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The present work constitutes a reassessment of the role of potential-flow analyses
in describing alluvial-bed instability. To facilitate the analyses, a new potential-flow
description of unsteady alluvial flow is presented, with arbitrary phase lags between
local flow conditions and sediment transport permitted implicitly in the flow model.
Based on the present model, the explicit phase lag between local sediment transport
rate and local flow conditions adopted for previous potential-flow models is shown
to be an artificial measure that results in model predictions that are not consistent
with observed flow system behaviour. Previous potential-flow models thus do not
provide correct descriptions of alluvial flows, and the understanding of bed-wave
mechanics inferred based upon these models needs to be reassessed. In contrast to
previous potential-flow models, the present one, without the use of an explicit phase
lag, predicts instability of flow systems of rippled or dune-covered equilibrium beds.
Instability is shown to occur at finite growth rates for a range of wavelengths via a
resonance mechanism occurring for surface waves and bed waves travelling at the
same celerity. In addition, bed-wave speeds are predicted to decrease with increasing
wavelength, and bed waves are predicted to grow and move at faster rates for
flows of larger Froude numbers. All predictions of the present potential-flow model
are consistent with observations of physical flow systems. Based on the predicted
unstable wavelengths for a given alluvial flow, it is concluded that bed waves are not
generated from plane bed conditions by any potential-flow instability mechanism. The
predictions of instability are nevertheless consistent with instances of accelerated wave
growth occurring for flow systems of larger finite developing waves. Potential-flow
description of alluvial flows should, however, no longer form the basis of instability
analyses describing bed-form (sand-wavelet) generation from flat bed conditions.

1. Previous potential-flow instability models
Reynolds (1976) in reviewing the then current understanding of stream-bed stability

commented that ‘. . . available mathematical techniques have revealed the general
features of the interaction between flow and bed material’. Foremost among the
techniques at that time were potential-flow instability models (Kennedy 1963, 1969;
Gradowczyk 1970; Jain & Kennedy 1974) and rotational-flow instability models (for
example, Engelund 1970). Advanced rotational-flow models were later proposed by
Richards (1980) and Sumer & Bakioglu (1984).
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Kennedy (1969) presented a quasi-steady potential-flow analysis incorporating an
explicit lag distance, β, between local flow conditions and local sediment transport
rate. He considered dominant wavelengths and velocities of bed features generated
from plane bed conditions and presented diagrams indicating the occurrence of
various types of bed forms appropriate to various flow conditions.

A principal result of Kennedy (1969) is that for a given alluvial sediment bed,
dunes and antidunes are predicted to form only for Fr2 < tanh kH/kH and Fr2 >
tanh kH/kH respectively, where Fr is the Froude number of the flow, k = 2π/λ is the
wavenumber, λ is the wavelength of the bed waves, and H is the undisturbed mean
flow depth.

Hayashi (1970) included local bed slope in considerations of Kennedy’s phase lag.
Gravity and expansion losses were shown to significantly affect values of this phase
lag along with the resulting quasi-steady potential-flow model predictions of bed
waves.

Jain & Kennedy (1974) incorporated spectral descriptions of the streamlines, the
bed profile and the water surface profile as functions of time into a quasi-steady
potential-flow model. For given fluid–sediment flow systems, they produced graphs
of normalized bed-wave growth rate as a function of normalized wavelength, and
compared numerical model predictions with experimental results for the wavelengths
of waves generated from plane bed conditions.

The assumption of quasi-steady conditions in these potential-flow models (and
also the recent work of Pantin 1990) results in a singularity in these analyses at the
condition

Fr2 =
tanh kH

kH
. (1.1)

Owing to this singularity, Jain & Kennedy (1974) predicted waves of lengths defined
by equation (1.1) to be generated at infinite growth rates from plane bed conditions.
This singularity has to date prevented determination of true flow-system behaviour
at this condition.

A second limitation of previous potential-flow analyses is the difficulty associated
with defining appropriate values of the phase lag β for flow systems. For example,
for explicit phase lag values of zero, flow system instability and bed-wave generation
and growth are not predicