 
at a station are usually related by a rating curve 
determined from measurements. It is surprising that 
there has been little research done on the theoretical 
and practical aspects of this relationship. Reference 
books and publications of standards authorities show 
how limited is the state of the art. There has been little 
effort spent on applying hydraulics to the problem. 
Instead, relatively crude models and assumptions are 
still conventional practice, and usually the accuracy of 
these has not been tested. The main aims of the research 
of which this report is the main product have been

• To improve current methods of converting 
measured water levels to fl ow rates, especially for 
high fl ows; and

• Thereby to improve the reliability of fl ood 
estimates.

The report is divided into two main parts. The fi rst part 
is a more descriptive presentation that is intended to 
be able to be read without it being necessary to refer 
to the second, which consists of appendices providing 
technical details, as well as a presentation of the 
hydraulics of river fl ow. Initially in the fi rst part the 
physical problem of river fl ow past a gauging station 
is described. It is shown how the conventional method 
of relating fl ow uniquely to stage is only part of the 
necessary physical description, and that the concept 
of a unique rating curve is theoretically fl awed. If the 
slope of the river surface at the gauging station changes, 
whether due to conditions downstream changing, or to 
the passage of a fl ood, then calculating fl ows from the 
rating curve may be in error. At this stage reference 
is made to an appendix containing a review of the 
Australian and International Standards for calculating 
fl ow from stage, and some strong criticisms are made 
of them for providing little serious help in solving the 
technical problems encountered. 

An introduction to river hydraulics is then provided. 
It is shown how it would be better if the slope were 
measured routinely, and instead of stage-discharge 
relationships, stage-conveyance relationships were used, 
automatically including effects of backwater from 
downstream and unsteady fl ood effects. 

Next, the problem of correcting for a varying surface 
slope without measuring it directly is considered. A 
review of previous approaches is given, and a method is 
developed which expresses the surface slope in terms of 
the time derivatives of the stage. This gives a correction 
to the fl ow that is effectively an extension to the well-
known Jones method. Formulae are given to estimate 
when unsteady effects are worth correcting for, and 
some examples are presented. It is concluded that for 
most rivers the unsteady effects are small, but it is 
emphasised that relatively little extra effort is necessary 
to implement the corrections.

The problem considered next is that of the hydraulic 
derivation of rating curves when there is little rating 
information available. A mathematical model is 
developed for a reach of river with a gauging station 
and local control. This is then used to predict the rating 
curve for low fl ows, and when the control washes out, 
for high fl ows. In practice, the nature of the local control 
will often be too complicated to calculate the low fl ow 
end of the rating curve. However the use of theory for 
both low and mid- to high fl ows leads to the deduction 
that in many cases the stage varies like the square root 
of discharge, both at low fl ows and for mid to high 
fl ows. It is concluded that in the absence of any other 
information this can be used, together with one or two 
ratings, to generate a rating curve.

In the next section, the representation and approximation 
of rating curves is considered. A critique is made of 
log-log plots, and it is suggested that plotting the square 
root of discharge against the stage has some advantages. 
In particular, both for low and high fl ows, many data 
points from gaugings should plot in almost straight 
lines, which can help the determination of the cease-
to-fl ow point, as well as the possible extrapolation of 
the curve at high fl ows. A number of examples are 
considered and it is concluded that this suggestion has 
promise. Finally it is shown how global approximation 
of the rating data can be implemented via a robust 
numerical method to generate rating curves.
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1. Introduction

1.1 Background

At the AWRC Workshop on Surface Water Data in 
Canberra in 1983, J.A.H. Brown, the surface water 
resource consultant for the Commonwealth 
Government’s ‘Water 2000’ study, called for the need 
to examine and “rationalise the whole question of 
discharge rating curves”. It “has received relatively 
little attention in technical literature” and “is covered 
in a general fashion in the stream gauging manuals”, 
quoted in Chester (1986).

Since 1983 there has been little progress along those 
suggested directions, despite the importance of 
determining the actual state of a river, both under 
extreme events and in daily hydrologic practice. To 
address some of problems identifi ed by the water 
industry and by researchers, in September 1997 the 
Cooperative Research Centre for Catchment Hydrology 
began a research program “Hydraulic Derivation of 
Stream Rating Curves”, which had as its main 
objectives:

• To improve current methods of converting 
measured water levels to fl ow rates, especially for 
high fl ows; and

• Thereby to improve the reliability of fl ood 
estimates.

This report is the main outcome of the project.

1.2 Nature of the problem - river hydraulics
 and rating curves

Almost universally the routine measurement of the state 
of a river is that of the stage, the surface elevation at 
a gauging station, usually relative to an arbitrary local 
datum. While surface elevation is an important quantity 
in determining the danger of fl ooding, another important 
quantity is the actual fl ow rate past the gauging station. 
Accurate knowledge of this instantaneous discharge 
- and its time integral, the total volume of fl ow - 
is crucial to many hydrologic investigations and to 
practical operations of a river and its chief environmental 
and commercial resource, its water. Examples include 
decisions on the allocation of water resources, the 
design of reservoirs and their associated spillways, the 
calibration of models, and the interaction with other 
computational components of a network.

The traditional way in which volume fl ow is inferred 
is for a rating curve to be derived for a particular 
gauging station, which is a relationship between the 
stage measured and the fl ow passing that point. The 
measurement of fl ow is done at convenient times by 
traditional hydrologic means, with a current meter 

Figure 1.1 Stage-discharge diagram showing the steady-fl ow rating curve and a possible 
trajectory of a particular fl ood event showing the effect of a larger surface 
slope on the rising limb and smaller slope on the falling limb.
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measuring the fl ow velocity at enough points over the 
river cross section so that the volume of fl ow can be 
obtained for that particular stage, measured at the same 
time. By taking such measurements for a number of 
different stages and corresponding discharges over a 
period of time, a number of points can be plotted on a 
stage-discharge diagram, and a curve drawn through 
those points, giving what is hoped to be a unique 
relationship between stage and fl ow, the rating curve, 
as shown in Figure 1.1. This is then used in the future 
so that when stage is routinely measured, it is assumed 
that the corresponding discharge can be obtained from 
that curve, such as the discharge for a particular value 
of stage, Qcalculated ,  shown in the fi gure. The possibly 
looped trajectory of a fl ood event shown on the fi gure 
will be explained shortly below.

There are several problems associated with the use of a 
rating curve:

• The assumption of a unique relationship between 
stage and discharge is, in general, not justifi ed. 

• Discharge is rarely measured during a fl ood, and 
the quality of data at the high fl ow end of the curve 
might be quite poor.

• It is usually some sort of line of best fi t through a 
sample made up of a number of points - sometimes 
extrapolated for higher stages.

• It has to describe a range of variation from no 
fl ow through small but typical fl ows to very large 
extreme fl ood events.

There are a number of factors which might cause the 
rating curve not to give the actual discharge, some of 
which will vary with time. Boyer (1964) described a 
list of factors affecting the rating curve, or what he 
called a shifting control. These include:

• The channel changing as a result of modifi cation 
due to dredging, bridge construction, or vegetation 
growth.

• Sediment transport - where the bed is in motion, 
which can have an effect over a single fl ood event, 
because the effective bed roughness can change 
during the event. As a fl ood increases, any bed 
forms present will tend to become larger and 
increase the effective roughness, so that friction is 
greater after the fl ood peak than before, so that the 
corresponding discharge for a given stage height 
will be less after the peak. This will also contribute 

to a fl ood event showing a looped curve on a stage-
discharge diagram as shown on Figure 1.1. Simons 
and Richardson (1962) have extensively examined 
this phenomenon.

• Backwater effects - changes in the conditions 
downstream such as the construction of a dam or 
fl ooding in the next waterway downstream. 

• Unsteadiness - in general the discharge will change 
rapidly during a fl ood, and the slope of the water 
surface will be different from that for a constant 
stage, depending on whether the discharge is 
increasing or decreasing. The effect of this is for 
the trajectory of a fl ood event to appear as a loop 
on a stage-discharge diagram such as Figure 1.1.

• Variable channel storage - where the stream 
overfl ows onto fl ood plains during high discharges, 
giving rise to different slopes and to unsteadiness 
effects.

• Vegetation - changing the roughness and hence 
changing the stage-discharge relation.

• Ice - which we can ignore in the Australian 
context.

Some of these can be allowed for by procedures that 
we develop in this report.

A typical set-up of a gauging station where the water 
level is regularly measured is given in Figure 1.2 that 
shows a longitudinal section of a stream. Downstream 
of the gauging station is usually some sort of fi xed 
control which may be some local topography such as a 
rock ledge which means that for relatively small fl ows 
there is a relationship between the head over the control 
and the discharge which passes. This will control the 
fl ow for small fl ows. For larger fl ows the effect of the 
fi xed control is to become unimportant, to “drown out”, 
and for some other part of the stream to control the 
fl ow. If the downstream channel length is long enough 
before encountering another local control or waterway, 
the section of channel downstream will itself become 
the control, where the control is due to friction in the 
channel, giving a relationship between the fl ow and the 
slope in the channel, the stage, channel geometry, and 
roughness. Finally, control might be due to a larger river 
downstream shown as a distant control in the fi gure, or 
even the sea. There may be more intermediate controls 
too, but in practice, the precise natures of the controls 
are usually unknown.
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Something that the concept of a rating curve ignores 
is the effect of unsteadiness, or variation with time. 
In a fl ood event the slope of the water surface will 
be different from that for a constant stage, depending 
on whether the discharge is increasing or decreasing. 
Figure 1.2 shows the increased surface slope as a fl ood 
approaches the gauging station. As the fl ood increases, 
the surface slope in the river is greater than the slope for 
steady fl ow at the same stage, and hence, according to 
conventional simple hydraulic theory explained below, 
more water is fl owing down the river than the rating 
curve would suggest. The effect of this is shown on 
Figure 1.1, with the discharge marked Qrising obtained 
from the horizontal line drawn for a particular value 
of stage. When the water level is falling the slope and 
hence the discharge inferred is less. 

The effects of this might be important - the peak 
discharge could be signifi cantly underestimated during 
highly dynamic fl oods, and also since the maximum 
discharge and maximum stage do not coincide, the 
arrival time of the peak discharge could be in error 
and may infl uence fl ood warning predictions. Similarly 
water-quality constituent loads could be underestimated 
if the dynamic characteristics of the fl ood are ignored, 
while the use of a discharge hydrograph derived 
inaccurately by using a single-valued rating relationship 
may distort estimates for resistance coeffi cients during 
calibration of an unsteady fl ow model. 

Figure 1.2 Section of river showing different controls at different water levels and a fl ood moving 
downstream

1.3 A critique of the International and
 Australian Standards for the
 determination of the stage-discharge
 relation

It might be expected by practitioners that good 
instructions and guidance would be provided by the 
International and Australian Standards, which are the 
same, the latter being a reproduction of the former. 
However, the Standards seem confusing and poorly 
prepared. In many places they state the obvious, but 
where sophisticated or modern methods are required 
they have almost no serious guidance for practical 
implementation. In Appendix A of this report a detailed 
review of the Standards is presented. That review stands 
alone, and is not described here. Instead, we progress 
to an introduction to the physical processes at work in 
a river and at gauging stations.

High water

Low water

Local controlGauging station

Distant control

Flood

Channel control

⊗
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2. An Introduction to River Hydraulics
 - Stage, Slope, and Discharge

Although the factors affecting the stage and discharge at 
a gauging station shown in Figure 1.2 seem complicated, 
the underlying processes are capable of quite simple 
description. 

2.1 Low flow

If the fl ow is small then the gauging station is likely to 
be under the infl uence of a local control downstream. 
There might be something like a rock ledge or an 
installed weir providing a unique relationship between 
stage and fl ow at that point. Between that point and the 
gauging station upstream, unless they are very close 
together, the governing equations for open channel fl ow 
will apply. 

In Appendix D the hydraulics of a downstream control 
and a gauging station are considered, and the problem 
is solved assuming that the channel between the two 
is prismatic, and obtaining an analytic solution to the 
gradually varied fl ow equations. In Appendix D.4 it is 
shown that in the low fl ow limit at the gauging station, 

   
 (D.10)

where hG is the depth at the gauging station, hcsf is 
the cease-to-fl ow depth there, Hc(Q) is the head at the 
control, shown as a function of discharge Q. Generally, 
for sharp and broad-crested weirs this will vary like 
Q2/3 or  Q1/2, whereas the neglected terms of order Q2 
give the head loss between the gauging station and 
the control. For suffi ciently low fl ow these will be 
negligible, showing that the stage-discharge relationship 
is given by that of the control, and the reach between 
gauging station and control is essentially a reservoir 
with fl ow through it, where dynamical effects on the 
surface are negligible, and the surface is horizontal 
with elevation given by the control. This makes matters 
rather diffi cult in deriving a rating curve theoretically, 
as the complicated geometry of natural controls makes 
a theoretical determination usually not possible.

What this and the actual detailed solution in Appendix 
D.3 show is that there is a relationship between stage 
and discharge at the gauging station when it is under 

the effects of the local control. This is no longer the 
case for larger fl ows where the control is washed out, 
and control is effectively by stream control, which we 
now consider.

2.2 Intermediate and high flows

In a typical stream, where all wave motion is of 
relatively long time and space scales, the governing 
equations are the long wave equations, which are a pair 
of partial differential equations for the stage and the 
discharge at all points of the channel in terms of time 
and distance along the channel. These are presented in 
Appendix B.1. One is a mass conservation equation, 
the other a momentum equation. Under the conditions 
typical of most fl ows and fl oods in natural waterways, 
however, the fl ow is suffi ciently slow that the equations 
can be simplifi ed considerably. In Appendix B.2 it is 
shown that most terms in the momentum equation are 
of a relative magnitude given by the square of the 
Froude number, which is U2 / gd , where U is the fl uid 
velocity, g is the gravitational acceleration, and d is the 
mean depth of the waterway. In most rivers, even in 
fl ood, the square of the Froude number is small. For 
example, a fl ow of 1 m/s with a depth of 2m has F2 
l 0.05. Under these circumstances, as shown in the 
Appendix, a surprisingly good approximation to the 
momentum equation of motion for fl ow in a waterway 
is the simple equation from (B.26) in the Appendix:

   
 (2.1)

where ✔ is the surface elevation, x is distance along 
the waterway and  S f  is the friction slope. The usual 
practice is to use an empirical friction law for the 
friction slope in terms of a conveyance function K, so 
that we write

  
 (2.2)

in which Q is the instantaneous discharge, and where 
the dependence of K on stage at a section may be 
determined empirically, or by a standard friction law, 
such as Manning’s or Chézy’s law: 

  

 (2.3)

2
csf order  of Terms)( QQHhh cG ++= , 

0=+
∂
η∂

fS
x

, 

2

2

K

Q
S f = , 

Manning’s law: 
3/2

3/51

P

A

n
K =  

 or Chézy: 
2/1

2/3

P

A
CK = , 
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where n and C are Manning’s and Chézy’s coeffi cients 
respectively, while A is cross-sectional area and P is 
wetted perimeter, which are both functions of depth 
and x, as the cross-section usually changes along the 
stream. In most hydrographic situations K would be 
better determined by direct measurements rather than 
by these formulae as they are approximate only and the 
roughness coeffi cients are usually poorly known.

Even though Manning’s and Chézy’s laws were 
originally intended for fl ow which is both steady 
(unchanging in time) and uniform (unchanging along 
the waterway), they have been widely accepted as the 
governing friction equations in more generally unsteady 
and non-uniform fl ows. Hence, substituting (2.2) into 
(2.1) gives us an expression for the discharge, where we 
now show the functional dependence of each variable: 

 (2.4)

where we have introduced the symbol      
for the slope of the free surface, positive in the 
downstream direction, in the same way that we use 
the symbol Sf for the friction slope. This gives us an 
expression for the discharge at a point and how it might 
vary with time. Provided we know (1) the stage and 
the dependence of conveyance K on stage at a point 
from either measurement or Manning’s or Chézy’s 
laws, and (2) the slope of the surface, equation (2.4) 
gives a formula for calculating the discharge Q which 
is as accurate as is reasonable to be expected in river 
hydraulics. It shows how the discharge actually depends 
on both the stage and the surface slope. 

Traditional hydrography assumes that discharge depends 
on stage alone. In many situations this might be a 
good approximation to reality, if the slope does not 
vary much. If the slope does vary under different 
backwater conditions or during a fl ood, then a better 
hydrographical procedure would be to gauge the fl ow 
when it is steady, and to measure the surface slope Sη, 
thereby enabling a particular value of K to be calculated 
for that stage. If this were done over time for a number 
of different stages, then a stage-conveyance relationship 
could be developed which should then hold whether 
or not the slope is varying. Subsequently, in day-to-
day operations, if the stage and the surface slope were 
measured, then the discharge calculated from equation 
(2.4) should be quite accurate, within the relatively 
mild assumptions made so far.

)())(()( tStKtQ ηη= , 

xS ∂η∂−=η /  

If hydrography had followed the path described above, 
of routinely measuring surface slope and using a 
stage-conveyance relationship, the science would have 
been more satisfactory. Effects due to the changing of 
downstream controls with time, downstream tailwater 
conditions, and unsteadiness in fl oods would have 
been automatically incorporated, both at the time of 
determining the relationship and subsequently in daily 
operational practice. However, for the most part slope 
has not been measured, and hydrographical practice has 
been to use rating curves instead. The assumption behind 
the concept of a discharge-conveyance relationship or 
rating curve is that the slope at a station is constant 
over all fl ows and events, so that the discharge is 
a unique function of stage Qr(η)  where we use the 
subscript r to indicate the rated discharge. Instead of the 
empirical-rational expression (2.4), traditional practice 
is to calculate discharge from the equation

   
 (2.5)

thereby ignoring any effects that downstream backwater 
and unsteadiness might have, as well as the possible 
changing of a downstream control with time.

By comparison, equation (2.4), based on a convenient 
empirical approximation to the real hydraulics of the 
river, contains the essential nature of what is going on 
in the stream. It shows that, although the conveyance 
might be a unique function of stage that it is possible to 
determine by measurement, because the surface slope 
will in general vary throughout different fl ood events 
and downstream conditions, discharge in general does 
not depend on stage alone.

The above argument suggests that ideally the concept of 
a stage-discharge relationship be done away with, and 
replaced by a stage-conveyance relationship. Of course 
in many, even most, situations it might well be that the 
surface slope at a gauging station does vary but little 
throughout all conditions, in which case the concept of a 
stage-discharge relationship would be accurate. Below 
we quantify this and obtain criteria. In most situations it 
is indeed the case that there is little deviation of results 
from a unique stage-discharge relationship.

))(()( r tQtQ η= , 
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3. The Use of Surface Slope in
 Determining Flow

We have seen above, that according to the current state 
of knowledge of river hydraulics, equation (2.4) shows 
how discharge depends on stage and free-surface slope 
in the relationship     , where here we have 
not shown the time dependence of each quantity, 
merely noting that if we know the conveyance-stage 
relationship, then a measurement of stage and of slope 
gives the discharge. This knowledge is implicit in the 
method we are about to describe. Subsequently we 
place it on a more secure footing and recommend it 
as the ideal method to use, while recognising that it is 
easier just to use measurements of stage.

3.1 The stage-fall-discharge method of
 streamflow measurement

This is described at some length in Chapter 8 of Herschy 
(1995), where there is considerable discussion of the 
presence of “backwater”, and a reader might be forgiven 
for fi nding the term confusing. For example, it contains 
the following paragraph, which is actually an insightful 
description, but it becomes rather clearer if “backwater” 
is replaced by “surface slope” in some occurrences:

Backwater is one of these factors whereby the 
velocity is retarded so that a higher stage is 
necessary to maintain a given discharge than 
would be necessary if the backwater were not 
present. Backwater is caused by constrictions 
such as narrow reaches of a stream channel or 
artifi cial structures downstream such as dams 
or bridges or downstream tributaries. All of 
these factors can increase or decrease the energy 
gradient for a given discharge and cause variable 
backwater conditions. If, however, the backwater 
caused by a fi xed obstruction is always constant 
at any given stage, the discharge rating is a 
function of stage only. Constant backwater, as 
caused by section controls for example, will 
not adversely affect the simple stage-discharge 
relation. The presence of variable backwater, 
on the other hand, does not permit the use of 
simple stage -discharge relations for the accurate 
determination of discharge.

, q

 ηη= SKQ )(

If one adopts the relationship expressed by equation 
(2.4) then it seems that what is being described is actually 
the effects of variable surface slope. The introduction of 
surface slope might clarify some confusing terminology 
in the literature. Herschy goes on to describe

… the so-called stage-fall-discharge method 
using a reference gauge (base gauge), at which 
stage is measured continuously and current 
meter measurements are made occasionally, and 
an auxiliary reference gauge some distance 
downstream where stage is also measured 
continuously. When the two reference gauges are 
set to the same datum, the difference between 
the two stage records is the water surface fall 
and this provides a measure of water surface 
slope. The shorter the slope reach, the closer the 
relation between fall and water surface slope. 
On the other hand, the longer the slope reach, 
the smaller the percentage uncertainty in the 
recorded fall.

Precise time synchronisation between base gauge 
and auxiliary gauge is very important if stage 
changes rapidly, or when fall is small, Reliable 
records can usually be computed when fall 
exceeds about 0.1m.

… Under backwater conditions, therefore, the 
fall as measured between the base gauge and 
the auxiliary gauge is used as a third parameter 
and the rating becomes a stage-fall-discharge 
relation.

We would go further than that and observe that, if the 
water slope does vary at a station, then the slope (or 
fall) should always be used as an additional parameter. 

Both Australian Standard AS 3778.2.3 (1990) and 
Herschy (1995) describe two Fall methods. One is 
the Constant Fall Method, and the other (variously 
described as Normal Fall or Limiting Fall) seems to 
be a procedure for applying the constant fall method 
“when discharge is affected by backwater” and using 
simple rating methods when it is not so affected. 
To the writers the distinction seems arbitrary, and if 
one has the measuring and recording equipment in 
place and operational, then the slope (or fall) should 
always be used. Our sympathy for the Normal Fall or 
Limiting Fall methods has not been helped, either by the 
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misleading nomenclature or the inadequate description 
in Australian Standard AS 3778.2.3, which is the same 
as the International Standard, or the complicated and 
arbitrary presentation in Herschy (1995).

The Constant Fall Method, also poorly named, is 
based on the equation, presented in Australian Standard 
3778.2.3 without justifi cation, and which uses 
misleading and confusing terminology that we try to 
avoid here. Consider the equation

 (3.1)

where Q is the discharge corresponding to the fall in 
surface level Δη between the two gauges, Qn is the 
discharge which would occur for the same stage if 
the fall were Δηn ,  some standard or reference fall, 
and f () shows a functional relationship. It is supposed 
that enough information is present to determine the 
functional relationship, and the references vaguely 
describe a procedure for determining it. Then it is noted 
that the procedure may be “aided by the fact that as a 
fi rst approximation” the functional relationship is such 
that

 (3.2)

The description then goes on to suggest that this may 
be used to refi ne the determination of the function 
f (Δη/Δηn ). The Standard seems to be suggesting here 
a simultaneous determination of two functions, both 
for Qn as a function of stage, and the relationship 
f (Δη/Δηn ), which would seem to be a very ambitious 
goal, particularly based on the limited data that are 
usually available.

Equation (3.2) is actually based on Manning’s and 
Chézy’s friction laws that are both well established and 
widely used in other applications. They could surely 
be adopted, with no need to go to the more general 
formulation (3.1). It is not the role of the hydrographer 
to determine the nature of the friction law based on a 
limited and probably not very accurately known data 
set. A more satisfactory procedure would be to use 
equation (2.4), which shows how discharge depends 
on stage and free-surface slope (which determines the
fall of course) in the relationship                  , where 







η∆
η∆=
nn

f
Q

Q
, 

nnQ

Q

η∆
η∆= . 

ηη= SKQ )(

there is a considerable corpus of knowledge as to 
how the conveyance depends on cross-section and 
roughness.

To test the incorporation of slope (fall), with a view 
to developing below a general method based on two 
point measurements of stage, we considered several 
examples provided in the references. 

In Figure 3.1 are the results from Figure 5 of Australian 
Standard AS 3778.2.3 (1990), presented here in Table 
F.1 in the Appendices, which gives a value for fall 
for each individual point, noting that the standard fall 
was 0.30m. We scaled the values from the source 
using a ruler, then took the individual falls and scaled 
discharges Q and used equation (3.2) to compute the 
reference discharge Qn . Both sets of points are plotted 
on the fi gure. It can be seen that incorporating the fall 
has led to a noticeable clustering of the points onto a 
curve. We fi tted polynomials to each set of points and 
found that the relative scatter of the slope-corrected 
points from the curve was about half that of the raw 
data.

We repeated this exercise for the data given in Figure 8 
of Australian Standard AS 3778.2.3 (1990). The values 
were scaled off, and are presented here in Table F.2 and 
Figure 3.2. Values of fall were given in the original, 
but not the reference fall, so that the ‘slope corrected’
discharge is actually the quantity    , which as the 
values of the fall were roughly 1m, meant that the two 
curves are plotted close together. In this case there 
seems to be little effect of correcting using the fall, 
and a polynomial fi t and computation of the variation 
showed the two sets of results to have very similar 
scatter. 

η∆/Q
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Figure 3.1 Example from Figure 5 of Australian Standard AS 3778.2.3 (1990) showing measured 
discharges and values corrected for effects of slope.

Figure 3.2 Data from Figure 8 of Australian Standard 3778.2.3 (1990)
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The results from Table 8.1 of Herschy (1995), 
reproduced here in Table F.3, show some unusual 
behaviour, in that there is a markedly linear relationship 
between stage and discharge, unlike any other results 
we have seen. The results were described as being for 
a station with severe backwater from a hydroelectric 
dam, and it is quite possible that there are unsteady 
effects present. In spite of this, the results of Figure 3.3  
show some condensing onto a single curve.

Figure 3.3 Results from Table 8.1 of Herschy (1995).

Figure 3.4 Results from Table 8.5 of Herschy (1995)

Of rather more interest are the points from Table 8.5 of 
Herschy (1995), reproduced in Table F.4, and shown in 
Figure 3.4. In this case there is a substantial coalescing 
of the points when discharge was divided by the square 
root of the fall.
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3.2 The use of slope in determining flow

It is strange that the references cited above seem to 
have obtained the main results (equations (3.1) and 
(3.2)) with no apparent justifi cation. We have seen that 
there is a considerable amount of hydraulic justifi cation 
for using equation (3.2), but as given by equation 
(2.4). It could not be claimed that this is a theoretical 
justifi cation, as it is based on empirical friction laws but, 
based on the cases studied above, the incorporation of 
slope appears to give a superior and more fundamental 
description of the processes at work, and handles 
both long-term effects due to downstream conditions 
changing and short-term effects due to the fl ow 
changing.

This suggests that a better way of determining 
streamfl ows in general, but primarily where backwater 
and unsteady effects are likely to be important, is for 
the following procedure to be followed: 

1. At a gauging station, two measuring devices for 
stage be installed, so as to be able to measure the 
slope of the water surface at the station. One of 
these could be at the section where detailed fl ow-
gaugings are taken, and the other could be some 
distance upstream or downstream such that the 
stage difference between the two points is enough 
that the slope can be computed accurately enough. 
As a rough guide, this might be, say 10cm, so that 
if the water slope were typically 0.001, they should 
be at least 100m apart.

2. Over time, for a number of different fl ow conditions 
the discharge Q would be measured using 
conventional methods such as by current meter. 
For each gauging, both surface elevations would be 
recorded, one becoming the stage η to be used in the 
subsequent relationship, the other so that the surface 
slope Sη  can be calculated. Using equation (2.4),
    , this would give the 
appropriate value of conveyance K for that stage, 
automatically corrected for effects of unsteadiness 
and downstream conditions.

3. From all such data pairs (ηi,Ki) for i = 1,2,..., the 
conveyance curve (the functional dependence of K 
on η) would be found, possibly by piecewise linear 
or by global approximation methods, in a similar 
way to the description of rating curves described 
below. Conveyance has units of discharge, and as 
the surface slope is unlikely to vary all that much, 

)())(()( tStKtQ ηη=

all the remarks we make below in Section 6 apply, 
where we note that there are certain advantages 
in representing rating curves on a plot using the 
square root of the discharge, and it my well be that 
the stage-conveyance curve would be displayed 
and approximated best using    axes.

4. Subsequent routine measurements would obtain 
both stages, including the stage to be used in the 
stage-conveyance relationship, and hence the water 
surface slope, which would then be substituted into 
equation (2.4) to give the discharge, corrected for 
effects of downstream changes and unsteadiness. 

3.3 Slope-area method

The Slope-area method is used where there have not 
been measurements of discharge to provide a rating 
curve. It uses cross-sectional information and the 
Manning and Chézy friction laws, together with slope, 
to calculate the discharge approximately. It seems 
somewhat strange that slope has been used in this 
approximate context and not in situations where rather 
more is known, such as we have described in Section 
3.2 above. The method is described in Chapter 7 of 
Herschy (1995) and in Australian Standard AS 3778.3.3 
(1990). Herschy writes:

The most important use of the slope-area method 
is for the indirect determination of fl ood 
discharge, normally after the fl ood has passed. 

Although not mentioned in the Standard, the Slope-
area method is often implemented in approximate 
applications where the surface slope is not even known, 
but is assumed to be equal to the bed slope or mean 
slope of the surrounding country.

It is necessary to know the mean area A and the wetted 
perimeter P, both properties of the cross-section in a 
reach of channel of known length; the slope of the 
water surface or the energy gradient in the same reach 
of channel; and the character of the streambed so that 
a suitable roughness factor may be chosen. Then either 
of the friction laws is used:

( )η,K  

Manning: 2/1
3/2

3/51
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The references cited above state that the slope of the 
energy gradient, containing kinetic energy contributions 
should be calculated if the section changes much over 
the reach. This seems an unnecessary complication, 
as the friction factor is approximately known at best, 
and the correction is of the order of the square of the 
Froude number, which in most fl ood situations will be 
small and its relative contribution is dwarfed by the 
inaccuracy of knowledge of the friction factor.

Both references cited give the same table of friction 
factors for channels of varying characteristics, however 
Chow (1959), Barnes (1967) and Hicks and Mason 
(1991) provide more useful data, with interesting 
pictures and friction factors for a variety of streams.
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4. Correcting for Unsteady Effects in
 Obtaining Discharge from Stage

4.1 Introduction

In this section we consider the problem of calculating 
discharge from stage records where the effects of 
variable slope may be signifi cant but it has not been 
measured, as is usually the case. The relationship of 
equation (2.4),                , shows math-
ematically how a particular fl ood event can have a 
looped trajectory as shown in Figure 1.1. As a fl ood 
wave approaches, the surface gradient (hence discharge) 
is larger than the steady surface slope (and discharge) 
for the same stage, so that on a stage-discharge diagram 
the trajectory lies to the right of the rating curve, and 
after the peak passes the gradient will be smaller and 
so the trajectory lies to the left. The whole trajectory 
will, in general, form a loop as shown in the fi gure. For 
a large fl ood the head of the loop may, as shown in the 
fi gure, be outside the range of the rating curve. In many 
cases, however, the deviation of the actual surface slope 
from the steady slope may not be large, such that no 
corrections are necessary. We need to devise a means 
of estimating when this is so and when corrections may 
have to be made.

It is interesting that the maximum discharge in a fl ood 
event does not occur when the water level is highest or 
when the slope, the gradient of that level, is greatest. 
Using equation (2.4), the greatest discharge occurs 
when the combined effects of the driving slope and the 
conveyance K increasing with stage are greatest. We 
could differentiate the expression with respect to time 
t and set the resulting expression for dQ / dt to zero to 
give us an equation that could be solved, but it seems 
simpler, given the discrete numerical nature of much of 
the data, simply to interpolate the maximum discharge 
from the sequence of calculated discharge readings. 
That maximum discharge corresponds to the point on 
the looped fl ood trajectory in Figure 1.1 where the 
tangent is vertical, while the maximum stage is where 
the tangent is horizontal.

g

)())(()( tStKtQ ηη=

4.2 Using slope and the stage-conveyance
 formulation

As the method described in Section 3.2 above uses 
the actual measured slope, together with a known 
relationship between stage and conveyance, the method 
automatically corrects for unsteadiness and the methods 
of this section are not necessary. We go on now to 
describe previous approaches to the problem where 
slope has not been measured, and then present a method 
that is of higher accuracy than previous ones. For fast-
rising streams such corrections will be more accurate, 
but in many cases the surface slope at a station does not 
vary much, and there is no need to make the corrections 
of this section. Below in Section 4.4.2 we present 
formulae for estimating when this is the case.

4.3 Previous approaches to calculating
 unsteady corrections

In conventional hydrography the stage is measured 
repeatedly at a single gauging station so that the time 
derivative of stage can easily be obtained from records 
but the surface slope along the channel is not measured 
at all. The methods of this section are all aimed at 
obtaining the slope in terms of the stage and its time 
derivatives at a single gauging station. The simplest 
and most traditional method of calculating the effects 
of unsteadiness has been the Jones formula, derived 
by B. E. Jones in 1916 (see for example: Chow, 1959; 
Henderson, 1966). The principal assumption is that to 
obtain the slope, the x derivative of the free surface, 
we can use the time derivative of stage which we can 
get from a stage record, by assuming that the fl ood 
wave is moving without change as a kinematic wave 
(Lighthill and Whitham, 1955) such that it obeys the 
partial differential equation:

 (4.1)

where h is the depth and c is the kinematic wave 
speed given by the rate of change of fl ow with respect 
to cross-sectional area, the Kleitz-Seddon law. Using  
        , where Qr is the steady rated discharge 
corresponding to stage η, where the slope has been 
taken to be the mean slope of the stream S , this gives

 (4.2)

where B is the width of the surface.
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The Jones method uses equation (4.1) to give 
an approximation for the surface slope: 
   Then the simple geometric 
relation between surface gradient and depth gradient 
can   be   used,   that      giving the 
approximation

 

and recognising that the time derivative of stage and 
depth are the same, ∂h / ∂t = ∂η / ∂t , equation (2.4) 
gives

 (4.3)

If we divide by the steady discharge corresponding to 
the rating curve we obtain

 (Jones)

In situations where the fl ood wave does move as a 
kinematic wave, with friction and gravity in balance, 
this theory is accurate. In general, however, there will 
be a certain amount of diffusion observed, where the 
wave crest subsides and the effects of the wave are 
smeared out in time. Henderson (1966) modifi ed the 
Jones formula by allowing for the subsidence of the 
wave crest, where a parabola approximates the fl ood 
wave. He obtained

   
 (Henderson 9-92)

where r = S / Sw in which Sw is the wave slope, equal 
to the elevation increase of the fl ood wave divided by 
the length over which it occurs. A similar approach 
was adopted by Di Silvio (1969), who used a triangular 
approximation to the fl ood wave. Both approaches 
assume the nature of what is being sought. 

Gergov (1971) based his approach on manipulation 
of the long wave equations. There seem to be some 
problems with it, including some unjustifi ed 
assumptions.  A.C.T. Electricity and Water (1990) found 
that it gave poor results.
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Fread (1975) adopted a rather more rational approach 
but applied it only to a wide channel. As described 
above, the main problem is to approximate the space 
derivative. Fread used the approximation for the space 
derivative that Henderson used in (Henderson 9-92), 
but he substituted into the full momentum equation 
(similar to equation (B.2) in the Appendix). He then 
made the approximation that the kinematic wave speed 
is 1.3 times the fl uid velocity and gave an expression 
for r making some further approximations about the 
nature of the fl ood wave. Then he replaced partial 
derivatives in the dynamic long wave equation by fi nite 
difference expressions and substituted into Manning’s 
equation to give a nonlinear transcendental equation for 
the discharge Q that could be solved over a number of 
time steps to give the discharge hydrograph. He obtained 
good results when compared with his observations for 
the Mississippi and a tributary. However the method 
seems to be arbitrary, particularly in the characterisation 
of the shape of the hydrograph. The case of multiple 
peaks seems to be diffi cult to characterise.

Weinmann (1977, p62) described the approach of 
Koussis (1975), who incorporated the Jones formula 
into a kinematic routing model corrected for dynamic 
effects. Weinmann (p141) stated: ‘’its main advantage 
is that it allows the approximate conversion of stage to 
discharge hydrographs and vice versa’’. However, it was 
primarily concerned with the process of fl ood routing, 
and was preoccupied with incorporating a looped 
rating curve into the method. This seems somewhat 
unnecessary, as the trajectory of a fl ood event may be 
looped, but the rating curve is by defi nition that for a 
steady fl ow which defi nes implicitly the conveyance, 
or the relationship between fl ow and surface slope. 
Once that has been established it can be used as part 
of computations - it does not matter that in routing 
computations the discharge is not that corresponding to 
the rating curve.

The work of Faye and Cherry (1980) is the most 
rational model for the determination of the effects of 
unsteadiness to date. They considered the governing 
long wave equations ((B.6) and (B.7) in the Appendices 
below) and eliminated one space derivative between 
them, leaving the time derivatives and the space 
derivative of stage. To eliminate this they made the 
approximation of the Jones method, that the wave 
motion is that of a kinematic wave. This left a differential 
equation for the discharge that could be solved. 
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A.C.T. Electricity and Water (1990), written by 
Christopher Zoppou, provides an interesting comparison 
of the various methods. It was concluded that the 
Faye and Cherry and Fread models were the most 
successful. It is the writers’ view that both models 
have a signifi cant disadvantage, different in each case: 
Fread adopted Henderson’s approximate model for 
the wave subsidence, while Faye and Cherry did not 
properly account for the subsidence. Zoppou noted that 
the problem associated with these models is that of 
estimating the resistance slope. As has been noted in 
Section 2, measuring the slope of the surface would 
overcome almost all problems of such methods by 
bypassing them.

Birkhead and James (1998) used Muskingum routing 
of fl oods from points where the rating curve is known 
to points where it is not known. They made some 
procrustean assumptions, including a power law 
relationship for the stage-discharge relationship, which 
would not seem to reveal the nature of what is going on 
in a waterway.

Singh, Li and Wang (1998) considered approximations 
to a u-h formulation of the long wave equations for a 
rectangular canal that are most valid near a fl ood peak. 
This was a modifi cation to the Jones method similar to 
those obtained by Henderson and Di Silvio, but does 
not seem to provide a general method.

Overall, the situation as described above seems to be 
unsatisfactory. It is desirable to have a method that is 
capable of processing stage records and being able to 
calculate the corresponding discharges based on rational 
theory, and it is that which we now attempt to provide.

4.4 A new method for calculating the effects of
 unsteadiness

4.4.1 Presentation of the method

Appendix C provides the theoretical derivation of two 
methods for calculating the discharge. The derivation 
of both is rather lengthy and is not presented here in 
the body of this Report. The fi rst method, described 
in Appendix C.1 uses the full long wave equations 
and approximates the surface slope using a method 
based on a linearisation of those equations. The result 
is a differential equation (C.5) for dQ / dt in terms of 
Q and stage and the derivatives of stage dη / dt and 

d2η / dt2 , which can be calculated from the record 
of stage with time. It can be solved numerically, and 
below we describe some results.

The next method, described in Appendix C.2, is rather 
simpler, and is based on a low-inertia approximation to 
the long wave equations, where inertial terms, which 
are of the order of the square of the Froude number, 
are ignored, giving an advection-diffusion equation 
which approximates motion in most waterways quite 
well. In that equation, we have expressed a second 
space derivative in terms of the second time derivative 
using the kinematic wave approximation, so that the 
surface slope is expressed in terms of the fi rst two 
time derivatives of stage. The resulting expression is 
equation (C.7): 

 (4.4)

where Q is the discharge at the gauging station, Qr(η) 
is the rated discharge for the station as a function of 
stage, S is the bed slope, c is the kinematic wave speed 
given by equation (4.2): 

in terms of the gradient of the conveyance curve or 
the rating curve, B is the width of the water surface, 
and where the coeffi cient D is the diffusion coeffi cient 
in advection-diffusion fl ood routing, given by equation 
(B.44), which we can re-write to give:

   
 (4.5)

In equation (4.4) it is clear that the extra diffusion 
term is a simple correction to the Jones formula, 
allowing for the subsidence of the wave crest as if 
the fl ood wave were following the advection-diffusion 
approximation, which is a good approximation to much 
fl ood propagation. Equation (4.4) provides a means of 
analysing stage records and correcting for the effects of 
unsteadiness and variable slope. It can be used in either 
direction:

• If a gauging exercise has been carried out while 
the stage has been varying (and been recorded), the 
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value of Q obtained can be corrected for the effects 
of variable slope, giving the steady-state value of 
discharge for the stage-discharge relation, Qr.

• And, proceeding in the other direction, in 
operational practice, it can be used for the routine 
analysis of stage records to correct for any effects 
of unsteadiness.

4.4.2 Estimating when to apply the unsteady
 corrections

We examine the necessity of correcting for unsteadiness 
by considering the relative contribution of the advective 
(Jones) and diffusive terms in equation (4.4). As the 
terms will be relatively small compared with the fi rst 
term, 1, we expand the square root sign using the 
binomial theorem to fi rst order: 

 (4.6)

where a factor of ½ has appeared in front of each term. 
This approximation is accurate to within 1% if the 
corrections are less than 25%.

We write equation (4.6) as Q ≈ Qr (η)(1 + ∆A + ∆D), 
thereby introducing the terms advection correction ∆a  
and diffusion correction ∆d respectively defi ned by

 (4.7)

In a typical fl ood these corrections will contribute at 
different times, the advection correction contributing 
when the rate of change is highest, when the second 
derivative will usually be small, and the diffusion 
correction will be greatest in the vicinity of the fl ood 
peak, when the other contribution is small. 

The advection correction will be positive when the 
stage is increasing and negative when decreasing, such 
that relative to the stage graph both rising and falling 
limbs of the hydrograph, and accordingly the peak, 
are always earlier than the hydrograph taken from the 
rating curve. The diffusion correction will be positive 
near a fl ood peak, as d 2η / dt 2  is negative there, and so 
the general result can be stated that the fl ow maximum 
of every fl ood occurs earlier and is larger than the fl ow 
computed from a rating curve. 
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In many situations this will not be very signifi cant, 
however, and we now obtain formulae to estimate the 
magnitude of these corrections. The kinematic wave 
speed c is approximated by the wide-channel result 
from Manning’s equation c ≈ 5 / 3xU where U is the 
mean water velocity (see Appendix B.2.5), then we 
have for the advection correction

 (4.8)

while for the diffusion correction we have, also 
substituting D = Q / 2BS = UA / 2BS , and introducing 
the mean depth h = A / B :

 (4.9)

These equations are in terms of the mean velocity, and 
might be useful in practice to evaluate the importance of 
these corrections, as velocity can be computed from the 
discharge and the cross-sectional area, both of which 
are usually known at a gauging station. Alternatively, 
an order of magnitude estimate for U could be had by 
assuming a value typical of river or fl ood fl ows in the 
region, say, 2m/s. The velocity is probably the quantity 
that varies least over all conditions.

From both equations (4.8) and (4.9) we see that the 
corrections are largest for rivers where the conditions 
change quickly but are otherwise slow-moving with a 
mild slope. In fact, these conditions are often mutually 
exclusive, such that slow-moving rivers are likely 
to be slow to rise and fall. Nevertheless, it is quite 
possible that there are stations where the corrections 
are necessary. More insight into what determines the 
magnitude of the corrections can be gained if we relate 
the fl ow velocity to river characteristics. We assume that 
the velocity is given by Manning’s equation for a wide 
channel of mean depth h: U = 1 / nxh 2 / 3 S 1 / 2 , which in 
practice would require knowledge of the roughness n. 
Substituting into equation (4.8) gives

 (4.10)

Using another wide-channel approximation 
dη /dt ≈ dh /dt (the exact expression is actually
dh / dt = (1–h / B xdB / dη) xdη / dt ), in a whimsical 
result the effects of the geometry of the channel can be 
expressed simply as the cube root of the depth:
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 (4.11)

This reveals how the effect is greatest for rough (n 
large), gently sloping (S small) channels where the 
depth is large and changes quickly, as we expect.

Following a similar procedure for the diffusion 
correction, using the wide-channel approximation we 
obtain

 (4.12)

In fact, if we seek to isolate the variation with depth, the 
whimsy seems to continue, for at a fl ood peak, where 
we have used dh / dt = 0 , we obtain

 (4.13)

where, except for the 1000 in the denominator, 
everything on the right of this equation, including the 
differential operator, is the square of a corresponding 
term in the formula for the advective correction, 
equation (4.11). There is no obvious physical reason for 
this, however the result is interesting for it shows that 
the diffusive correction depends on the same quantities, 
on n, on S, and on mean depth h in a roughly similar 
manner to the advective correction. This is not obvious 
from the original defi nitions in equation (4.7).

This suggests that we could introduce the quantity with 
units of time

 (4.14)

such that we could estimate the effects of unsteadiness 
by monitoring the magnitudes of

 (4.15)

where the numerical coeffi cients could be rounded to 
1 and 0.1 respectively, remaining in keeping with the 
approximate nature of the calculation. 

In most applications of this work, the diffusive 
correction at the peak of a fl ood, in this form or 
from equation (4.13), might be the only calculation 
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performed. It is a value that could be computed for 
typical fl oods at each gauging station, to test whether 
or not the unsteadiness correction should subsequently 
be applied to stage records there. If the value were less 
than a certain desired value, say 0.02 or 0.05 (2% or 
5% of the maximum), then it might be decided that no 
further effort need be made to correct for unsteadiness. 
On the other hand, if the peak correction were large 
enough, then it might be decided to apply the unsteady 
corrections in the form of equation (4.4) or equation 
(4.6) to every stage record from that gauging station, as 
is now described more fully.

4.4.3 Implementation of the theory for practical
 problems

The theory described above could be implemented at 
two levels. The fi rst would be a screening of a particular 
gauging station and its records simply to determine 
whether it is necessary to correct for unsteady effects. 
This will mean initially estimating the slope of the river  
S. Then the data from a particular fl ood can be taken and 
the stage record processed by evaluating the magnitudes 
of the corrections, ∆a at a point corresponding to the 
maximum rate of rise, and ∆d at the peak. Equations 
(4.8) and (4.9) could be used in terms of a representative 
assumed or measured fl ow velocity (U = Q / A), as well 
as a representative value of mean depth. Alternatively, 
formulae in terms of the roughness in the form of n 
could be used, equations (4.10) and (4.11) (or (4.15)), 
where n would be obtained from observation of the site 
and references such as Chow (1959), Barnes (1967) and 
Hicks and Mason (1991), or even from measurements 
of discharge and slope. In these formulae it would be 
simplest and quite accurate enough, provided the time 
interval of the readings is small enough to describe the 
variation, especially at the crest, to use the three-point 
fi nite difference approximations for the derivatives: 

 (4.16)

where  ηi–1 , ηi , and ηi+1 are three successive stage 
readings, taken with a time interval between readings 
of δ. In this preliminary screening case it has only 
been necessary to take representative values of velocity, 
which might involve using a representative value of 
area, and mean depth. 
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4.4.4 A theoretical example

We have solved numerically the particular case of a fast-
rising and falling fl ood in a stream of 10km length, of 
slope 0.001, which has a trapezoidal section 10m wide 
at the bottom with side slopes of 1:2, with a Manning’s 
friction coeffi cient of 0.04. Above a downstream weir 
the depth of fl ow is 2m, while carrying a fl ow of 
10 m3/s. The incoming fl ow upstream is linearly 
increased ten-fold to 100 m3/s over 60 mins and then 
reduced to the original fl ow. We solved the initial 
backwater curve problem and then solved the long wave 
equations in the channel over six hours to simulate 
the fl ood. At a station halfway along the waterway 
we recorded the computed stages, which are the data 
one would normally have, as well as the computed 
discharges so that we could test the accuracy of this 
work, using some of the above-mentioned methods. 

With the results obtained from the simulation we solved 
the differential equation (C.5) corresponding to the full 
long wave equations. Then we applied the three levels 
of approximation in equation (4.4) (which is (C.7)). 
We found that the highest approximation, including 
the diffusion term, agreed very closely indeed with the 
results from the differential equation, better even than 
we expected. Results are shown on Figure 4.1, where 
we have not shown the differential equation results 
separately. 

It can be seen that the application of the diffusion 
level of approximation has succeeded well in obtaining 
the actual peak discharge. The results are not exact 
however, as the derivation of the differential equation 
(C.5) and the low-inertia approximation equation (C.7) 
depend on the diffusion being suffi ciently small that the 
interchange between space and time differentiation will 
be accurate. In the case of a stream such as the example 
here, diffusion is relatively large, and our results are 
not exact, but they are better than the Jones method at 
predicting the peak fl ow. 

Nevertheless, the results from the Jones method, shown 
in Figure 4.1, are interesting. A widely held opinion 
is that the Jones formula is not accurate. Indeed, we 
see here that in predicting the peak fl ow it is not. 
However, over almost the entire fl ood it is accurate, and 
predicts the time of the fl ood peak well, which is also 
an important result. It shows that both before and after 
the peak the “discharge wave” leads the “stage wave”, 

If the calculated values of the advection corrections 
and diffusion corrections at a particular site are found 
to be large enough to be worth incorporating, then 
a more systematic procedure is necessary. Either the 
differential equation (C.5) for dQ / dt is to be solved, or 
the low-inertia approximation is used, equation (4.4), 
with quantities defi ned by (4.2) and (4.5). In most 
practical problems the square of the Froude number 
should be small enough that this is accurate enough. 

It is interesting that the low inertia method can be 
applied with relatively little extra information. All that 
is necessary is, fi rstly the traditional information to 
hand:

1. The stage record, giving measured values of stage 
at equally spaced times separated by an interval  
δ: ηi , i = 1, 2,... .  At a particular reading the fi rst and 
second derivatives can be calculated numerically 
using the difference approximations (4.16). If the 
data is not equally spaced, then different formulae 
for the time derivatives are necessary, and spline 
interpolation might be useful.

2. The rating curve in the form of a number of data 
pairs of stage and rated discharge: (ηj , Qr , j), for 
j = 1, 2,... . In Australian hydrographic practice 
these might have to be converted from Megalitre/
day to m3/s  by dividing by a conversion factor 
of 86.4. It is necessary to be able to interpolate in 
this data to be able to calculate a discharge for an 
arbitrary stage value. 

Now it is necessary also to know 

3. The rating curve has to be able to be differentiated 
to give the dQ / dη , also at an arbitrary stage. 
For suffi ciently large numbers of data points (small 
intervals) simple fi nite difference formulae could 
be used, however it might be reasonable to develop 
a global approximation using methods described 
in Appendix E.1.2.

4. The mean bed slope  S.
5. The cross-sectional geometry simply in the form of 

a number of data pairs of stage and surface width: 
(ηk , Bk), for k = 1, 2,... . These would probably 
be obtained from cross-sectional data in the form 
of tables of readings of position and elevation, as 
well as judgement and knowledge of the site.

It is no more diffi cult to apply this method than to apply 
the Jones method.
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Figure 4.1 Simulated fl ood with hydrographs computed from stage record using the three 
levels of approximation in equation (4.4)

which is of course in phase with the curve showing 
the fl ow computed from the stage graph and the rating 
curve. As there may be applications where it is enough 
to know the arrival time of the fl ood peak, this is a 
useful property of the Jones formula. Near the crest, 
however, the rate of rise becomes small and so does 
the Jones correction. Now, and only now, the inclusion 
of the extra diffusion term in equation (4.4) gives a 
signifi cant correction to the maximum fl ow computed, 
and is quite accurate in its prediction here that the 
real fl ow is some 10% greater than that which would 
have been calculated just from the rating curve. In 
this fast-rising example the application of the unsteady 
corrections seems to have worked well and to be 
justifi ed. It is no more diffi cult to apply the diffusion 
correction than the Jones correction, both being given 
by derivatives of the stage record.

4.4.5 An example where unsteady effects are not
 important

For streams where the rate of change of the stage is 
gradual we expect to fi nd less justifi cation for correcting 
for unsteadiness. We processed a fl ood for the gauging 
station at Bundarra (418008) on the Gwydir River 
in NSW, from midnight on the 26 January 1984 to 
midnight on 2 February 1984. Results are shown in 
Figure 4.2, and it can be seen that the effects of 
unsteadiness are barely noticeable, although on the 
rising limb the advection correction was about 
∆a = 0.10 (i.e. using the rating curve underestimated the 
fl ow by 10%), while on the falling limb it overestimated 
it by some 7%, so that the net effect was to shift 
the actual hydrograph earlier in time. At the crest the 
diffusion correction only gave ∆d = 0.01.
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Figure 4.2 Flood at Bundarra on the Gwydir River, 27 Jan 1984 - 2 Feb 1984
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5. Hydraulic Derivation of Rating
 Curves

5.1 An equation for rating curves

We now consider the problem of generating rating 
curves in the absence of fl ow-gauging information. An 
approximate theoretical equation for the rating curve is 
derived in Appendix D, giving stage as a function of 
discharge for the common case where there is a control 
downstream of the gauging station, but also allowing 
for the limit when this is drowned out. To do this the 
steady equation for gradually varied fl ow in a prismatic 
waterway is considered and as a fi rst approximation 
we assume that the conveyance at any section varies 
linearly with depth in the vicinity of uniform fl ow, 
which enables an analytical solution for the free surface 
upstream of the control. It is convenient to present the 
results here in terms of a local depth - in practice the 
stage itself is more important, but the two are simply 
related. The result obtained in the Appendix is:

 (D.8)

where hG(Q)  is the depth at the gauging station, which 
is shown as a function of the discharge Q; hcsf is the 
cease-to-fl ow depth at the gauging station; S is the mean 
bed slope, L is the distance of the control downstream 
of the station; Hc(Q) is the head-discharge relationship
at  the  control;      the derivative of 
1/K2 with respect to depth evaluated at some reference 
depth h0 ; and h0N (Q) is the approximation to the normal 
(uniform) depth upstream, given by

 (D.6)

Equation (D.8) shows rather complicated dependence 
on the discharge Q, especially in the usually unknown 
nature of the head-discharge relationship at the control. 
In Appendix D.3 it is shown that if the control is a 
rectangular broad-crested weir or sharp-crested weir, 
then Hc ~ Q2/3 = Q0.67. In the case of a triangular weir 
or V-notch, Hc ~ Q0.4. Between these two extremes is 
a parabolic weir (i.e. a U-shaped cross-section), for 
which it can be shown that Hc ~ Q0.5. If the weir were 
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trapezoidal, the discharge formula would be a linear 
combination of the rectangular and triangular formulae, 
one of exponent 0.67 and the other 0.4. We can imagine 
that this could be approximated by a single power, 
like the parabolic weir, with exponent about 0.5. In a 
natural stream the actual nature of the control will be 
rather more complicated, although it may well be able 
to be approximated by a similar power law expression. 
Natural river topography at the control is rather more 
likely to look like a U, rather than a rectangle or 
V-notch, so that it could be modelled by a parabola, 
giving Hc α Q0.5. 

To implement this theory one would need some 
knowledge of the geometry at the control. Reference 
could be made to French (1985, #8.3), Bos (1978), or 
Ackers et al. (1978) for formulae relating head and 
discharge in idealised situations, such as if a rectangular 
weir is installed as a control. If the geometry were not 
known, or, equally likely, weir formula were thought 
not to be applicable, then it would be necessary for 
at least one or more gaugings to be undertaken to 
determine the form of the relationship.

5.2 Calculating the low flow end of a rating
 curve

5.2.1 The equation for a rating curve for low
 fl ows

In the limit Q → 0 the square-root-like behaviour of 
the term Hc(Q) will dominate other terms in equation 
(D.8), and in Appendix D.4 it is shown that in the low 
fl ow limit at the gauging station, 

 (D.10)

showing that the stage-discharge relationship is given 
by that of the control, and the reach between gauging 
station and control is essentially a reservoir with fl ow 
through it, whose dynamical effects on the surface 
are negligible, and the surface is horizontal with 
elevation given by the control. This makes matters 
rather diffi cult in deriving a rating curve theoretically, as 
the complicated geometry and nature of most controls 
makes a theoretical determination usually not possible.

However this has shown that our knowledge of simple 
control formulae can be applied to approximate the 
behaviour of the rating curve in the low fl ow limit. 

2
csf order  of Terms)( QQHhh cG ++= , 
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On the basis of this work, we expect the stage to 
vary like Qv, where v will be between about 0.4 
and about 0.7, and is reasonably likely to be in the 
vicinity of 0.5. This means that if we were to plot 
the rating curve on axes with the square root of 
discharge    horizontally and stage vertically, the 
relationship will often approximate a straight line for 
low fl ows. This may provide a convenient method of 
extrapolating low-fl ow results to determine the cease-
to-fl ow limit.

5.2.2 Calculating the low fl ow end of a rating
 curve 

At the low-fl ow end there is probably not much that can 
be done to calculate a stage-discharge relationship from 
fi rst principles, as the nature of local controls is often 
such that the geometry is complicated, and no fl ow 
formula could be applied. However, in situations where 
rating is diffi cult, being able to obtain a rating curve 
valid for typical everyday low fl ows at least might be 
useful. It is possible that, if the variation were linear on 
a    plot, such that the relationship between stage 
and discharge is the quadratic

 (5.1)

then two or more measurements could establish the 
unknown coeffi cients α and η0 , where η0 = ηcsf , the 
cease-to-fl ow stage.

5.3 Calculating the middle to high flow part of
 a rating curve

5.3.1  The equation for a rating curve for larger
 fl ows

If the fl ow is suffi ciently large, another downstream 
control may become dominant, but now the geometrical 
situation is suffi ciently complicated that the theory 
such as we have used above would contain too many 
variables to be useful. For suffi ciently large fl ow or 
a control suffi ciently distant, the effects of such local 
controls become negligible, and it is the channel itself 
that provides the dominant control. This is demonstrated 
by equation (D.8), where, as  Ω1

0 is negative, for distant 
control (L large) or large fl ows (Q large) the exponent in   
becomes large negative, the term becomes negligible, 
and so the fl ow is uniform, with the depth given by

   

Q

( )η,Q  

( )20η−ηα=Q  

showing that the depth at the gauge is simply the normal 
depth for uniform fl ow in that section. For this case, we 
do not have to use the approximation (D.6), but instead 
could use the normal depth as found by solving the 
transcendental uniform fl ow equation

We can explore this by examining results from 
Manning’s and Chézy’s uniform fl ow formulae for a 
family of cross-sections given by monomials, that is, 
where the bed elevation zb is given by zb = a |y |v , Where 
a is a constant at a section and y is the co-ordinate 
across the channel. A V-shaped waterway would have  
v = 1, while U-shaped valleys would be approximated 
by larger values of v. One with a large value would 
have a fl at bottom, with suddenly steeply rising sides. 
We can imagine, that as this is a rough approximation, 
the convenience of a parabola (v = 2) might be useful.

If we calculate the area of cross-section for water 
surface a height d above the bottom of the section, we 
obtain A = v /(v + 1)xBd , where B is the surface width, 
which we can express in terms of the constant a but it is 
simpler here to retain it. For a V-shaped valley we obtain 
a = 1 / 2 xBd , and for quadratic variation we obtain 
a = 2 / 3 xBd , both familiar results. When we go on 
to compute the wetted perimeter P, however, we obtain 
an integral that we cannot express in simple terms. 
It is within the approximate nature of this analysis to 
adopt the approximation P ≈ b , which has an error of 
magnitude (d / B)2 , which is usually small. 

We now use the conventional uniform fl ow formulae, 
where the dependence of discharge on the cross-
sectional characteristics is expressed by being 
proportional to the geometrical quantity (A / P)µ xA, 
where for Manning’s relation µ = 2 / 3 and for Chézy  
µ = 1 / 2 . Evaluating this for the general monomial 
bottom topography, after substituting the rather awkward 
expression for the surface width B = 2(d / a)1/v , we fi nd 
that discharge varies with surface elevation above the 
bottom of the stream like

Q ~ d1+µ+1/v   (5.2)

In the case of Manning’s formula the exponent becomes  
5 / 3 + 1 / v , and so we see that for a V-shaped valley 
the exponent is about 2.67, while if the topography is 

)()( QhQh NG =  
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a U-shaped valley approximated by a parabola, which 
should be rather more common, the exponent is 2.17. If 
Chézy’s law were used, the general expression for the 
exponent is 1.5 + 1 / v . For a parabolic valley, v = 2, and 
a value of 2 for the exponent is obtained. For a cubic, 
with Manning’s law, the exponent is also 2.

As we have to express the relationship in terms of stage  
η, linearly related to surface height above the thalweg, 
we write (5.2) for d as a function of Q, giving

η ~ Q1/(1+µ+1/v) .   (5.3)

This means that for typical U-shaped waterways, the 
theoretical stage-discharge curve will be approximated 
by a power law relationship where the numerical value 
of the exponent will be about 0.5 or a little below that, 
so that η will vary like       axes 
the stage-discharge relationship would appear almost 
as a straight line. 

This, in fact, is similar to the variation we suggested 
would apply for many local controls in the limit of low 
fl ow. The coeffi cients in each case will be different, 
but the manner of variation is the same. This suggests 
the utility of plotting the square root of discharge, 
 against stage η , when we might see the useful 
result that at both low and high fl ows, the relationship 
should plot as nearly straight lines. At the lower end, this 
would be convenient in extending the stage-discharge 
relationship to the cease-to-fl ow point, and in fact 
determining that point, and, at the higher fl ow end 
providing a semi-rational way of extrapolating the 
results, if that were necessary.

5.3.2 Calculating the middle to high fl ow part of a
 rating curve 

For higher fl ows we have suggested that the uniform 
fl ow formulae could be used. There are two levels at 
which we could operate:

1. Assumed monomial variation
The assumption of monomial variation could be made, 
using equation (5.2), giving  
  
 (5.4)

where β  is a constant and the exponent could be 
assumed to have a value of 2, or another corresponding 

QQ =5.0 . On ( )η,Q  

Q

to the actual value of the geometrical parameter µ from 
the cross-section, obtained using the method set out in 
Appendix E.1.3. A value of η0 corresponding to the 
bottom of the section might be made, as in this case the 
control is drowned out. Then, a single rating point could 
be obtained from measurements, or a single assumed 
value of the slope-roughness parameter made, so as to 
generate the curve.

2. Semi-rational method

Here we use the geometrical information from a cross-
section. We write the stage-discharge relationship in the 
form based on Manning’s expression

 (5.5)

and will refer to θ as the geometrical friction parameter. 
To provide a calculated stage-discharge relationship we 
would need to know the value of the friction-slope 
parameter   . There has been some work on the 
variation of n with stage, however in the absence of 
any other measurements this would probably have to 
be assumed constant for a given station. Then, from 
a cross-sectional survey, tabulated values of θ as a 
function of stage could be obtained, and the stage-
discharge relationship calculated. A single measured 
rating point could be used to provide a value for the 
slope-roughness parameter in equation (5.5).

A problem here is that if we required the calculated 
rating curve to extend to low fl ows we would require 
the fl ow to be zero at the cease-to-fl ow stage. In the 
absence of any other information the fl ow below the 
cease-to-fl ow level could be subtracted:

 (5.6)

However, in higher fl ow situations the effects of the 
local control should be drowned out and the whole 
cross-section should be contributing, so that it might be 
preferable just to use equation (5.5) and not expect it to 
apply to low fl ows. 

We will see below that this method did not work very 
well compared with the more simplistic method of 
assumed monomial variation presented here above.

Q =β ( η – η0 )1+µ+1/v ,
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6. Representation, Approximation
 and Calculation of Rating Curves

In this Section we bring together some of the theory 
described above, common practice, and some of the 
suggestions we have made above, to test them and 
to make recommendations for the representation, 
approximation and calculation of rating curves.

6.1 From data to rating curve: global and
 local, approximation and interpolation

At various stages in the description below some 
terminology is introduced which it is worth explaining 
here. Interpolation is the process by which, from a 
series of discrete data points, intermediate values may 
be calculated. For this to be reasonable the data points 
should lie on a reasonably smooth and continuous path. 
If the data points are scattered, such as a collection 
of actual stages and fl ow gaugings at a station, then a 
process of approximation is used to pass a reasonable 
curve or series of curves through them. Subsequently, 
values could be interpolated from that approximation. 
There are two main alternative ways of implementing 
these processes. The fi rst is global, where a single 
mathematical function is used, which is valid over 
the entire region required; the other is local, where a 
sequence of different functions may be used. The most 
common version of this is piecewise linear, where a 
series of straight-line segments are used.

In the process that often takes place at a particular 
gauging station, a set of data points of stage and 
corresponding discharge are taken and the main problem 
is to obtain the rating curve by approximation. Usually 
this is done by eye, often on a log-log plot, by plotting a 
sequence of points, each of which is an approximation 
to the data points in the neighbourhood, and then if 
necessary, further points added by piecewise-linear 
interpolation. The sequence of such points and the 
presumed straight-line interpolation between them, 
make up a rating curve.

In the case of gauging data, there may be some 
justifi cation, possibly using the representation of the 
data described below, to automate the procedure and 
to use a global approximation method to generate the 
rating curve, for which a method is given in Appendix 
E.1.2.

Where data is discontinuous, however, piecewise-linear 
methods are robust and simple to implement. In some of 
the computational procedures described in this Report 
there are several quantities which are functions of stage, 
notably geometric quantities such as area A, surface 
width B, and wetted perimeter P which can show rapid 
or irregular variation with stage. Especially in this case, 
but also as a general-purpose tool, piecewise linear 
interpolation is both simple and powerful.

6.2 Logarithmic scales

A problem with rating curves is that they have to 
represent a relationship between stage, which might 
vary by 10 metres or so, and discharge which can vary 
by several orders of magnitude, from 0 to hundreds 
of thousands of discharge units. A traditional solution 
is to plot the discharge using a logarithmic scale, 
effectively expanding the region for small fl ows and 
contracting that for large. In many books and standards 
(for example, Herschy, 1995, and Australian Standard 
AS 3778.2.3, 1990) it is shown how it is convenient 
to use a logarithmic scale for the stage η as well, in 
that often it is found that that by subtracting of some 
arbitrary value η0 such that if one plots the logarithm 
of the discharge against the logarithm of η – η0 , points 
on the rating curve approximately fall on a straight line. 
The implication of this is that the discharge obeys a law 
of the form

 (6.1)

where C and n are constants. A typical means of doing 
this is to take three points on the rating curve at which 
values for η and Q are known and substitute into (6.1) 
and solve the resulting three equations for C, η0 and n 
(see, for example #4.4 of Herschy, 1995). While this 
is a relatively simple method, it is not clear that it is 
safe to advise it as a technique for routine practice, as 
in many cases the rating curve does not show simple 
variation of this form over the whole range.  Above, we 
have shown that such a relationship might be valid for 
low fl ow, with a different relationship for high fl ows. 
To handle this more complicated situation, the curve 
could be broken up into a small number of segments, 
each of which is a straight line on the log-log plot, such 
as performed by Herschy, (1995, #4.5). This does seem 
a rather arbitrary procedure, however. Rather better 

( )nCQ 0η−η= , 
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would be to approximate it with a larger number of such 
segments, when the use of straight-line approximation 
would be sound. This is widely done in practice.

There are different stages of analysis of a rating curve, 
however. The fi rst is the conversion from raw data, 
showing scatter, into a representation with a unique 
relation between stage and discharge. There are two 
ways which this can be done, (1) placing points by eye 
and assuming that the variation between such points is 
linear on the plot which has been chosen, and (2) fi tting 
a multivariate function to the data points using least-
squares methods.

In either of these cases it becomes necessary to 
decide on the manner in which the data are to be 
represented and approximated. The log-log plot is 
visually convenient, and to represent it mathematically 
one could use a polynomial for logQ in terms of  log η . 
A disadvantage of the log-log plot is, however, that the 
point corresponding to cease-to-fl ow discharge cannot 
be plotted as it occurs at – ∞ on the horizontal axis, 
and special attention has to be given to this part of the 
plot. A simple polynomial representation for Q in terms 
of η could be used, but as the function is required to 
vary over several orders of magnitude, in general the 
approximation for high fl ows would mean that for low 
fl ows some inaccuracies would occur. 

Figure 6.1 Stage-discharge relationship using log-log axes for Pallamallawa on the Gwydir River, 
with a line of best fi t on these axes to all but the last two points

Some problems of log-log scales are demonstrated by 
an example here, from Pallamallawa on the Gwydir 
River. Rating curves for this and other stations on the 
same river are given in Table F.7, and in Figure 6.1 
a set of data points are plotted and a global straight-
line approximation fi tted to all but the two points of 
highest discharge, where, corresponding to overbank 
fl ow occurring, a signifi cant discontinuity occurred. 
On the axes shown the straight line does not seem 
unreasonable. To obtain the linear fi t, however, a least-
squares procedure has been used in log-log space that 
means that as this opens out the points very much at 
the low-fl ow end, they contribute more than their real 
importance. This is illustrated by plotting on linear axes, 
as shown in Figure 6.2, using both the same data and 
line of best fi t, now curved. It becomes obvious how the 
wide-spacing of data points at the low-fl ow end on the 
logarithmic plot has distorted the result considerably, 
and in reality, the plausibly-satisfactory results on log 
scales are not acceptable. Even if a single straight line 
were not fi tted, the shrinking of the scale at the upper 
end is such as to render apparently small changes or 
errors innocuous, whereas in reality they are important, 
as revealed by Figure 6.2. 
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Figure 6.2 The same data and approximation as Figure 6.1 but using natural axes.

In practice there is no physical justifi cation for such 
global log-log approximation and it should not really 
be used, despite the apparent tacit acceptance of it in 
standard textbooks and both International and Australian 
Standards.

6.3 Use of    scales for representing
 stage-discharge relationships

6.3.1 Discussion and justifi cation

Plotting rating curves on simple linear axes could 
be used to overcome some of the problems of 
logarithmic scales. However, the requirement to include 
large fl ows means that the region of small fl ows 
becomes graphically insignifi cant, as shown in Figure 
6.2. That fi gure strongly resembles a plot of the square 
root function (or indeed, it could be a plot of the 
function Q n , where n is any number between 0 and 
1). This suggests an alternative scale to use. Indeed, 
such a suggestion has been made by Chester (1986), 
who suggested that Q 2 / 5  should be used. The choice 
for the power 2/5 was made by assuming the discharge 
formula for a V-shaped section control. This seems to 
us a rather procrustean assumption, and it is unlikely 
that such an assumption is generally valid. However, 

the assumption of a power law scale seems to be useful. 
We wish to make the simplest such assumption, and 
if one is to adopt a number between 0 and 1, then 1/2 
seems the obvious choice. More importantly, in Section 
5.1 above we have shown that for both low fl ows 
across a U-shaped weir control and high fl ows down 
a U-shaped waterway, the stage-discharge relationship 
will tend to show stage varying approximately like 
    such that both parts of the relationship 
would plot as straight lines on (√Q, η) axes. 
Alternatively, in both cases, for a V-shaped weir 
and for a V-shaped waterway, stage should vary like 
η ~ Q 0 . 4 , and results would be straight lines on the 
axes recommended by Chester.

The data from the previous example are shown plotted 
on √Q , η axes in Figure 6.3. It can be seen that the 
low-fl ow points still collapse into a relatively small 
region, but they do locally form a straight line of fi nite 
gradient. It can be seen that if we were to take the data 
points and represent them by a sequence of straight 
lines, a piecewise-linear approximation, it could be 
done adequately with only about four or so segments. 
The low fl ow region is shown, the behaviour is clear, 
but unlike the log-log plot it does not dominate the 

( )η,Q  

QQ =η 2/1~ , 
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plot. One can still extract low-fl ow information, but 
in that region the results resume their real importance, 
and plotting stage to within 1cm vertically would be 
satisfactory without moving a point an apparently large 
distance as on the log-log plot.

An advantage that the power plots have, for both 2/5 
and 1/2 exponents, is that the treatment of the cease-
to-fl ow point is more satisfactory than with a log-log 
scale. If the cease-to-fl ow point is known, it can be 
plotted without any special treatment. If it is not known, 
it seems that the tendency of the points to lie on straight 
or very-nearly straight lines provides a reasonable way 
of extrapolating the low-fl ow data to determine the 
cease-to-fl ow stage. On the other hand, using a log-log 
scale, if the cease-to-fl ow point is not known it has to be 
found by using a global approximation, such as equation 
(6.1) and fi nding η0 such that the expression plots as a 
straight line, all requiring non-trivial operations.

At the other end of the scale, the problem of 
extrapolation arises if one needs to estimate a fl ood 
for a higher stage. As the log-log scale condenses data 
so very much at that end (e.g. Figure 6.1), the results 
obtained are extremely sensitive to the choice of method 
or data. Using a square-root/linear scale would seem to 
give plausible results. This is discussed below.

Figure 6.3 The same data as the previous two fi gures but plotted on (√Q, η) axes

The use of a 2/5 power scale for discharge has been 
implemented as an option in the widely used HYDSYS 
package. Here we have to justify our suggestion that a 
square root (1/2 power scale) is to be preferred. There 
is not a lot of distinction between the two, but some 
points that spring to mind are:

• The square root function is slightly more familiar 
and standard than the other.

• Its inverse, the square function, is slightly easier to 
handle and make interpretations from. For example, 
on Figure 6.3 the point where there is an apparent 
change of behaviour is at a value of a little more 
than 300, which one would easily calculate to 
be about 90,000 Ml/d. In comparison, calculating 
a value of 3002.5 is not as easy using mental 
arithmetic. If special plotting paper were drawn up, 
with tick marks at major values as with a log scale, 
this would not matter, but in practice with non-
specialist standard software as we used to produce 
the fi gures, with equally-spaced tick marks, the 
square root scale is simpler.

• For low fl ows it is more likely that stage varies 
like the square root of discharge, as discussed 
above, where the sill is horizontal in cross-section, 
giving a U-section, rather than if the control were 
a V-section.
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• For higher fl ows where the local hard control is 
drowned the stream cross-section is more likely 
to provide a channel or frictional control. Streams 
with an approximate U-shape of cross-section are 
likely to predominate over those with a V-shape. 
Above we have shown that in this case too, there is 
a tendency for discharge to vary quadratically with 
stage.

6.3.2 Some examples of (√Q ,η) scales for
 representing stage-discharge relationships 

We consider here some examples, providing some 
circumstantial evidence for and against the choice of the 
square root scale. Initially data are taken from a couple 
of standard sources, and are probably of a somewhat 
idealised nature. Subsequently we use data from three 
stations on the Gwydir River.

• The fi rst we consider is the data from Table 
4.1 of Herschy (1995), reproduced in Table F.5 
here in the Appendix. It shows smooth behaviour, 
and, after calculation and subtraction of a certain 
value of stage, it was able to be approximated 
quite well by a straight line on a log-log scale. 
Here, on the square root of the discharge scale, 
shown in Figure 6.4, we fi nd that the straight line 
√Q  = 4.959+8.210η reasonably approximates it 
globally. Adding a η2 term and fi tting a quadratic 
in η gave very close agreement indeed. This data 
gave one example where an even more linear graph 
was obtained by plotting using a Q2/5  scale (using 
a log-log scale, Herschy found the exponent to be 

Figure 6.4 Data from Table 4.1 of Herschy (1995) plotted on (√Q, η) axes, with a global straight line fi t

0.394). Even though we have considered global 
approximation here, it is generally not going to 
be feasible to approximate globally a rating curve 
by a low-order function, and it will in general be 
better to use piecewise-linear approximation.

• The next case is one where the data comes from 
Table 3 of Australian Standard AS 2360.7.2 - 
(1993), identical to International Standard 7066 - 
2: 1988, given in Table F.6 here. It is also presented 
in #4.9 of Herschy (1995) as an example of 
polynomial curve fi tting. It is for that reason that we 
attempted also to perform a global approximation, 
but to √Q  .  A quadratic in η was used to fi t by 
least-squares, giving

   

 
and, of course, (6.2)

Results are shown in Figure 6.5, and it can be seen 
that the representation is good. In the Standard from 
whence this data was obtained a 4th degree polynomial 
was fi tted to the data in Q = ƒ (η)  form, where ƒ (η)  
represents some function of η . The result obtained in 
the Standard (with a slightly different result reported 
by Herschy) was

 (6.3)

277371178115551 η+η=  . .-.Q , 

( )2277371178115551 η+η=  . .-.Q . 

37424800 η=   -Q

432 0796281221073 η+ηη+  . .-  . 
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We repeated the calculation from the Standard but using 
a 2nd degree polynomial, as we did for equation (6.2) 
using the square root scaling, and the results were very 
poor indeed, suggesting the superior nature of the use 
of   . 

Equation (6.3) from the Standard reveals some of 
the problems of using higher-order polynomial 
approximation. The coeffi cients as presented are 
insuffi ciently accurate, and they alternate in sign. In 
calculating Q for a typical value of stage, say  η = 10, 
the contributions of the successive terms become 
progressively larger such that the number of signifi cant 

Q

fi gures presented is not enough. This is part of a 
fundamental problem to do with the problem of 
interpolation and approximation in civil engineering, 
described in Fenton (1994). If the independent variable 
takes on large values, such as local stage or even 
worse, elevation above a maritime datum, inaccuracies 
can result. These problems can easily be overcome, as 
described in Appendix E.1.2.

Now we consider three gauging stations on the Gwydir 
River in northern New South Wales. The fi rst station is 
at Bundarra, in hilly country. The cross-section is shown 
in Figure 6.6. The horizontal lines show 20 equally-

Figure 6.5 From Table 3 of Australian Standard AS 2360.7.2. Axes are (√Q, η) , showing 
data and second degree polynomial fi t 
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Figure 6.6 River cross-section at the gauging station at Bundarra

Figure 6.7 Stage-discharge plot for Bundarra using (√Q, η)  axes, showing the fi rst few 
points and a linear approximation using least-squares to the fi rst six points

spaced water levels, from which the geometric data 
of area and wetted perimeter were calculated, and the 
semi-rational method of equation (5.6) used to calculate 
an approximate rating curve from such geometric data.

Figure 6.7 is a plot at the low-fl ow end of stage against 
discharge using (       , η) axes. Points from the published 
rating curve are shown as squares, while the dashed 

line shows a least squares approximation to the fi rst six 
points using a straight line on these axes. It can be seen 
that the points do approximately fall on a straight line 
and the line could be used to determine the cease-to-
fl ow stage.
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Figure 6.8 is a plot of all the rating curve points on 
the same axes, with some other results. On this curve 
the dashed line is the same one as on the previous 
fi gure, and it can be seen that it has a quite different 
gradient from the solid line, which is a least-squares 
approximation to almost all the points using a linear 
relationship on these axes. It can be seen that the latter 
relationship gives a good fi t to almost the whole rating 
curve, although we do not advocate the use of such low-
order global approximation. The cross-section shows 
a pronounced widening at a stage of 6m, but which 
seems to have no effect on the rating curve. This is 
shown on Figure 6.8 by the dashed and dotted line, 
which is a graph of the stage-discharge relationship as 
obtained using equations (5.5) and (5.6) from uniform 
fl ow formulae, using the measured cross-sectional data 
plus an assumed value for the slope-friction quantity   

 which the authors chose arbitrarily so that the 
results approximated the data as closely as possible. It is 
interesting that this method, of rationally incorporating 
the details of the geometry, does not seem to describe the 
actual rating curve well. Somehow the fl ow in the river 
seems relatively unaffected by the sudden widening, 
and over almost all the range of the rating curve points 
the single linear relationship    , where a and 
b are constants, describes the relationship well. We do 
not necessarily want to use such a global relationship 
here. We include it here to test the effi cacy of the   
 plot and to provide some justifi cation that a 
linear extrapolation to higher stages and fl ows would be 
quite justifi ed on this evidence. It is also circumstantial 
evidence that for some other station where there were 
few data points available, the linear relationship between   
       and η could be used if necessary.

Figure 6.8 Stage-discharge plot for Bundarra using (√Q, η) axes, showing all data points, two 
linear approximations, and theoretical results calculated from details of the cross-
section
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The next station we consider is at Gravesend, some 
distance downstream on the same river, in gently 
undulating countryside. The cross-section is shown in 
Figure 6.9, and contains three additional channels into 
which the river can fl ow when suffi ciently high. The 
two linear features terminating in sharp crests are road 
embankments, leading up to a high bridge. 

Figure 6.10 shows a plot similar to Figure 6.7 for low 
fl ow, and it can be seen that, once again, the rating 
curve points for low fl ow fall on a straight line on these 
axes.

Figure 6.9 River cross-section at the gauging station at Gravesend

Figure 6.10 Stage-discharge plot for Gravesend using (√Q, η) axes, showing the fi rst few points 
and a linear approximation to the fi rst six points
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Figure 6.11 shows a plot similar to Figure 6.8, containing 
all the points from the rating curve. This time not all 
the results for high fl ows fall on a straight line; above 
a stage of 12m there is a gradual deviation from the 
solid straight line shown, obtained from a least-squares 
fi t to the points that appeared to form a straight line. 
Examination of Figure 6.9 shows that this is when 
fl ow into any or all of the three subsidiary channels 
is possible, and it is no surprise that the results 
for moderate fl ows cannot be simply extended to 
higher fl ows. Again the results for low fl ow form 
a different linear relationship. Again the data points 
for high fl ows could plausibly be extended by linear 
extrapolation if that were absolutely necessary. And, 
again, theoretical results from the detailed geometry 
do not agree particularly well, although the trend for 

higher stages is mimicked. The problem seems too 
complicated to expect very much from such simple 
approaches.

Further downstream where the river has come out onto 
plain country is the station of Pallamallawa, where the 
cross-section is shown in Figure 6.12 and which is 
rather regular except for a widening near 4m.

Figure 6.13 again shows rating curve points for low 
fl ow, and again they fall almost on a straight line, 
however here there is some curvature, suggesting that 
the control has a different nature. These axes still allow 
the behaviour of the points to be shown clearly, and 
the cease-to-fl ow point could still be obtained by a 
continuation of the trend.

Figure 6.11 Stage-discharge plot for Gravesend using (√Q, η) axes, showing all data points, two linear 
approximations, and theoretical results calculated from a knowledge of the cross-section
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Figure 6.12 River cross-section at the gauging station at Pallamallawa
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Figure 6.13 Stage-discharge plot for Pallamallawa using (√Q, η) axes, showing the fi rst few 

points and a linear approximation to the fi rst six points
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Figure 6.14 shows all the data points. There are two 
rated points that were obtained for very high fl ows, 
requiring the operation of a boat over fl ooded farmland. 
These two points, almost indistinguishable on the log-
log plot of Figure 6.1 do not follow the previous fairly 
consistent trend when plotted on these axes. We did not 
include them in the linear fi t shown by the solid line. 
It is clear that the bulk of the points for moderate to 
high fl ows almost lie on a straight line. Also, for this 
rather regular geometry the theoretical curve using the 
actual geometry worked quite well, compared with the 
previous cases, and there is little obvious effect of the 
widening at 6m, both in these results and in the actual 
data.

Considering Figure 6.14, on the    plot it is clear 
that a piecewise-linear representation of the rating 

curve would be adequate. The two data points for high 
overbank fl ow, unsurprisingly, do not seem to follow 
the trend of the previous data. In general, for such 
a discontinuity it might be better to use something 
like piecewise linear approximation, However, here we 
show the possible power of a global approximation 
in approximating the actual rating data so as to 
automatically generate data for the rating curve at 
Pallamallawa. We experiment with a global 
approximation, expressing   as a sixth-degree poly-
nomial in stage, using the methods described in 
Appendix E.1.2. The results are shown in Figure 6.15, 
and are encouraging. At the cease-to-fl ow end of the 
data, the polynomial was able to describe the region 
dominated by the local control. Possibly even more 
usefully, it seems able to make a plausible continuous 
relationship that incorporates the two high fl ow points.

Figure 6.14 Stage-discharge plot for Pallamallawa using (√Q, η) axes, showing all data points, 
two linear approximations, and theoretical results calculated from a knowledge of the 
cross-section
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Figure 6.15 Rating curve for Pallamallawa, showing the data and a 6th degree polynomial fi t

6.4 Extrapolation

An important feature of all the fi gures we have produced 
is  that  on  the  axes, the examples usually 
showed a rating curve which did not depart much from 
a straight line at the upper end of the curve (although 
the immediately-preceding example of Pallamallawa 
provides a warning). This suggests that generally, if it 
were essential for a rating curve to be extrapolated, a 
straight line on a    plot, from the penultimate 
point, through the last point and continued, seems 
usually not to be far wrong. This can be tested by going 
back through the previous fi gures, pretending that the 
last point does not exist in each, and seeing how a 
line from the third-last point through the second last 
point would approximate the remainder of the curve. 
The result is quite good in all cases. This might be 
the best way to proceed with extrapolation. Global 
approximation like that shown in Figure 6.15, however 
well it might perform in the range of data points used 
to approximate it, is likely to behave highly irregularly 
outside that and should not be used for extrapolation. 
Linear extrapolation using the last two points could be 
adopted with caution.
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7. Conclusions and Implications for
 Management

We have considered a number of aspects of the use 
of stage measurements and rating curves to calculate 
fl ows in rivers. A number of detailed conclusions have 
been drawn, which we now summarise and indicate 
what the implications are for river management: 

• It might be expected by practitioners that good 
instructions and guidance would be provided by the 
International and Australian Standards; however, 
the Standards relevant to this subject are somewhat 
inadequate. As mentioned in Section 1 of this report, 
in Appendix A a detailed review of the Standards is 
presented. They state the obvious in many places, 
but they give almost no serious guidance for 
practical implementation of sophisticated methods 
for approximating and representing rating curves.

• Consideration of the hydraulics governing rivers 
in Section 2 shows that in general the slope of the 
surface, as well as stage, is a determinant of fl ow. 
This means that the concept of a unique rating 
curve is fl awed in principle, but in practice it is 
often accurate enough. Ideally then, as shown in 
Section 3, it would be best always to use two 
gauges and to measure the slope, which would 
automatically correct for backwater effects from 
downstream and for unsteady effects at the time 
of fl ood propagation. This would lead to the 
development of a Stage-Conveyance Relationship 
which could then be used in conjunction with the 
measured slope, rather then the conventional use 
of a Stage-Discharge Relationship.

• Then, allowing for the usual case where the 
slope is not measured, Section 4 presents previous 
approaches to correcting for varying slope, 
including the well-known Jones method for 
allowing for effects of the variation of stage with 
time. A new method is developed and presented in 
Section 4.4, which gives a further correction to the 
fl ow calculated from a rating curve. The method is 
no more diffi cult to apply than the Jones method, 
but is more accurate, as it allows for the subsidence 
of a fl ood wave as it propagates. Formulae are 
given to estimate when these unsteady effects 
are worth correcting for, and some examples are 

presented. For most rivers the effects are small, 
and results from conventional rating curves are 
quite acceptable. A number of details of practical 
implementation are given.

• In Section 5, an attempt is made to provide means of 
deriving rating curves when little fl ow information 
is available. A theoretical model is developed for 
a reach of river with a gauging station and local 
control, which is used to predict the rating curve 
for low fl ows and, when the control washes out, 
for high fl ows. In practice, for natural controls, the 
nature of the local control will be too complicated 
to be able to calculate the low fl ow end of the rating 
curve. The use of theory for both low and mid- 
to high fl ows shows that, in many cases, the stage 
will vary like the square root of discharge, both at 
low fl ows and for mid to high fl ows. This can be 
used to calculate a rating curve in the absence of 
other information, or preferably, together with one 
or two ratings, to calibrate the model.

• In Section 6 a critique is made of the widespread use 
of log-log plots in representing rating curves; it is 
suggested that plotting the square root of discharge 
against the stage has some practical advantages. 
In particular, both for low and high fl ows, many 
data points from gaugings should plot roughly as 
a straight line, which can help the determination 
of the cease-to-fl ow point, as well as the possible 
extrapolation of the curve at high fl ows. Finally, 
in that section, reference is made to Appendix E, 
where it is shown how global approximation of 
the rating data can be implemented via a robust 
numerical method.
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Appendix A. Review of the International and Australian Standards 
for the determination of the stage-discharge relation  

This appendix contains a critical review of the International and Australian Standards (the two 
are identical) for the determination of the stage-discharge relation. Australian Standard AS 3778.2.3 - 
Measurement of water flow in open channels – Part 2.3: General – Determination of the stage-
discharge relation (1990) contains a number of details concerning the use of rating curves. It has been 
reproduced from an International Standard. Parts of the document contain wise advice, but in some 
parts it is rather inadequate and poorly explained. In view of some of the developments described in 
this report, it could really be upgraded. 

6 Calibration of a gauging station 

This is the first substantial section, after some relatively unimportant initial remarks.  

6.1 General preparation of stage-discharge relation states that 

6.1.1 The primary object of a gauging station is to provide a record of the discharge of the open 
channel or river at which it is sited. This is achieved by measuring stage and converting this to 
discharge by means of a stage-discharge relation which correlates discharges to either the 
water level at a section of the channel or the measurements of water level at each end of a 
reach. In the latter case, a twin gauge station is necessary and a different procedure for 
establishing the stage-discharge relation is used. 

The inclusion here of a twin gauge station is, as we shall see, a far-sighted but only partial 
implementation of hydraulic theory that this report asserts could be routinely used. In the later detail, 
in fact, the presentation is quite inadequate. A use of twin gauges is described in Section 3.2 of this 
report. 

6.1.2 Depending on the stability of the channel, the stage-discharge relation may be classed as 
stable or unstable. By accepted definition, a stable channel is one wherein the physical form 
and frictional properties of the bed and sides remain constant with respect to time. Conversely 
therefore, an unstable channel is one wherein the physical form and frictional properties vary 
with respect to time; that is, the channel itself is mobile. However in any reach, whether stable 
or unstable, any transient natural or artificial phenomenon may affect the actual relationship 
between stage and discharge at that time. Thus a stable channel may exist as an unstable reach. 
In all cases instability in a stage-discharge relation arises from variable conditions of back-
water for a given discharge at the gauging site concerned and this is true, also, for changes in 
mean velocity of approach at a given stage due to unstable conditions occurring upstream from 
the gauging site, although the effect so experienced is a secondary rather than primary 
manifestation. 

This long-winded statement appears to include the definition that an “unstable reach” is one where 
effects of backwater and unsteadiness are present. That is not a definition of unstable that we would 
have used. 

However, once again anticipating the real nature of the actual hydraulics, but never subsequently 
delivering it in substance, the Standard goes on: 

In all circumstances of variable backwater at a given discharge, a stable channel will provide a 
stable stage-discharge relation when the energy slope of the water in the reach concerned can 
be included as a parameter in the discharge relation. 

6.2 Stable stage-discharge relation 

The Standard spends some time on the basics of presentation of a rating curve, and in so doing it takes 
a laudable overview of the arbitrariness of presentation: 
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6.2.2 The simplest expression of the stage-discharge relation is a plot on arithmetically divided 
graph paper with discharges plotted as abscissae against corresponding stages as ordinates. 
Since discharge often ranges over several orders of magnitude, it is sometimes more convenient 
to plot the relation on single or double logarithmically divided paper. 

In this way the Standard has emphasised that there is nothing special about log-log or any other plots, 
and considers linear axes as a reasonable alternative. Then we read 

6.2.3 A smooth curve should be drawn by eye through the array of data points to detect points 
which may be in error. In the case of a single control, the relation may generally be expressed 

by a power curve of the form ( )β+= ahCQ (see annex A). In the case of a multiple control, the 
relation may have to be expressed by several power curves with inflexions and reversals in 
curvature indicating changes from the influence of one control to another. If the stage 
measurements have been adjusted to relate to a zero which coincides with the level at which 
discharge becomes zero; then on double logarithmic paper the relation between (h + a) and Q 
will plot as a straight line or a series of straight lines, otherwise the relation between h and Q 
will plot as a curve. 

The primitiveness of the “smooth curve … drawn by eye” is surprising, as there are general techniques 
available for least-squares approximation.  

The presentation of the formula for the power law is misleading here, as it is not the single control that 
would determine a single power-law relationship. It would be a very special stream indeed that would 
exhibit such simple behaviour. Rather, there will almost always be a more general relationship 
between stage and discharge, even if there is a single control. The Standard seems to recognise this at 
the end of the paragraph, and to take the quite reasonable approach that it is legitimate to represent the 
rating curve by a series of straight lines on a log-log plot, provided enough data points are provided in 
regions where the gradient changes relatively quickly. 

Next, the Standard turns to a phenomenon that is often ignored, and addresses it fairly and squarely, 
emphasising that ideally measurements should be made at steady stage. It notes that at most gauging 
stations there will be a difference between the discharge for a given stage on the rising and falling 
limbs. It does not explain this in terms of the simple fact that the driving surface slope is greater for 
the rising limb, but it states the phenomenon succinctly: 

6.2.5 The curve should be examined for hysteresis (see annex B). Where possible the 
measurements should have been made at steady stage, but if not, those taken at rising or falling 
stages should be indicated by distinguishing symbols. At most gauging stations it will be found 
that there is a tendency for a gauging taken on a rising stage to indicate a higher discharge 
than one taken at the same water level on a falling stage. Because of this, rising stage 
measurements generally plot below a curve and falling measurements above a curve established 
under steady stage conditions. In the case of stable channels, a mean curve can generally be 
adopted. 

Unfortunately in the last sentence the poor terminology of "stable channels" is used for those where 
the effects of unsteadiness are unimportant. 

6.2.6 The equation for the curve should be obtained, or the curve may be treated as a purely 
graphic record. The equation may be computed mathematically using the least squares 
procedure (see annex A). Alternatively stage-discharge equations may be prepared by computer 
direct from the gauging data but it is still advisable to plot the gaugings for preliminary 
examination to determine if they should be split into ranges for separate treatment. Computer 
techniques should be used only when discharge measurements can be said to have known 
weight. 

The Standard seems to approve of obtaining an equation for the curve, but later in Annex A provides 
no systematic procedure other than a presentation of the standard elementary theory for a least-squares 
fit using a straight line on a log-log plot. It notes that the data should at least be plotted first for 
purposes of checking and for subdivision into ranges.  
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6.3 Unstable stage-discharge relation 

The first section (#6.3.1) deals with unstable channels, where changes of conditions are prevalent, and 
then, strangely, in #6.3.2 it deals with "unstable reaches", in which it mentions weed growth and ice, 
both more pertinent to the previous section, and then by other conditions "due to abnormal conditions 
of backwater" including tributary inflow, artificial regulation downstream, and tidal influence: 

Although the geometry and friction properties of the channel in a measuring reach may, in 
themselves, be stable, a simple invariable relationship between stage and discharge will not 
exist if those channel properties are not in overall control of the depth of flow for any given 
discharge. Such loss of overall control due to abnormal conditions of backwater can be caused 
by weed growth, by tributary inflow downstream, by artificial regulation downstream, by tidal 
influence, by ice, or by some combination of these. It may prove possible to deal effectively with 
weed growth in the manner described in 6.3.1 but the problem of tributary inflow causing 
variable backwater requires measurement of water surface slopes concurrently with stage 
measurement at the gauging site. 

In a masterstroke it is noted that all backwater effects can be overcome by measuring the water slope, 
and it goes on to outline in the next section how to use that, described more fully in an Annex: 

6.3.3 Evaluation involving surface slope (fall) 

In the case of unstable reaches, the evaluation of the stage-discharge relation requires 
additionally the use of the value of fall between two reference gauges located within the reach 
concerned, one of which is the gauging station reference gauge. 

The plotting of the stage-discharge observations with the value of fall against each observation 
will reveal whether the relationship is affected by variable slope at all stages or is affected only 
when the fall reduces below a particular value. In the absence of any channel control, the 
discharge would be affected by the fall at all times, and the correction is applied as indicated in 
the constant fall method (see annex C). When the discharge is affected only when the fall 
reduces below a particular value, the normal-fall method is applied (see annex C). 

The Standard has revealed how to overcome the problem, but explains it rather poorly. Throughout it 
refers to the "fall" between two gauges, when what is really governing the flow is the slope, the fall 
divided by the length over which it occurs. In fact, the slope affects the discharge at all times, 
regardless of whether there is a channel control or a hard control. For an explanation of this, see 
Section 2. 

Importantly the Standard goes on to consider in #6.4 the extrapolation of the stage-discharge relation: 

A stage-discharge curve should not be applied outside the range of observations upon which it 
is based. If estimates of flow, however, are required, they should be so identified having regard 
to the range, number and quality of the observations which have been made, to the natural 
features of the gauging station and to the conditions of flow with respect to time. Little reliance 
shall be placed on extrapolation below the lowest observed value (see annex D). 

The warning is well judged and succinctly written. However the extra warning of the last sentence 
would seem to be just as, if not more, apposite for the highest observed value. 

Next in #6.5 the preparation of a rating table is described, however there is recognition of modern 
practice in the last sentence when it notes that a rating table may not be as useful as the actual 
equations for the stage-discharge curve: 

A rating table can be prepared directly from the stage-discharge curve(s) or from the 
equation(s) of the curve(s), showing the discharges corresponding to stages in ascending order, 
and at intervals suited to the desired degree of interpolation. This can be conveniently 
performed by a computer program using the stage-discharge relation. However it may be useful 
to program the data for computer evaluation using the stage-discharge equations without 
resorting to a rating table. 
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Next, in #7 Methods of testing stage-discharge curves considerable effort is expended in discussing 
the statistics of the data and their relation to the rating curve. In fact the statistical jargon rather 
obscures the underlying hydraulic aspects of the problem. Here we briefly note #7.1.4 Tests for bias 
for unstable channels (tests 2 and 3), which states: 

For stable channels where the control is uniform and remains unchanged, it will be possible to 
fit a mathematical curve as explained in clause 6. More frequently, even in a stable channel, 
where the curve has to be drawn by visual estimation, for example when the section is not 
uniform, the tests described for unstable channels become equally necessary. 

It is not clear why, if a section is not uniform or for any other reason, that the curve has to be drawn by 
visual estimation, especially if the "unstable channel" tests are to be used, when numerical 
computations need to be performed. 

The next section contains several poorly expressed passages and apparent contradictions to what has 
been written before: 

7.1.5 In the case of natural unstable channels, different controls come into operation at different 
stages in different years, so that not only are the curves for the rising and falling stages 
different from each other and from year to year, but there are also inflexions and discontinuities 
due to shifts in control within a stage. 

It is not just different controls coming into operation at different stages or the strangely expressed 
"shifts in control within a stage" which give apparent discontinuities in the rating curve, it is the whole 
geometry of the reach, where the conveyance characteristics of the section may change smoothly with 
stage or suddenly at a given stage if overbank flow suddenly occurs. Immediately following: 

The inordinate labour involved in fitting the high-degree composite curves rules them out in 
practice. The best-fitting rising and falling curves have, therefore, to be drawn by visual 
estimation and shall therefore be tested, for absence from bias and for goodness of fit, 
separately for the individual portions between shifts in control. 

The first sentence may have been correct before electronic computers, but fitting high-degree curves is 
no longer a problem, and standard methods exist. It would be simplest to use global approximation 
methods for such curves. It is interesting that, once again, the necessity for treating rising and falling 
limbs has been emphasised, but the claim that they should be drawn by "visual estimation" seems 
archaic, as does the claim that it is necessary to apply statistical tests "between shifts in control" when 
often those shifts are continuous and it may not be possible to distinguish them. 

In any case, simple piecewise linear approximation using log-log scales is a perfectly viable 
alternative. 

Following this are several appendices, known as Annexes, which describe details of the methods in 
more detail, but which are still quite skimpy.  

Annex A – Stage-discharge curve  

This deals with several aspects which we have described above. #A.1 Stage-discharge equation 
describes methods for determining the coefficients in power law approximations to the stage-discharge 
curve. It includes the advice 

For many purposes the graphical record obtained by plotting the measured discharges on 
arithmetically divided graph paper may be sufficient, but plotting logarithmically is sometimes 
advantageous. 

Also, however, is the practically useless and inaccurate statement that: 

Usually the stage-discharge relation at a station may be expressed by an equation of the form 
β= ChQ (where Q is the discharge, h is the gauge height and C and β  are coefficients) over the 

whole range of discharges, or more often by two or more similar equations each relating to a 
portion of the range. 
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If the zero of the gauge does not coincide with zero discharge a correction a must be applied to 

h, making the equation ( )β+= ahCQ . 

A couple of methods for determining a follow, including a graphical method. Then a simple 
linear least squares fit on log-log scales is described. 

Section A.2 Tests for bias commences with A.2.1 Stable channels and the well-judged remark: 

In the case of stable channels, it is generally found that one curve for the rising and falling 
stages is adequate, unless the river has a steep slope or is flashy; sometimes, one curve is 
applicable with a narrow belt of dispersion for some years. 

Subsequently some over-arching statements are made describing a number of statistical tests which 
should be applied. Following this are recommendations for what the Standard refers to as A.2.2 
Unstable channels: 

In addition to the shift in control at some particular stage due to a different control coming into 
operation as exhibited by some stable channels, the unstable channels manifest another 
peculiarity, that is, a shift of control with reference to time or intensity of floods, and the 
consequential seasonal scour and fill phenomena. There are significant differences in the 
gauge-heights for the same discharge in the rising and falling stages, and a complete change in 
regime occurs after the maximum flood of the year. Minor freshets, specially during the clear-
water seasons, may also cause shifts in control. 

Once again we see the words “change of control” being used as a catch-all phrase. The comments 
about scour and fill are appropriate, but the subsequent generalisations are rather meaningless. 

Subsequently A.2.3 Tests for absence from bias and goodness of fit describes the statistical tests in 
some detail, but they seem to be rather arbitrary and reveal nothing of the underlying hydraulics or 
numerical approximation of the problem. Then A.2.4 Smoothness of curve states 

Smoothness of a stage-discharge curve is also important, but it is a property which cannot be 
exactly defined. The criterion frequently accepted is that the first and second order differences 
should progress smoothly, and higher order differences should become very small. But 
acceptance of such a criterion is tantamount to accepting that the curve should approximately 
be a third or higher order polynomial. The higher order derivatives should show a tendency to 
diminish, but no test can be imposed in regard to smoothness for stage-discharge relation 
curves, as irregularities at some stages due to changes in control and irregularities of cross-
section are inherent features of these relation curves. 

This contains some curious statements amongst some other well-judged ones, and is typical of the 
apparently contradictory nature of much of the whole document. The initial statement about 
smoothness being important is contradicted by the last sentence. No definitions of first and second 
differences are provided so that no guidance is given to practitioners, but technically the statement is 
quite correct, that requiring them to diminish is to impose a cubic approximation. Once again, there 
would seem to be room for the application of rather more sophisticated numerical methods. 

Subsequent sections A.2.5 Methods for locating shift in control and A.2.6 Check on subsequent shifts 
in control describe briefly some procedures, but once again the actual identification of a “shift in 
control” seems totally unnecessary, as the rating curve contains all the information necessary without 
any arbitrary breaking up into sections when the physical justification for that is unknown anyway. 

The following Section A.3 Uncertainty in the stage-discharge relation and in a continuous 
measurement contains details of a number of statistical tests which assume a power law relation valid 
over the whole range, and as such, are considered to be of little or no use. 

Annex B – Hysteresis in the stage-discharge relation  

This describes the situation where effects of unsteadiness are important but contains no practical 
details, which follow in the subsequent Annexes.  
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In general, the sites chosen for gauging stations have channel characteristics (a gradient 
sufficiently steep, and a downstream channel of sufficient capacity) which ensure that, except 
for occasional changes in control which may affect calibration, the relationship between stage 
and discharge is substantially consistent in that one particular gauge height will indicate one 
corresponding discharge. 

That statement is partly true, but for flashy streams the effects of unsteadiness may be important even 
for steep waterways. The Standard has not quantified or explained when these effects may be 
important. Then it states with admirable clarity the reason for the looped nature of some rating curves: 

Under certain conditions (flatter gradients and constricted channels), the phenomenon known 
as hysteresis (the effect on the stage-discharge relation at a gauging station subject to variable 
slope where, for the same gauge height, the discharge on a rising stage differs from that on the 
falling stage) can occur where a looped stage-discharge curve is obtained for floods with 
differing stage-discharge relations for rising and falling levels. The shape of loop rating curves 
can vary from station to station, and also at the same station, with the height of flood, but 
generally the curve for the rising stage will plot to the right of that for the falling stage, 
indicating a higher discharge for the same water level. This is usually due to the fact that 
during rising flood the slope of the flood wave-front is significantly steeper than the steady state 
hydraulic gradient of the river, the reverse applying during the recession. Difference in 
discharge caused by this effect can be significant. 

If discharge measurements are made equally on rising and falling stages, an average rating 
curve falling between the two is obtained, which in most cases is usually of sufficient accuracy. 
In practice, however, there is a tendency for flood gaugings to be made on the falling stage 
only, especially on rivers which rise quickly and carry quantities of debris on the rising flood. 
On stations, therefore, where channel conditions are favourable for hysteresis, precautions 
should be taken to check the extent of the effect before a decision is made on whether to use an 
average rating curve or a series of looped curves. 

Despite the appropriateness of the warning, no advice is given as to how this should be done. 

Annex C – Twin gauge station fall-discharge method  

As the title suggests, this introduces the use of two gauge stations. Unfortunately, despite an excellent 
justification for this, the Standard does not introduce it. The use of twin stations even overcomes the 
problems associated with unsteadiness, but this is not mentioned. 

The Standard suggests  

The plotting of the stage-discharge measurements, with the value of fall 10 zz − , where 0z  

(and) 1z  are the upstream and downstream stages, respectively, marked against each 
measurement, will reveal whether the relationship is affected by variable slopes at all elevations 
or is affected only when the fall reduces below a particular value. In the absence of any channel 
control, the discharge would be affected by the fall at all times and a correction is applied by 
the fixed or the constant fall method (see below); on the other hand, however, when the 
discharge is affected only when the fall reduces below a particular value, the normal fall 
method is applied (see below). 

In fact, the discharge is governed by the fall (actually the slope) at all times and at all stages, according 
to Manning’s or Chézy’s laws assumed to extend to unsteady conditions. 

Next in C.2 Constant fall method a rather ad hoc procedure is outlined where the fall can be included: 

… for the same elevation 0z  on the upstream gauge, the discharge is a function of the fall 

10 zzH −=  that is: ( )nn HHfQQ /=  where Q is the measured discharge; nQ  is the constant 

fall discharge at the same stage; H is the fall corresponding to the measured stage; nH  is the 
selected constant fall (arbitrary) known as the reference fall. 
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The determination of the functional relationship ( )nHHf /  is supposed to be able to be determined 
from a trial and error examination of the gauging values. To the writers, this two-dimensional approach 
would seem to be an optimistic approach indeed, given the difficulties even of identifying the rating 
curve for discharge as a function of stage alone. 

Next, in C.3 Normal fall method a procedure is introduced where one is supposed to be able to 
examine a rating curve and determine at which points “backwater has no effect”. The writers had great 
difficulty understanding the procedure, described in a single paragraph, and presumes that many others 
would have the same problem. There seems to be no real justification for it. 

Annex D – Extrapolation of stage-discharge relation 

This section shows some good judgement: 

Stage-discharge relation curves are primarily intended for interpolation, and their 
extrapolation beyond the highest recorded high stage or the lowest recorded low stage may be 
subject to error. Physical factors such as overbank spills at high stages, shifts in controls at 
very low and very high stages, or changes in rugosity coefficients at different stages, materially 
affect the nature of the relationship at the extreme ends and must be taken into account. 
Extrapolation should be avoided as far as possible, but where this is necessary, the results 
obtained should be checked by more than one method. The physical conditions of the channel, 
that is whether the channel has defined banks over the entire range, or only up to a certain 
stage and over-bank spill above that stage, as well as whether the channel has fixed or shifting 
controls, should govern the methods to be used in the extrapolation. Consideration should also 
be given to the phenomenon of the kinematic effect of open channel flow when there may be a 
reduction in the mean velocity in the main channel during inundation of the flood plain. 

The Standard goes on to present some methods suitable for a channel with defined banks (“and fixed 
controls”, whatever that means), as well as “for a channel with spill” but there seems no justification 
for that. 

D.2 If the control does not change beyond a particular stage, it may be possible to fit a 
mathematical curve as indicated in annex A and obtain the values in the range at the upper or 
lower end of the stage-discharge curve to be extrapolated. 

Which, as warned in the previous quotation, should be done very carefully indeed. The following 
procedure may be less prone to error: 

D.3 Another simple method would be the separate extensions of the stage area curve and the 
stage-mean velocity curve. The latter has little curvature under normal conditions and can be 
extended without significant error. The product of the corresponding values of A and v may be 
used for extending the discharge (Q) curve. 

An even more rational method is then described (#D.4): 

The hydraulic mean radius ( hR ) can be found for all stages from the cross-section. A 

logarithmic plot of ( v ) against ( hR ) generally shows a linear relationship, for the higher 

measurements and the values of v for the range to be extrapolated may be obtained therefrom. 

D.5 A variation of the last method is by the use of Manning’s formula  

n

SAR
vAQ h

2/13/2

==  

Assuming nS /2/1 remains constant and substituting (mean depth) d for hR , a curve can be 

prepared for Q against 3/23/2 dAARh ≈ . After the bank-full stage, the discharge of the spill 
portion will have to be worked out separately by assuming an appropriate value of n. If 
accurate gauges do not exist for computing the slope, it may roughly be estimated from the 
flood marks. 
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A similar procedure is outlined using the Chézy friction formula.  

Annex E – Correction for discharge in unsteady flow  

This contains a presentation of the Jones method, described elsewhere in this report: “under certain 
conditions, it is possible to compute approximately the true discharge … of an unsteady flow from the 
normal discharge … obtained from the stage-discharge curve …”. The Jones formula is presented 
without theoretical justification but with a couple of misleading qualifications. To conclude, the 
optimistic statement is made: 

When a sufficient number of field measurements of discharge are available, it may be possible 
to establish an acceptable family of calibration curves empirically by evaluating the effect of the 
rate of change in stage measured at one gauge as a parameter. 

To conclude our review, we found the Standard to be a mixture of good judgement and bad 
presentation of methods for which there was little justification. Few details are presented of definitive 
numerical methods. The overall feeling is of a document written with little understanding of the 
processes actually at work, but with a great deal of emphasis on issues such as controls, whose effects 
are never explicit. The heavy emphasis on controls detracts considerably from the ability to understand 
the Standard. 

Appendix B. The long wave equations and the nature of flood 
propagation 

B.1 The long wave equations 

B.1.1 The long wave equations for straight waterways 

The flow of water and the propagation of long waves in waterways are described well by the long 
wave equations, which we present here as obtained by Fenton (2001). Consider the mass conservation 
equation: 

  q
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A =
∂
∂+

∂
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, (B.1)  

where A is the cross-sectional area, t is time, Q is discharge, x is distance down the channel, which is 
assumed straight for this work, and q is the inflow per unit length. This equation is exact for 
waterways that are not curved in plan. The momentum equation written in terms of area and discharge 
is: 
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where g is gravitational acceleration, fS  is the friction slope, S  is the mean bed slope at a section, 

and the inflow has a velocity of qu  before mixing. The coefficient β  is the Boussinesq momentum 

coefficient that is the correction that must be applied such that the integral of the square of the velocity 
over the section can be approximated in terms of discharge and area: 

  
A

Q
dAu

A

2
2 β=∫ . (B.3) 

We use an empirical friction law for the friction slope fS , in terms of a conveyance function K, so 

that we write 

  ,
2

2

K

Q
S f =  (B.4) 
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where the dependence of conveyance K on stage may be determined empirically, or by a friction law, 
such as Manning’s or Chézy’s law:  

  Manning’s law: 
3/2

3/51

P

A

n
K =  or Chézy: 

2/1

2/3

P

A
CK = , (B.5) 

where n and C are Manning’s and Chézy’s coefficients respectively, and P is the wetted perimeter of 
the section, such that as both A and P are functions of surface elevation at a section, it could be 
expressed in terms of A if that formulation were chosen. 

Rather than the formulation in terms of surface area, it is usually more convenient to work in terms of 
stage (surface elevation) η , and if we assume that the water surface is horizontal across the stream, 
then tBtA ∂η∂=∂∂ // , where B is the width of the water surface, so that the equations become 
(Fenton, 2001): 
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and 
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Each pair of equations (B.1) and (B.2) and (B.6) and (B.7) is a pair of partial differential equations 
which express the evolution with time of disturbances in waterways. They are at the core of much 
hydraulic modelling, especially where rapid transients are required to be computed, and several 
commercial programs are available. There have been some incorrect interpretations of the nature of 
these equations, which will be described below. 

Fenton and Nalder (1995) have obtained the equations for curved waterways, as shown below in 
Appendix B.1.3. They showed that the effects of curvature are proportional to RB / , the ratio of the 
breadth of the river to its radius of curvature in plan. 

The mass conservation equations (B.1) and (B.6) are exact, within the approximation that the 
waterway is not curved. The derivation of the dynamic equation (B.2) and subsequently (B.7) requires 
the additional assumptions that the pressure distribution is hydrostatic and that the non-uniformity of 
velocity over a section can be expressed by the Boussinesq momentum coefficient. It is not necessary 
to assume that velocity is uniform over each cross section, as almost all results can be presented in 
terms of discharge. In the only term where an assumption has to be made as to the velocity 
distribution, the Boussinesq momentum coefficient has been introduced. We will show below that the 
terms containing this quantity are of the order of the Froude number squared, which is usually small, 
such that the precise value of β  is usually not important, and in many applications terms containing it 
can be neglected.  

It is not necessary to assume that the bed slope is small, as in the derivation a control surface is used 
where the important faces are perpendicular to cartesian coordinate axes, and a postulate is made that 
an approximation to the horizontal component of shear stresses is used. 

B.1.2 Steady flow – equation for backwater curves 

Here we consider an important special case of the equations, where the flow is steady, such that there 
is no variation with time. In this case, integrating equation (B.6) gives 

  ∫+= x

x
dxxqQxQ

0
')'()( 0 , (B.8) 

where 0Q  is the flow at some point 0x , and we see that the flow at point x is modified by integrating 
the inflow between the points, in which 'x  is a dummy variable of integration. In many applications, 
where there is no inflow, Q is constant. 
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Now considering the momentum equation (B.7) for steady flow we have, using (B.8) where necessary, 
but generally retaining the symbol Q, understanding that (B.8) will be substituted, we have 
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which is an ordinary differential equation for dxd /η , which may be solved using standard numerical 
methods for differential equations, to give the backwater curve. Equation (B.9) is rather more general 
than usual presentations of the equation. Further below we will see how this relates to those. The 
geometric quantities such as area and breadth are usually more conveniently expressed in terms of a 
local elevation, which in the case of prismatic channels might be the depth. Here a depth-like quantity 
is introduced which will be referred to as the local elevation, h, which is the local surface elevation 
above an arbitrary reference curve running the length of the waterway. In the case of a natural stream 
the reference curve might simply be a line inclined at the mean bed slope over a reach of the stream, or 
in the case of a prismatic canal with a flat bottom it might be a line coincident with the canal bottom, 
when h actually is the depth of water over that bottom. If the elevation of the reference curve is )(0 xz , 

then hz +=η 0 , and to relate the gradients we have to introduce the (possibly local) slope of the 

reference curve dxdzS /00 −=  following the usual sign convention in hydraulics that a downward 

sloping bed has a positive slope. Now, 0// Sdxdhdxd −=η , and substituting into equation (B.9) 
gives the equation in terms of h:  
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In practice, one is likely to choose the local slope of the reference axis to be the mean slope of the bed 
such that SS =0 , and the differential equation becomes 
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Equation (B.11) is a generalisation of the usual presentation of the differential equation for backwater 
curve computations (e.g. Henderson, 1966, p125), which is for the case of no inflow, 0=q , and where 
the implicit approximation has been made that 1=β . In fact, the actual value of β  does not matter 

very much, as in the denominator of (B.11) it multiplies a term 32 / gABQ , which is the square of the 
Froude number, small in many applications and could be neglected.  

B.1.3 The long wave equations for curved waterways 

The equations corresponding to (B.1) and (B.2) but where the curvature of the waterway is included 
have been obtained by Fenton and Nalder (1995):  
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where s is the distance co-ordinate along an axis down the river, )(sκ=κ  is the curvature of the river, 
equal to r/1 , where r  is the radius of curvature of the axis, taken positive for a river turning to the 
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left and negative for turning to the right; mn  is the transverse offset of the mid-point of the surface 
from the curved axis down the river; and n  is the transverse offset of the centroid from that axis. 
These equations have exactly the same structure as (B.1) and (B.2), the only real differences being that 
the coefficients of the various derivatives include terms in rnn mm /=κ , the ratio of the offset of the 
surface mid-point to the radius of curvature, and rnn /=κ , the ratio of the offset of the centroid to the 
radius of curvature. If 0=κ , equations (B.12) and (B.13) reduce to (B.1) and (B.2), although here 
they are presented for the case 1=β . In streams (such as canals) where the cross section is symmetric 

about the centreline, both 0== nnm  and the curvature has no effect. Consideration of curvature 
complicates the equations, and in this work we will maintain the traditional approximation that all 
streams are straight. 

B.1.4 The characteristic formulation and a misleading result for wave speed 

The corresponding characteristic form of the equations will now be obtained, and it will be suggested 
that this has led to a traditional interpretation that is quite wrong. That interpretation is that 
disturbances in waterways travel at a speed given by the square root of gravitational acceleration times 

the mean depth, that is, BgA / , where BA /  is easily interpreted as the mean depth. In fact, although 

information in the form of characteristics does travel at that speed, physical quantities such as surface 
elevation do not. It is possible that many simple calculations based on the supposed propagation speed 
of long waves have been wrong in the past. 

Either of the equation pairs (B.1) and (B.2) or (B.6) and (B.7) may be converted to a set of four 
ordinary differential equations, leading to the characteristic formulation. In this case there are paths 
known as characteristics along which information flows. The equations of the characteristics are given 
by the solution of the two differential equations (taking both sign alternatives ± ): 
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where C is the quantity 
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whose significance will be discussed below. On the characteristics that are solutions of the differential 
equations in equation (B.14), using the formulation in terms of stage, the stage and discharge satisfy 
the differential equation 
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A similar equation exists for the area-discharge formulation. These results contain some interesting 
physical significance. The quantity dtdx /  is the local gradient of the characteristics on a plot of 
distance x against time t; which could be termed the velocity of the characteristics. It contains two 
parts: the first, AQ /β is simply β  times the mean fluid velocity in the waterway at that section and 
shows the contribution of the fluid velocity to the velocity of the characteristics. It is interesting that 

the effect of β  is expressed so simply, but possibly surprising that it is not like β , as β  multiplies 

AQ /2  in the original equations. 

The next term in equation (B.14) is more noteworthy. The two solutions corresponding to the positive 
and the negative signs, C± , are the ''wave'' velocities of the characteristics relative to the water 
corresponding to both upstream and downstream propagation of information. Their definition, 
equation (B.15), is perhaps surprisingly complicated as obtained here, where we have included the 

momentum coefficient β . The familiar traditional result is that BgAC /= , where BA /  is the mean 

depth. Here we have generalised the formulation to allow for different values of β . The traditional 

2
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result holds if we assume that velocity is constant over the section such that 1=β  or if we ignore the 
quadratic velocity terms altogether, 0=β .  

The traditional result that BgAC /=  has led to a widespread misconception in hydraulics such that 

C has often been referred to as the speed of propagation of waves. It is not – it is the speed of the 
characteristics. If surface elevation were constant on a characteristic there would be some justification 
in using the term ''wave speed'' for the quantity C, as disturbances travelling at that speed could be 
observed. However as equation (B.16) holds in general, neither surface elevation η , nor discharge Q 
is constant on the characteristics and one does not have observable disturbances or discharge 
fluctuations travelling at C relative to the water. While C may be the speed of propagation of 
information in the waterway relative to the water, it cannot properly be termed the wave speed as it 
would usually be understood.  

B.1.5 The effects of velocity distribution 

The coefficient β  has been discussed in many places. Chow (1959, Chapter 2) wrote: ''For channels of 
regular cross section and fairly straight alignment, the effect of non-uniform velocity distribution ... is 
small, especially in comparison with other uncertainties involved in the computation. Therefore the 
coefficients are often assumed to be unity''. Xia and Yen (1994) examined results from numerical 
solutions of the long wave equations with pressure-correction coefficients and the momentum 
coefficient β . They found that the effects of β  were small. Equation (B.3) points to this, as the 
coefficient multiplies a term proportional to the square of the discharge. This is examined below by 
non-dimensionalising the equations and showing that its relative magnitude is the square of the Froude 
number. In many flow situations this will be small. While large values of β  are commonly 
encountered in a compound waterway such as a river and a floodplain, in this case the flow will often 
be of such a small Froude number that the term could be neglected altogether, which could be 
accomplished by setting 0=β  in computations. In general, the effect of β  on wave propagation in 
waterways is expected to be small and no great effort need go into its evaluation. 

B.1.6 The nature of wave propagation in waterways and the Telegrapher’s equation 

Either pair of equations (B.1) and (B.2), or (B.6) and (B.7), describe the motion of long waves in 
waterways. However they do not reveal the essential nature of the propagation of waves. Indeed, 
interpretations of them such as the method of characteristics in Appendix B.1.4 can lead to misleading 
deductions about the nature of wave propagation. More insight is provided if we approximate the 
equations by considering small disturbances about a uniform flow. 

We linearise the equations by considering disturbances about a uniform steady state to be small, which 
gives a single linear equation. It is convenient to replace temporarily the stage (surface elevation) by a 
local depth co-ordinate h such that hzb +=η , where bz  is the elevation of the bed co-ordinate axis, 

such that xhSxhxzx b ∂∂+−=∂∂+∂∂=∂η∂ //// 0 . We consider the case where there is no inflow 
into the river 0=q  and we assume that the momentum coefficient β  is constant. Let the steady 

uniform flow in the waterway be of depth 0h , discharge 0Q , area 0A  and conveyance 0K  such that 
2
0

2
0 / KQS = . We write 2+ε+= 10 hhh  and 2+ε+= 10 QQQ , where ε  is a small quantity 

expressing the magnitude of the disturbance. Substituting these expansions into equations (B.6) and 
(B.7), and taking only first order terms in ε  gives a pair of linear equations. After cross-differentiation 
and back-substitution between them, the equations can be reduced to a single equation, the 
Telegrapher's equation, well known in electrical engineering for describing transients on lines with 
losses: 
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where φ  could stand for the actual depth or discharge, h or Q. Various velocities appear here. The 

quantity 0c  is a velocity such that 
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which is simply the Kleitz-Seddon law for kinematic wave speed, which can be obtained rather more 
simply in the limited context of kinematic wave theory. We have introduced the symbol 0V  here as it 
makes subsequent expressions simpler to write. Other velocities appearing in the equation are: 

000 / BgAC = , the traditional expression for the speed of long waves on still water; and 

000 / AQU = , the mean fluid velocity in the stream.  

Another quantity which has been introduced here is 000 / KSgA=α , which is a friction parameter. 
It can be written in any of the equivalent forms 

  
00

0

0

0
0 U

Sg

Q

SgA

K

SgA ===α , (B.19) 

such that it increases with slope but decreases with conveyance/discharge/velocity. 

Equation (B.17) has two parts: the first, involving first derivatives only, is the frictional or decay part, 
while the second is the wave propagation part. Such an equation has been obtained by Deymie and by 
Lighthill and Whitham (1955) and several others, often for special cases such as a rectangular 
waterway. Surprisingly little attention has been given to this formulation, yet it can convey some 
insight into how waves propagate in waterways.  

Here we consider some approximations which can be used.  

Friction negligible – horizontal stream 

If we consider a horizontal waterway, with zero slope, then 00 =α , the friction term in equation 

(B.17) disappears, and as for this case we also have 00 =U , no underlying flow, the equation 
becomes 
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which is the Wave Equation, for which reference can be made to any book on engineering 
mathematics which deals with partial differential equations. Solutions of this equation are composed 
of arbitrary disturbances travelling at velocities of 0C± , the conventional solution for long waves on a 

frictionless fluid, travelling in both directions relative to the water, where 000 / BgAC = . This is 

unlikely to be important in river hydraulics. 

Friction dominant - kinematic wave theory 

Generally in the case of floods in rivers the friction is a dominant effect. If the frictional first term in 
equation (B.17) only is retained, then we have 
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t
,  

with the solution that of an arbitrary disturbance travelling without change at a velocity of 0c , which 
is the kinematic wave solution. In the case of a wide river, the relative variation of perimeter with 
stage is small, so that if Manning friction is used, 00 7.1 Uc ×≈ . Waves in rivers are much more likely 
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to travel at this kinematic wave speed (about 1.7 times the mean fluid velocity) than at the speed 

000 / BgAC = , almost universally described as the speed of long waves in waterways. 

Intermediate case – moderate friction 

We would now like to examine the intermediate case of equation (B.17). Unfortunately simple 
deductions from the form of the partial differential equation seem not to be possible. However, we 
obtain useful insight by assuming that, as any disturbance can be written as a Fourier series, we can 
consider just one term of that Fourier series and examine how it propagates, namely what is its speed 
of propagation and how does it decay as it travels. This is only possible as the equation is linear in φ . 
Ponce and Simons (1977) have done this. 

It is simpler to write the variation in x in complex form, such that we represent all variation along the 

waterway as ( )ikxexp , where 1−=i  and Lk /2π= , where L is the wavelength we are considering. 

The exponential could be expanded: ( ) kxikxikx sincosexp += , thereby revealing more its periodic 
form. We write for the general solution: 

  ( )tikx µ+=φ exp , (B.20) 

showing the periodic behaviour in x, and where the behaviour in time t is contained in the term µ . The 
real part of it shows how the solution decays or grows in time, the imaginary part will determine how 
the solution oscillates in time as the periodic waves pass a point. We substitute (B.20) into (B.17) and 
find that it does satisfy the equation exactly, giving a quadratic equation for µ  which can be solved. 
The solution is rather shorter if we make the sensible approximation that the momentum coefficient 

1=β  in equation (B.17), and it is: 
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This is a complex expression. Extracting both real and imaginary parts gives quite complicated 
expressions. We can see that part of the variation in time is simply that of a wave being carried 
downstream at the underlying velocity in the channel of 0U , as shown by part of the behaviour being 

like tUx 0− , were we to substitute this back into equation (B.20). The remainder of the imaginary 
part gives us an expression for the speed of propagation of a wave relative to the flow: 
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where C is the general expression for the speed of propagation, and we can see that in general it 
depends on the wavelength via Lk /2π= . Thus, contrary to popular belief, the long wave equations 
with friction show wave propagation where the wave speed depends on the wavelength, and is not a 
constant. In fact, if we expand equation (B.21) as a power series in 0/ kCα  we obtain 
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and we see that in the limit of no friction, 0→α , we obtain 0CC → , as we obtained above. 

Possibly of greater interest is the case where 0/ kCα  is large. To explore this we expand (B.21) as a 

power series in ( ) 1
0/ −α kC , the inverse of what we used previously. The result is 
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µ
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This shows that in the limit of strong friction, where α/0kC  is small, the solution propagates at a 

velocity of 00 VU + , which is 0c , the kinematic wave speed, governed by the velocity of the water in 
the channel, rather than the speed of long waves on still water! 

B.2 Low-inertia approximation to the equations for rivers 

B.2.1 Non-dimensionalisation of the equations 

To examine the importance of the various terms we non-dimensionalise the equations, temporarily 
neglecting the inflow terms. We use four different length scales: xL  is the length scale along the 

channel, yL  is the width scale, dL  is the depth scale, and zL  is the drop scale, the amount by which 

the channel loses elevation in a distance xL  such that slope is of the order of xz LL / . We non-

dimensionalise area A with respect to dy LL ; breadth B with yL ; discharge Q  with dy LUL , where U 

is a characteristic mean flow velocity; slopes with respect to xz LL / ; x with xL ; and t with respect to 
a time scale T. Substituting the non-dimensionalising expressions into equations (B.6) and (B.7) the 
equations become, where all quantities are the dimensionless equivalents of those in the original 
equations, for example A  here actually means dy LLA / , and so on: 

 ,0
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∂
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  (B.24) 

 ,02
2

2

2

2
2 =





+

∂
η∂+





β−

∂
∂β+

∂
η∂β−

∂
∂θ f

d

z S
L

L

x
gAS

A

BQ

x

Q

A

Q

xA

BQ

t

Q
F  (B.25) 

where we have ignored the derivative of β  in the last equation.  

The quantity θ  in (B.24) and (B.25) is the dimensionless ratio UTLx / , expressing the relative time 

scale of motion, the ratio of the physical length scale xL  to the length scale given by the time scale of 
change multiplied by the velocity at which it is carried. Usually in flows in natural waterways the 
velocity of motion is finite and the time scale of motion is dictated by the velocity at which 
disturbances are carried by the flow. In this case the time scale ULT x /~ , in which case θ  is of order 
one, which will be the case described in this work. Where it might be greater is, for example, in 
situations such as where a level channel connects two bodies of water, and waves might be generated 
in one of them. We will not consider that here. 

The quantity 2F  in (B.24) and (B.25) is the square of the Froude number scale of the flow, 

dgLUF /22 =  and it can be seen that most of the terms in the momentum equation are of this order. 

Not only are the momentum flux terms involving β  of order 2F  but so is the tQ ∂∂ /  term. In most 
river flows, even in floods, the Froude numbers are still sufficiently small that we can ignore these 

terms. For example, a flow of 1 m/s with a depth of 2m has 05.02 ≈F .  

There is another scale in equation (B.25), and that is the ratio of the vertical scales dz LL / , which is 
the ratio of the drop in river bed or surface level, over a reach of interest, to the water depth. In the 
case of an irrigation canal, this might be of order of magnitude about 1, whereas in a mountain stream 
it will be small. It seems that in general no approximations can be made as to its magnitude. 

Price (1985) also performed a non-dimensionalisation, as did Sivapalan, Bates, and Larsen (1997), and 
they both obtained complicated advection-diffusion equations, where there were mixed derivatives in 

x and t. Price obtained the results in terms of 2F  and the depth/drop parameter zd LL /=ε , and 

effectively obtained the same results as equation (B.25). He stated that for rivers 12 ≤ε≤F , which 
seems slightly strange. In the lower reaches of a river it is possible that the depth-drop parameter could 
easily be greater than one. However, as he wanted to model rivers where the depth was much smaller 
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than the drop, he developed an approximation which was )(εO , and made no approximation as to 2F , 
which is strange in view of the claimed size hierarchy. This is effectively a ''steep slope'' 
approximation that is complicated. 

B.2.2 Low-inertia routing – a new approximation and the old advection-diffusion 
formulation 

Now if we ignore the terms of the order of 2F  as revealed in equation (B.25), its dimensional 
counterpart which is equation (B.7), the momentum equation, becomes simply 

  ,0=+
∂
η∂

fS
x

 (B.26) 

which expresses the fact that, even in a generally unsteady situation, the surface slope and the friction 
slope are the same magnitude, remembering that the free surface will slope downwards so that its 
gradient is negative. Although expressions such as equation (B.26) are known in the literature, it has 
not always been known that it is such a good approximation to the dynamic equation, errors only being 

of order )( 2FO . 

Now we use an empirical friction law for the friction slope fS  in terms of a conveyance function K, so 

that we write 

  ,
2

2

K

Q
S f =  (B.4) 

where the dependence of K on stage at a section may be determined empirically, or by a standard 
friction law, such as Manning’s or Chézy’s law. 

Substituting (B.4) into (B.26) gives us an accurate expression for the discharge in terms of the slope: 

  ,
x

KQ
∂
η∂−=  (B.27) 

even in a generally unsteady flow situation, provided the Froude number is sufficiently small. This 
good approximation to the dynamic equation has a number of implications for flow measurement that 
are examined in the body of this report.  

Now we eliminate the discharge Q from the equations by simply substituting equation (B.27) into the 
mass conservation equation (B.6) to give the single partial differential equation in the single variable 
η : 
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The conveyance is usually expressed as a function of roughness and of the geometry. We will not 
show the dependence on roughness explicitly, but we show it as depending on both x and η  so that we 
write ),( ηxK , where of course η  is a function in general of x and t. Hence we can perform the 
differentiation in equation (B.28) to give  
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. (B.29) 

The equation is a single partial differential equation in a single variable η . Usually the upstream 
boundary condition is where the discharge is given as a function of time, and from equation (B.27) 
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  ,),0()),0(,0(),0( t
x

tKtQ
∂
η∂−η=  (B.30) 

and so if the discharge is specified then the equation is a rather messy equation connecting the surface 
elevation and its spatial derivative at the upstream end, which we have presumed to be at 0=x . 

At the downstream end, if there is a control, where discharge is some known function of surface 
elevation, then an even more complicated situation arises. The simplicity of derivation of this equation 
may not be useful in practice. Below we present an alternative form which is probably more practical. 

As the conveyance is more likely to be able to be expressed in terms of the local elevation of the water 
surface, we introduce again the local depth h above a reference curve )(0 xz such that hz +=η 0 , and 

0// Sxhx −∂∂=∂η∂ , and substituting into equation (B.29) gives the equation in terms of h, where we 
now have ),( hxK : 
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This equation is essentially of the same form, but contains an extra term in the derivative of the slope 
of the reference curve. In many situations this will be zero. Still, this equation is of considerable 
generality, and the only approximation still is that the square of the Froude number be small. In the 
common situation where the channel is prismatic and its properties do not change along its length such 
that we can write )(hKK =  only, and it is of constant slope, we can write 
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Further, if the variation of the local depth is small compared with the overall slope so that 

0/ Sxh <<∂∂  we can write 
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We can see that the coefficient of xh ∂∂ /  is simply 0c  from equation (B.18), which is the advective 

velocity at which solutions move, the kinematic wave speed. The coefficient of 22 / xh ∂∂  is the 
diffusion coefficient 
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D = . (B.34) 

The equation then can be written 
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00 , (Advection-diffusion equation) 

which reveals its essential nature more. It is in this form that the equation is usually written and is 
quite well-known. It can be seen that rather more approximations have been made in its derivation.  

B.2.3 Volume routing 

Here we use a transformation of variables which enables us to use a single dependent variable in low-
inertia routing and to introduce an equation which makes fewer approximations. Consider the mass 
conservation equation (B.1), which we repeat here:  
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  q
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∂+

∂
∂

. (B.1) 

Now consider the volume of fluid upstream of a point x at a time t, denoted by ),( txV . From simple 
calculus, the derivative of volume with respect to distance x gives the cross-sectional area: 

AxV =∂∂ / , and as the time rate of change of V at a point is equal to the total rate upstream at which 
the volume is increasing, which is ∫x

dxq  less Q, the volume rate which is passing the point, we have 

QdxqtV
x

−=∂∂ ∫/ . Hence, substituting the relations 

  xVA ∂∂= /  and tVdxqQ
x

∂∂−= ∫ /  (B.35)  

into equation (B.1) shows that it is identically satisfied! This might have been expected, as the 
equation is a mass conservation equation, and hence for an incompressible fluid it is a volume 
conservation equation. 

Now, with this ability to use upstream volume we go on to use it in the simplified momentum 
equation. Firstly, it can be shown (Fenton, 2001) that the derivative of the cross-sectional area can be 
related to the derivative of the stage by 
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so that the simplified momentum equation (B.26) becomes 
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such that if we use the frictional law (B.27): 
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and substituting for Q and A in terms of V, from equation (B.35) and as both breadth B and 
conveyance K can be written as functions of area we obtain the single equation in the single variable 
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which we will term the Volume Routing Equation, in which the only approximation relative to the long 

wave equations has been that we ignore terms of )( 2FO , such that it will be accurate for 12 <<F . 
Usually the inflow term on the right hand side will be zero. 

The Volume Routing Equation might be useful in a range of hydrologic and hydraulic computations, 
replacing the solution of the long wave equations. It is a nonlinear partial differential equation that is a 
single equation in a single variable. From it, deductions can be made about the nature of wave 
propagation in waterways, which are not as misleading as those from the characteristic formulation of 
the long wave equations. 

Here we consider what boundary conditions might be specified. At an upstream boundary 0x  we 

might have a given inflow as a function of time ),( 0 txQ , which, from equation (B.35) gives us what 
dtdV /  is there, such that we have also to solve the ordinary differential equation 

),(/),( 00 txQdttxdV −=  there as part of the solution, which is relatively simple. At control points, we 
will usually have some relationship between Q and A such as provided by weir formulae, which gives 

tV ∂∂ /  as a function of xV ∂∂ /  there. As part of the solution we will have to differentiate numerically 
to give the latter and then integrate to give the updated value of V. At open boundaries, where there is 
no control point, we may simply be able to apply the partial differential equation as if it were an 
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interior point, although if finite differences were being used to evaluate the spatial derivatives a 
different formula in terms of points to one side would have to be used. 

B.2.4 A linear approximation to the volume routing equation 

Unfortunately the Volume Routing Equation (B.38) does not reveal simply its essential nature as an 
advection diffusion equation, and we have to show this mathematically. If we consider small 

perturbations of this equation about a steady flow of area )(0 xA  and discharge ∫+ x

x
dxxqQ

0
')'(0 , then 

we write 
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ε+−= ∫ ,  

where ε  is a small quantity which expresses the magnitude of perturbations about the base flow and v 
is the perturbation volume, then we have 
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and using series expansions for K and B about the steady flow, such that, for example, 

xvKKVK x ∂∂ε+= /)( /
00 , where )( 00 AKK =  and 

0
//

0 A
dAdKK = , substituting into equation (B.38) 

taking series where necessary and ignoring all products 2ε  and higher, we obtain at zeroth order (the 

coefficient of 0ε ): 
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This is an ordinary differential equation to be solved for )(0 xA , written showing where the dependent 

variable 0A occurs. It is more familiar if it is written in terms of the steady local elevation 0h  such that 

dxdhABdxdA /)(/ 000 =  as well as in terms of the friction slope fS  without showing the 

dependencies, giving: 

  fSS
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−=0 . (B.40) 

This can be compared with the differential equation (B.11) for backwater curve computations obtained 
above from the full long wave equations, presented here for the case of no inflow:  
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where 322 / gABQF =  is the square of the Froude number, which in this section we have assumed 
small and are neglecting it. As numerical solution of (B.41) is no more difficult than (B.40), there 
might be some small gain in using it to determine the initial steady solution. 

Now we extract the coefficient of 1ε  from the substitution into equation (B.38)and obtain 
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where the coefficients )(0 xu  and )(0 xD  are functions of the underlying steady state solution: 
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We have used the symbol ∫+= x

x
dxxqQQ

0
')'(0  to denote the flow at any section. If there is no inflow 

then constant0 == QQ . In the form given by (B.42) the equation governing the propagation of floods 
and long waves is an Advection-Diffusion Equation with variable coefficients. In fact, the advection-
diffusion approximation has been known since 1951. Here, however, we have derived it without 
making any approximation that the underlying flow is uniform – we have allowed it to be a general 
backwater curve. Usually Q is constant, but if the flow is not uniform, then 0B  and 0K  and their 
derivatives are functions of x.  

B.2.5 The nature of flood and long wave propagation in waterways 

In the common approximate case where it is assumed that the underlying flow is uniform such that 

SKQ 0= , then the coefficients are constant, and we obtain 0
/
00 / dAdQSKu == , the Kleitz-

Seddon law, such that 0u  is constant and is known as the kinematic wave speed. We have shown that 
it is in general variable and have given it a symbol that is more suggestive of it being a local advection 

velocity. Also in this uniform flow case, SBQSBKD 0000 2/2/ == , which has been obtained by 
several people. 

Previously we have suggested that the long wave equations themselves do not reveal the nature of 
wave propagation at all. If one recasts them in a characteristic formulation then some information as to 
the nature of the transmission of information is extracted, but some misleading results can also be 

inferred, such as the deduction that disturbances travel at a speed depthMean ×= gc . The present 

work has shown that, provided terms proportional to the square of the Froude number are ignored, that 
floods and long waves obey an advection-diffusion equation. This means that the waves are carried 
along locally at a velocity )(0 xu  given by equation (B.43), such that there is no wave motion back up 
the waterway. Disturbances can travel up the waterway, but only by a process of diffusion as described 
below. The magnitude of 0u  can be estimated by using the uniform flow approximation 

0
/
00 / dAdQSKu == . In the case where Manning’s friction law is assumed we have 

3/23/5 //1 PAnK ×= , and differentiation with respect to area gives 
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It is more convenient to express the derivative in terms of the local height, and so using the fact that 

000 / BdhdA =  we have 
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The quantity 00 / dhdP  is easily shown to be related to θsin/1 , where θ  is the angle of the banks, so 

that this might have a value of say, 4)2/1/(12 =× , for A30=θ . This finite value means that the 

relative contribution due to the perimeter changing is of the order of 000 / PBA , which is the mean 
depth divided by the wetted perimeter, which will be small for wide channels. Hence, ignoring this 
contribution we see that if Manning friction is used, the advection velocity, the velocity with which 
disturbances are transported, is about 3/5  times the mean velocity in the waterway, 00 / AQ . If we 
had used Chézy friction this factor would have been 2/3 . The actual numerical value is perhaps not as 
important as the knowledge that in waterways where the square of the Froude number is small, that the 
above theory accurately represents the actual behaviour of disturbances in the waterway, and that the 
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velocity with which those disturbances are transported is of the order of the mean velocity in the 
water, and has nothing to do with the square root of gravity times depth. 

That discussion has, however, ignored the effects of the remaining diffusion term containing the 
second derivative with respect to x. It is well known in physics and mathematics that the behaviour of 
diffusion is to eliminate any discontinuities, to reduce the amplitudes of disturbances and to smear 
them out. This effect is proportional to the diffusion coefficient. 

Now let us consider the relative importance of various terms in the advection diffusion equation, 
(B.33), but where we assume that we have the simpler case of underlying uniform flow so that it 
becomes 
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The time scale of events is the length scale divided by the velocity with which they are transported, so 
that we can say that the time derivative is of relative magnitude xLUt /~/ 0∂∂ . We have shown 
above that the advection velocity is of the order of the fluid velocity, so that we can say 

xLUxu /~/ 00 ∂∂  also, while the diffusion term varies like 
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and we see that relative to both the time and advection terms, the diffusion term has a magnitude of 

zd LL / , which is the ratio of the depth to drop scales. This shows a very surprising result, which is 
contained in the formulae above, that for streams which are steep and the water depth relatively 
shallow, such as steep mountain streams, the gravity and friction terms are in balance, and in this high 
friction limit, apparently paradoxically, the flood wave moves as a kinematic wave with little 
diminution. On the other hand, where slopes are shallow and friction less, such as in irrigation 
channels, the effects of diffusion are stronger, in apparent contradiction to what one might expect. This 
is shown by equation (B.45), where the slope is in the denominator of the diffusion term. This is an 
unusual and unexpected result, and opposes the intuitive practical interpretation of the behaviour of 
waves in rivers and channels that they travel without a great deal of diminution due to friction. In fact, 
waves in a waterway with a mild slope may be markedly diminished in height and spread out much 
more in space and time.  

We have shown for situations where the Froude number is small, that waves propagate only in the 
downstream direction, at a velocity )(0 xu , but that they also show diffusion, with coefficient )(0 xD . 
For constant coefficients and based on a supposed perturbation about a uniform flow, this is well 
known. However, there still seems to be some confusion because of the continued presentation of the 
ubiquitous expression for the speed of characteristics depending on the square root of the mean depth.  

We have shown that it is possible to formulate a low-inertia model such that it is a good approximation 
in most cases of rivers and canals, and hence is worthy of further examination, as it is considerably 
simpler than the full equations, both in presentation and numerical properties. It shows that waves in 
waterways with finite friction travel downstream at a speed roughly equal to speedWater3/5 × , and 

not upstream and downstream at a speed given by depthMean ×= gc , widely used for back of the 

envelope calculations. In reality, however, the diffusion coefficient can be large, and the equation 
behaves more like the diffusion equation, where disturbances are diminished and spread out in space 
as time passes. In this case, there is no such thing as a wave speed. It can be shown that  
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Appendix C.  Calculating the discharge hydrograph from stage records  

C.1 Using the full long wave equations 
The following has been given in more detail in Fenton (1999). Our task in this work is to eliminate 
spatial derivatives from the equations in favour of time derivatives so that we can take data measured 
at a point in a waterway, such as at a gauging station, and extract as much information as possible 
using the data available in the form of a number of readings over time at a single point. If we eliminate 
the xQ ∂∂ /  term between the two equations (B.6) and (B.7), and using the general quadratic friction 
law (B.4), we have 
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Such a procedure was adopted by Faye and Cherry (1980). To determine the discharge hydrograph 
from stage records the problem remains to eliminate the x∂η∂ /  term, which would give us an 
ordinary differential equation for )(tQ , provided we knew the stage )(tη  at all times at a particular 
point, from which we could calculate the quantities A, B, and K at any time. Faye and Cherry used the 
kinematic wave equation to eliminate the space derivative. However we can use a higher level 
approximation than that. 

A tradition in river hydraulics has been to eliminate higher time derivatives in favour of space 
derivatives, giving kinematic and diffusion theories. The latter was originally obtained by Hayami 
(see, for example, Henderson, 1966, #9.6), and involves a single time derivative. Here we proceed in 
the other direction by eliminating all but a single space derivative. We obtain this automatically by 
writing 
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such that we assume that we can replace x differentiation with a series of space differentiations. We 
will substitute this expression into the Telegrapher's equation (B.17), which we reproduce here 

  ( ) 022
2

2
2
0

2
0

2

02

2

00 =
∂

φ∂−β+
∂∂
φ∂β+

∂
φ∂+







∂
φ∂+

∂
φ∂α

x
CU

xt
U

tx
c

t
. (B.17) 

This equation is a linearised approximation to the full long wave equations, its only approximation 
being that deviations of flow and depth from those of a uniform flow are small. 

After substitution of (C.2), we treat the equation as a polynomial in the differential operator t∂∂ / , and 
each power of the operator gives an equation, to give a sequence of linear equations in the 1a  etc. 
These can be solved to give the equation which is an approximation to the Telegrapher’s equation and 
hence to the long wave equations: 
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where 
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Equation (C.3) is an equation for the space derivative of discharge or area or depth at a point in terms 
of the time derivatives there, which is what we want.  

If we had proceeded in the other direction, of eliminating higher time derivatives, we would have 
obtained 
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which is the advection-diffusion equation. If we had truncated after the first term such that there were 
no terms on the right it is the kinematic wave equation, whose solutions are simply waves which 
translate without change at a velocity of 0c , as obtained by Lighthill and Whitham (1955). This 
presentation is a generalisation of previous derivations, for we have included the momentum 
coefficient β  as well as terms in the definition of 0D  and 0G  which are of a magnitude which is the 
square of the Froude number, which have been reasonably neglected in previous presentations. 

We, who thus far have made no approximations, now eliminate the x∂η∂ /  term from equation (C.1) 
by using the approximation to the equations of motion, equation (C.3), written for depth h. Using the 
generic friction law (B.4) and with the identity connecting the gradients of stage and depth, 

Sxhx −∂∂=∂η∂ // , we obtain the ordinary differential equation for )(tQ : 
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We have replaced all partial derivatives with ordinary derivatives, as we are evaluating them at a fixed 
point. We have also dropped the subscripts 0 pertaining to the steady uniform flow about which we 
linearised, as there may be some gain in accuracy in using the actual local values of all the flow 
quantities. For a particular value of η , the geometric quantities A, B, S  and the conveyance K are 
known, as are c, D, and G. From the stage record we can calculate all the necessary time derivatives of 
η , so that (C.5) is an ordinary differential equation in )(tQ  which we can solve numerically. 

There are a number of approximations that could be introduced in solving the differential equation 
(C.5), such as neglecting the third derivative term. The computation of a third derivative from field 
data may well not be an accurate procedure, anyway. One could neglect momentum flux terms 
quadratic in Q, however this is not strictly necessary. Generally one could set 1=β , which is the 
sensible and common approximation used elsewhere in hydraulics, however one may not have to 
introduce it so readily, because usually at gauging stations the conveyance K is obtained from detailed 
measurements of the velocity distribution at a site. Unlike in most areas of channel hydraulics, one 
might be able to use a meaningful value of β . Naturally, it would be sensible to drop the term in 

dxd /β . 

C.2 A simplified approach using the low-inertia approximation 
A considerable simplification can be had by incorporating the low-inertia approximations justified in 
Appendix B.2.1. It was shown that the time derivative term dtdQ /  in (C.5) and the quadratic 
momentum flux terms are of the order of the square of the Froude number. The latter are recognised 
by wherever a β  appears, and so we set this to zero. The result is the explicit solution 
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where Q is the discharge at the gauging station, c is the kinematic wave speed, given by equation 
(B.18) in terms of the gradient of the conveyance curve, S  is the bed slope, and D is the diffusion 
coefficient, given by equation (B.34), where we have dropped the zero subscripts for convenience. 

We can write this in terms of the rated discharge, dropping the third derivative term as being 
unreasonable to include in view of all the other approximations:  
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where SKQr )()( η=η  is the rated discharge for the station as a function of stage. This is an 
extension to Jones' method for correcting for the effects of unsteadiness. That method assumed that the 
flood wave moved as a kinematic wave without diminution. The extra diffusion term here has been 
obtained by allowing for diminution in the form of using an advection-diffusion level of 
approximation. 

Appendix D  The hydraulics of a gauging station 

D.1 Introduction 
 

ControlGauging site

No flow

Flow

h h1 hc

 

Figure D.1. Section of river between gauging station and control section showing water surface for 
a typical flow and for no flow. 

Here we consider a gauging station, initially where there is a local control downstream, and then for 
higher flows, where the local control "drowns" out and control is applied by the channel itself. We 
obtain a theoretical expression for the rating curve in a stream where there is a local downstream 
control, which is often the situation for low flows, but whose effect may be negligible for higher 
flows. Consider a situation as shown in Figure D.1, where there is a gauging site upstream of some 
form of local control. If there is flow, the free surface is a backwater curve as shown, while at the 
cease-to-flow limit it is a horizontal line. The free surface profile is given by the steady flow (or 
“backwater'') equation 

  
21 F

SS

dx

dh f

β−

−
= , (D.1) 

where h is the depth, S  is the bed slope, fS  is the friction slope, β  is the Boussinesq momentum 

coefficient, 2F  is the square of the Froude number 322 / gABQF = , where Q is discharge, B is 
surface width, A is cross-sectional area, and g is gravitational acceleration. We have used the term 
“depth” as a convenient alternative to “local elevation” which is what it really is in this general case of 
arbitrary section – it is the height of the water surface above an inclined line running the length of the 
channel. We are free to choose this to be the thalweg if necessary. Equation (D.1) is presented in all 
books on open channel hydraulics (such as Henderson, 1966) – here we have generalised slightly by 
including the momentum coefficient β . 

For most flows we can neglect the Froude-squared term in the denominator of (D.1). Using the general 

flow resistance formula 22 /KQS f = , where ),( hxK  is the conveyance, in general a function of both 

position and depth, the differential equation becomes  
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D.2 Approximate analytical solution for water surface 
In the case of prismatic channels K is a function only of h, which we will assume here as we are 

introducing a first approximation to the problem. It is convenient to introduce the symbol 2/1 K=Ω  
for a quantity which we will term the “resistance”, suggested by this definition, as the inverse of a 
power of the conveyance which is analogous to electrical conductance. 

We now obtain an analytical solution by approximating the inverse of the square of the conveyance by 
a series expansion about an arbitrary reference depth 0h , following the method used by Samuels 

(1989). We write an expansion for 2/1 K=Ω  about this point: 

  2+Ω−+Ω==Ω '
0002

)(
1

hh
K

 (D.3) 

where 2
00

2
0 /1)(/1 KhK ==Ω , and 
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2'
0 /)( dhKd −=Ω . In view of the poorly-known nature of the 

friction coefficient n and possibly of the cross-section, and the assumption that the section is prismatic, 

use of the next higher approximation in terms of "
0Ω  is not really justified, so that equation (D.3) is 

truncated after the linear term shown and the resistance is expressed as a linear function of depth over 
the operating range. 

If we use Manning’s law for friction, 3/103/422 //1 APnK ==Ω ,  we obtain, using 
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where 
0

'
0 / dhdPP = . As K is an increasing function of depth, Ω  is a decreasing function of depth, and 

'
0Ω  should always be negative. We can quantify this by showing that the second (negative) term in 

either form of equation (D.4) is larger than the first term. The derivative '
0P  can be related to the 

slopes of the banks, with a typical value of say 4, and 0P  is roughly equal to the width while 00 / BA  
is the mean depth, and we can see that the importance of the first term relative to the second is roughly 
in the ratio depth/width.  

Substituting equation (D.3) truncated after the first order term into the differential equation gives  
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This has an analytical solution obtained by separating variables or using an integrating factor method. 
The solution is 
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where at the control 1xx =  we have applied the boundary condition 1hh = , the depth in the 
unrestricted waterway just upstream of the control, as shown in Figure D.1. This equation gives the 
water depth at any point as a function of x, and shows that the backwater curve has simple exponential 

behaviour. As '
0Ω  is negative, the coefficient of x in the exponential function is positive. The solution 

increases exponentially downstream, or, for our application here the result is that it decreases 
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increases exponentially downstream, or, for our application here the result is that it decreases 
exponentially as we go upstream. For points sufficiently far upstream of the control, the solution 
becomes a flow of constant depth, Nhh 0= , the approximation to the normal depth in the stream, 
given by  
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This enables us to write equation (D.5) as 
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We now have an explicit formula for the free surface, showing that it is an exponential, and 
quantifying how far upstream the effects of the control exist, via the scale of motion given by the 
inverse of the coefficient of x in the exponential. The solution approaches uniform flow varying like 

( ))(exp 1
'
0

2 xxQ −Ω− . The distance upstream εX  over which the solution decreases to within ε  of 

uniform flow is given by ( ) ε=Ω ε /1exp '
0

2 XQ , and solving this equation we see that εX  is 

proportional to '
0

2/1 ΩQ .  

This equation still contains as a parameter the arbitrary reference depth 0h  used both in '
0Ω  and Nh0 . 

Results will depend on the value we use, reminding us that we have obtained an approximate solution. 
A typical value used might be the depth at the control. As this is usually the maximum depth we might 
prefer to use a smaller value, possibly the mean of the depth at the control and at the gauge, obtained 
iteratively after initially taking the maximum depth to allow the computation to start. 

The solution given by equation (D.7) can be used in a more general and accurate sense to solve 
backwater curve problems. Other than the assumptions that led to the differential equation (D.2), the 
only assumption that has been made is that the variation in depth was sufficiently small that the 
conveyance could be expressed by a linear function about the uniform value. This will not be so 
accurate if the depth varies substantially. It should be remembered, however, that if this kind of 
accuracy were necessary, for more important projects, numerical solution of the differential equation 
(D.1) is quite straightforward anyway. 

D.3 At the gauging station - the rating curve 

At the gauging station, which we presume to be a distance L upstream of the control, Lxx −= 1 , 

equation (D.7) gives an expression for the depth as a function of discharge, )(QhG :  
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where we have shown explicitly that the depth at the control 1h  is a function of Q, which will be given 

by a weir or control formula, and the normal depth Nh0  is also a function of Q as defined in equation 

(D.6). In general, we can write )()(1 QHhQh cc += , where ch  is the local depth just above the control 

at which flow ceases (see Figure D.1), and )(QH c  is the head over the control. Hence  
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There is a simple geometric relation connecting ch  and the cease-to-flow depth at the gauge csfh : 

LShhc += csf , and so we have the general expression for the shape of the rating curve: 
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Equation (D.8) contains L the distance between control and gauging station and the head over the 
control )(QH c , which in practice will be a difficult quantity to determine. As an indication of the 
form it might take, we might consider the case of a rectangular broad-crested weir, after re-working 
equation (1-35) of (Bos, 1978): 

  3/23/13/2

2

3
)( QgBQH c

−−= , 

where B is the breadth. Alternatively, if the control were a rectangular sharp-crested weir, the 
expression is obtained from the traditional one  

  2/32
3

2
cD HgBCQ = , 

also showing that 67.03/2~ QQH c = . In the case of a triangular weir or V-notch, elementary 

application of dimensional analysis gives a formula that shows that 4.0~ QH c . Between these two 
extremes – a rectangular weir of fixed width and a triangular weir whose width is zero for no head – is 

a parabolic weir (i.e. a U-shaped cross-section), for which it can be shown that 5.0~ QH c . Also, if the 
weir were trapezoidal, then the discharge formula would be a linear combination of the rectangular 
and triangular formulae, such that one is of exponent 0.67 and the other 0.4, and we can imagine that 
this could be approximated by a single power, like the parabolic weir, with exponent 0.5.  

In a natural stream the actual nature of the control will be rather more complicated, although it may 
well be able to be approximated by a similar power law expression. One can observe that natural 
topography, when looking up- or down-stream, is rather more likely to look like a U, which could be 

modelled by a parabola, giving 5.0QH c α , rather than a rectangle or V-notch. In general, we incline 
to the power 0.5 being that more likely to occur in practice. To implement this theory one really needs 
some knowledge of the geometry at the control, and reference could be made to French (1985, #8.3), 
Bos (1978) or Ackers et al. (1978) for formulae relating head and discharge.  

D.4 The rating curve for low flow 
One of our tasks here is to obtain the behaviour of the water level at the gauging station as 0→Q . 
Equation (D.7) contains Q in several places and the behaviour is difficult to extract simply. As 0→Q  
the normal depth as calculated from equation (D.6) becomes large and the term which multiplies it 
becomes small. To determine the overall behaviour we take a power series expansion of equation 
(D.5) in terms of Q, but for the moment neglect the fact that 1h  is actually a function of Q. The result 
is:  
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showing that in this limit the free surface is a parabola. To do this we have expanded the expression 

( ))(exp 1
'
0

2 xxQ −Ω− , assuming that the argument of the exponential is small enough to truncate after a 

couple of terms, so that there will be a limit to the value of 1xx −  which we could use.  

We have already shown that )()( csf1 QHLShQh c++= , where in the weir term 2/1~)( QQH c  and 
the limit 0→Q  the square root term will dominate the quadratic term in equation (D.9) and so from 
equation (D.8) we have in the cease-to-flow limit at the gauging station 

  2
csf order  of Terms)( QQHhh cG ++= , (D.10) 

showing that the reach between gauging station and control is essentially a reservoir with flow through 
it, whose dynamical effects on the surface are negligible, and the surface is horizontal with elevation 
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given by the control. At the gauging station the behaviour of the rating curve is determined entirely by 
the control. 

Appendix E.  Numerical algorithms 

E.1 Interpolating or approximating data which are functions of stage 

E.1.1 Piecewise linear interpolation 

If a table of values of say area iA  are known for corresponding values of stage iη , then a table look-
up procedure with linear interpolation seems to be most reasonable, such as: 

  If  1+η≤η≤η ii  then ( )
ii

ii
ii

AA
AA

η−η
−

η−η+=
+

+

1

1 . 

While that is easily written down and implemented, an important preliminary step is the determining 
of the interval in which we want to calculate. If data are equally spaced then, given a particular value 
of η  the corresponding value of i is easily obtained. If they are given at irregular intervals then a 

simple procedure is to find i by stepping through all the data points until 1+η≤η≤η ii . A computer 
function for doing this more efficiently is provided in Table E.1 below, as well as the subsequent 
interpolation.  

E.1.2 Approximating the rating curve globally 

If a higher-order interpolation were considered desirable, then polynomial interpolation by divided 
differences is a good robust way of doing it. This is presented in a scholarly context in Conte and de 
Boor (1980), and in a more practical civil engineering context in Fenton (1994), where it was shown 
that with large values of the independent variable, such as chainage, or elevation in this work, that 
inaccuracies can result unless simple scalings are introduced, such as will be described below. 

In the context of the calculation of a rating curve, however, where different ratings may give scattered 
points, and one doesn't want to interpolate the points, least-squares approximation might be used, 
giving a global approximation of the stage-discharge relationship. In river hydrology this is not 
necessarily ideal, as the relationship may have some sort of discontinuity where the river exceeds 
bank-full flow. However, if a sufficiently high degree of approximation is used, this should be 
described perfectly adequately for practical purposes.  

Consider that there are N known stage discharge pairs, ),( ii Qη  for Ni ,,12= . We choose to 
approximate these by the function  

  ∑
=

ν ηφ=η
M

j
jjbQ

0
)()( , (E.1) 

where the )(zjφ  are a sequence of functions of η  and ν  is an exponent, both of which the user is 

also free to choose. In Section 6 we showed that there is some physical justification for choosing 
2/1=ν , when a relatively low order of approximation M can be used. In choosing the functions 

)(ηφ j  the simplest choice might be the monomial functions 1)(0 =φ z , η=ηφ )(1 , 2
2 )( η=φ z , …, 

when the right side of equation (E.1) is simply a polynomial of degree M. By using a standard least-
squares procedure (for example, Conte and de Boor, 1980, #6.2) it can be shown that the normal 
equations for the unknown coefficients jb  can be written as the ( ) ( )11 +×+ MM  matrix equation 
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where the ijS  are the sums of the products of the φ functions over all the N data points: 
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and the coefficients iT  are weighted sums of the discharge readings taken to the power ν :  
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These operations only have to be performed once for a particular rating curve, and both the setting up 
of the matrix equation and the numerical solution to give the coefficients jb  are conveniently 

performed on a spreadsheet. Having obtained the jb , equation (E.1) provides a convenient and global 

means of computing the steady rating curve discharge for any given stage.  

The obvious solution which one adopt would be to use polynomial approximation, and to use for the 

basis functions )(ηφ j  simply the monomials jη . However, over typical values of stage η  over which 

a rating curve applies this can give rise to catastrophically poorly-posed problem (e.g. Fenton, 1994). 
If one were, as might be done, to be using actual surface elevation above datum with values of η  of 
say 200, the problem is surprisingly poorly posed and inaccurate (Conte and de Boor, 1980, Example 
6.5, present a remarkable example of how such calculations can lose accuracy). The solution, as 
proposed in numerical textbooks such as Conte and de Boor, and which is suggested in the Australian 
Standard 2360.7.2 (1993) is to use a family of orthogonal polynomials such as Chebyshev 
polynomials. However here we present a practical procedure that is relatively simple and robust 
without going to the complication of orthogonal polynomials.  

As explained by Conte and de Boor, the problem of approximating numerical data by the monomials 
jη  is that over a typical value of stage, say, 4 – 10m, those functions all look similar (e.g. 3η  looks 

very much the same as 4η  and so on – and even more over an interval such as 204 – 210m). If one has 
to approximate data that shows variation, as a rating curve does, then because the basis functions all 
look a bit the same, then the coefficients tend to become large and fluctuating in sign. This is 
expressed mathematically by the fact that all rows of the matrix in equation (E.2) are similar if one 
uses such functions. If one uses orthogonal functions, then one has to normalise the range of stage 
over which the approximation is done, to the interval )1,1( +− , and over this range the orthogonal 
polynomials all look different, each crossing zero one more time than the previous one, and so on. 
However, at least for the first few, so do the simple monomials, and provided one didn't use too many, 
it would be quite enough to use them. This suggests taking the range of stage over which the 
approximation is to be done, and introducing the scaled stage Z: 

  
range-half

mid

η
η−η

=Z , (E.3) 

where 2/)( minmaxmid η+η=η  is the stage halfway between the maximum and the minimum over 

which approximation is to take place, and 2/)( minmaxrange-half η−η=η  is half that interval. It can 

easily be verified that when minη=η , 1−=Z , and when maxη=η , 1+=Z . Then, if we use j
j Z=φ , 

and the matrix in (E.2) tends to have alternating signs and to be quite well-conditioned. 
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A FORTRAN program to use orthogonal polynomials is provided in Australian Standard 2360.7.2 
(1993). However, of possible greater use is the fact that standard computer spreadsheets now contain, 
not only matrix inversion capabilities, which could be used to solve (E.2), but also there are 
capabilities of adding "trendlines" to graphs, which are really just doing the above. However, one 
might require some more flexibility, such as we have shown here, and it might be better to use 
customised software. If the trendline facility of a spreadsheet were used, experience with the product 
Excel suggests that it is computationally robust, and almost certainly does use orthogonal functions or 
the simple transform to )1,1( +−  suggested here. However, the default is for the equation, when it is 
shown on a graph in the spreadsheet, to be presented in terms of the raw variable it has been asked to 
approximate, namely the stage here, and for equations to be presented with few significant figures, 
looking very much like equation (6.2), so that transcribing it in that form would be dangerous, unless 
the option were taken for it to be displayed with at least 7 figures in the coefficients. It would be better 
to give the spreadsheet, not values of stage, but the transformed stage (equation (E.3)), so that the 
equation it produces would then be much more robust computationally. It would probably be better to 
incorporate the mathematics we have presented here and to set up the actual matrix equation and solve 
it in the spreadsheet, so that one has more control over the process. Ideally, the rating curve should 
then be calculated and presented in the form, following equation (E.3): 

  

j
M

j
jbQ ∑

=

ν











η
η−η

=η
0 range-half

mid)( , 

and not, as the trendline facility would in Excel, expand the brackets to give a polynomial in η . A 

simple way around this is only to use the transformed quantities kZ  in the spreadsheet calculations 
and to use as the approximating series 

  
jM

j
j ZbQ ∑

=

ν =
0

. (E.4) 

To reiterate, the procedure then is: 

Calculate the individual kZ  at data points from equation (E.3), which will all fall in the range. 

Calculate the value of each of the 1+M  functions jφ  at each of the N data points. 

Calculate each of the 22 +M  quantities  ∑ == N
k

m
km ZS 1  for Mm 2,,02=  (using monomials 

we do not have to calculate a full two-dimensional array). 

Calculate the 1+M  weighted sums ν
=∑= k

N
k

m
km QZT 1 . 

Use (E.1) to give the matrix equation 
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, 

which can then be solved for the jb , and equation (E.4) gives an equation for the rating curve. 
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E.1.3 Fitting a monomial to data 

We attempt to fit a monomial function ν= axy  to a set of N data pairs )( ii ,yx  for , N,i 21= . The 
problem is to determine the parameters a and ν  by a least-squares procedure. The conventional way 
of doing this is to take logarithms of both sides to give the equation xay logloglog ν+= , which is 
linear in the parameters alog  and ν . This procedure, however, gives undue weighting to points such 
as those for low flows when a rating curve was being approximated. Here we use a nonlinear 
procedure to solve the problem in x and y space so that such undue weighting is not introduced. 

We define the error of the fit to be the sum of the squares of the deviations from the monomial over all 
the data pairs:  

  ( )2
1

∑
=

ν −=ε
N

i
ii yax  

and to obtain the best fit we wish to minimise ε , so that we calculate the parameters a and ν  such that 
0/ =∂ε∂ a  and 0/ =ν∂ε∂ . Performing the differentiation: 

  ( )ii

N

i
i yaxx

a
−=

∂
ε∂ ν

=

ν∑
1

2 , 

setting equal to zero, splitting the sum into two, and taking the constant a outside gives:  

  ∑∑
=

ν

=

ν =
N

i
ii

N

i
i xyxa

11

2 , (E.5) 

Similarly,  

  ( )iii

N

i
i yaxxax −=

ν∂
ε∂ ν

=

ν∑ ln2
1

, 

gives  

  ∑∑
=

ν

=

ν =
N

i
iii

N

i
ii xxyxxa

11

2 lnln , (E.6) 

Equations (E.5) and (E.6) are a pair of nonlinear equations in the unknowns a and ν . We can 
eliminate a between the two equations to give the single nonlinear equation for ν :  

  0
ln

ln
)(

1
2

1

1
2
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=
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=
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N
i ii

xx

xxy

x

xy
F , (E.7) 

This equation has to be solved numerically for ν  using some means of solving a transcendental 
equation. The author prefers the bisection method for simplicity and guaranteed, albeit relatively slow 
convergence. A program, actually written in C, is appended here, which can do that. Having solved for 
ν , one can substitute into equation (E.5) or (E.6) to give a. 

In the case of rating curves, where one might seek a solution of the form νη= aQ , the solution for ν  
seems always to be within the range ]3,1[  (and often is close to 2), and that could be used as the initial 
interval in which the solution is to be found. Newton's method, a well-known method for solving 
transcendental equations, does not work, as, in addition to the derivative νddF /  of equation (E.7) 
being very difficult to obtain, the gradient nature of Newton's method can throw the solution right off 
and fail to converge to the only reasonable solution. 
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E.2 Computer programs 
Table E.1 contains some possibly useful computer programs written in the C language which automate 
some of the procedures described in this section. 

Table E.1: Computer programs for linear interpolation and solution of transcendental equations 

#define or || 
#define real float 
//********************************************** 
/* For a value of t, and N+1 values [x[0], .., x[N]], finds the interval where it 
lies - i.e. the integer i such that x[i] < t < x[i+1]. It uses the bisection method 
such that it finds it in log_2(N) steps */ 
//********************************************** 
int Interval(real t, real *x, int N) 
{ 
int ia, ib, ic; 
if (t < x[0] or t > x[N]) {printf("Outside limits"); return -1;} 
ia = 0; 
ib = N; 
while (ib-ia > 1) 
   { 
   ic = (ia+ib)/2; // This rounds down to the integer 
   if (t >= x[ic]) {ia = ic;} 
   else {ib = ic;} 
   } 
return(ia); 
} 
//********************************************** 
/* Given two vectors,  x[0], .., x[N] and y[0], .., y[N] each with N+1 values this 
linearly interpolates for a given value of t. */ 
//********************************************** 
real Linear(real t, real x[], real y[], int N) 
{ 
int j; 
j = Interval(t, x, N); 
return y[j]+(t-x[j])*(y[j+1]-y[j])/(x[j+1]-x[j]); 
} 
 
// Example function which returns the value of x^2-3 
real F(real x) 
{return x*x-3.;} 
 
//********************************************** 
/* With a supplied function F(x) which can return a value of F given any x, this 
uses the bisection method to solve the equation F(x)=0 to within an interval of 
'Accuracy', within range [a,b]. Using Bisection(0., 10., 1.e-5) with the above 
function it will find sqrt(3) , correct to 5 places initially knowing that it is 
between 0 and 10 */ 
//********************************************** 
 
real Bisection(real a, real b, real Accuracy) 
{ 
real fa, fb, fm, xm; 
fa = F(a); 
fb = F(b); 
if(fa*fb > 0.) 
   {printf("Bounds on initial solution wrong"); exit(0);} 
while (b-a > Accuracy) 
   { 
   xm=0.5*(a+b); 
   fm = F(xm); 
   if (fm*fa < 0 ) {b = xm;} 
   else {a = xm; fa = fm;} 
   } 
return xm; 

} 
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Appendix F. Tables of data  
 

Table F.1. Data scaled from Figure 5 of Australian Standard 3778.2.3 

 
Stage 

m 
Discharge 

m3/s 
Fall 
m 

Stage 
m 

Discharge 
m3/s 

Fall 
m 

2.91 697 0.318 6.52 2655 0.300 
3.18 628 0.180 6.98 3204 0.318 
3.49 783 0.234 7.13 3259 0.288 
3.79 983 0.234 7.67 3717 0.288 
4.07 1093 0.234 8.08 4331 0.336 
4.07 1155 0.243 8.32 4455 0.324 
4.78 1576 0.283 8.47 4366 0.297 
4.95 1669 0.297 8.56 4583 0.300 
5.43 1973 0.300 8.79 4538 0.288 
5.62 2249 0.306 8.91 4714 0.288 
5.71 2200 0.300 9.20 5180 0.318 
5.90 2317 0.288 9.36 5283 0.318 
6.24 2569 0.300 9.53 5386 0.306 
6.43 2583 0.288    

 

Table F.2. Data from Figure 8 of AS 3778.2.3 

 
Stage 

m 
Discharge 

m3/s 
Fall 
m 

Stage 
m 

Discharge 
m3/s 

Fall 
m 

3.7 2.4 1.59 13.4 23.6 1.473 
5.3 4.4 1.707 15.9 25.7 1.038 
6.1 5.1 1.737 14.2 23.1 0.905 
8.2 8.8 1.488 17.6 33.9 1.420 
9.6 9.6 0.525 19.1 45.9 1.683 
10.1 13.3 1.305 19.7 51.4 1.794 
13.9 19.9 0.831    

 

Table F.3. Data from Table 8.1 of Herschy (1995) 

 
 

No. 
Stage 
(base) 

m 

Stage 
(auxiliary) 

m 

 
Discharge 

m3/s 

 
No. 

Stage 
(base) 

m 

Stage 
(auxiliary) 

m 

 
Discharge 

m3/s 

1 5.907 3.990 1160 9 2.755 2.054 317 
2 7.105 4.923 1520 10 2.963 2.347 289 
3 5.026 3.429 889 11 2.359 2.155 156 
4 7.013 4.788 1490 12 2.286 1.996 145 
5 11.558 8.678 2830 13 3.206 2.279 411 
6 8.108 6.188 1640 14 2.036 1.978 39.9 
7 8.638 5.986 1990 15 2.012 1.951 66 
8 3.139 2.331 399     
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Table F.4. Data from Table 8.5 of Herschy (1995) 

 
 

No. 
Stage 
(base) 

m 

Stage 
(auxiliary) 

m 

 
Discharge 

m3/s 

 
No. 

Stage 
(base) 

m 

Stage 
(auxiliary) 

m 

 
Discharge 

m3/s 

1 5.956 4.386 214 13 5.416 4.514 133 
2 5.907 4.715 178 14 1.512 0.686 25.7 
3 5.614 4.614 154 15 3.895 2.264 120 
4 5.246 4.380 134 16 3.487 2.384 89.8 
5 4.865 4.048 119 17 1.859 0.929 36.8 
6 3.725 3.131 70.5 18 6.690 4.809 259 
7 2.916 2.431 48.7 19 8.001 5.526 524 
8 6.559 4.526 217 20 3.158 2.238 78.2 
9 7.705 5.242 391 21 3.697 2.438 110 

10 6.514 4.944 233 22 5.334 4.188 156 
11 8.077 5.595 767 23 1.817 0.113 43 
12 3.868 2.243 134 24 1.585 1.039 23.8 

 

Table F.5. Data from Herschy (1995), Table 4.1. Stages in metres, discharges in m3/s. 

 
Stage Q Stage Q Stage Q 
0.53 94.6 1.05 193 1.79 387 
0.61 104 1.05 189 2.03 440 
0.68 120 1.17 202 2.13 469 
0.69 113 1.26 235 2.33 540 
0.7 124 1.35 240 3.09 930 

0.73 125 1.37 246 3.49 1152 
0.79 139 1.44 287 3.87 1374 
0.91 163 1.55 300 3.93 1452 
0.94 168 1.61 306   
0.96 169 1.7 340   

 
Table F.6. Data from Table 3 of Australian Standard AS 2360.7.2 

 
Stage Q Stage Q Stage Q 
4.92 1390 6.5 2950 8.6 7350 
4.95 1450 6.7 3300 9 8900 
5.05 1500 6.9 3410 9.5 10100 
5.15 1600 7.1 3800 9.6 12200 
5.21 1650 7.2 3810 10.1 14000 
5.3 1750 7.3 4800 10.5 14600 

5.47 1820 7.5 4500 11.4 22500 
5.5 1890 7.6 5100 11.9 28700 

5.58 2000 7.7 5300 12.1 31500 
5.61 2010 7.8 5220 12.6 36000 
5.73 2100 7.9 5400 13.2 45000 
5.81 2160 7.9 6100 13.5 52000 
5.9 2270 8 6500 13.5 51000 
6.1 2500 8.1 6100 13.8 56000 

6.25 2750 8.4 6900   
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Table F.7. Stage-discharge data from Gwydir River used for various figures 

 
Bundarra Gravesend Pallamallawa 

Stage (m) Q (Ml/d) Stage (m) Q (Ml/d) Stage (m) Q (Ml/d) 
0.85 0 1 0 0.76 0 
0.9 0.12 1.01 1 0.77 1 

0.92 0.25 1.02 1.37 0.8 2.5 
0.96 2.25 1.03 1.8 0.84 7.4 
0.98 3.85 1.04 2.3 0.88 17.6 

1 6 1.05 2.9 0.9 24.2 
1.02 8.6 1.06 3.6 0.92 32.5 
1.04 11.3 1.07 4.39 0.94 42.8 
1.06 15.6 1.08 5.3 0.96 56 
1.08 20.9 1.09 6.3 0.98 70 
1.1 27 1.1 7.5 1 87 

1.15 46.85 1.12 10.2 1.05 141 
1.2 75 1.14 13.7 1.1 216 

1.22 89 1.16 17.8 1.15 315 
1.24 103 1.18 22.6 1.2 440 
1.26 118 1.2 28.5 1.25 580 
1.28 134 1.22 35 1.3 760 
1.3 152 1.24 43 1.35 930 

1.35 205 1.26 52 1.4 1120 
1.4 260 1.28 62 1.45 1310 

1.45 325 1.3 72.5 1.5 1500 
1.5 400 1.32 85 1.6 1860 

1.55 490 1.34 98 1.7 2240 
1.6 580 1.36 113 1.8 2650 

1.65 700 1.38 130 1.9 3080 
1.7 830 1.4 150 2 3550 

1.75 980 1.45 200 2.5 6350 
1.8 1160 1.5 255 3 9500 
1.9 1580 1.55 313 3.5 14000 
2 2100 1.6 375 4 19000 

2.1 2650 1.65 440 4.5 23900 
2.3 4000 1.7 510 5.5 35200 
2.4 4800 1.75 560 6.5 48000 
2.5 5700 1.8 660 7 56500 
2.6 6600 1.9 830 8 76000 
2.8 8500 2.4 2100 9 97000 
2.9 9600 2.9 3950 10 170000 
3.3 14300 3.4 6400 10.7 280000 
3.8 21410 3.9 9500   
3.9 23070 4.9 17400   
4 24800 5.9 27200   

4.8 39400 6.9 39500   
5.8 62888 7.9 53500   
6.8 88570 8.9 72700   
7.8 119050 9.9 90900   
8.8 157417 10.9 115000   
9.8 199227 11.9 144000   

10.8 245220 12.9 179000   
11.8 296216 13.9 219000   
12.8 362325 14.9 268000   
13 377000 15.9 344000   

  16.9 471000   
  17.38 558000   


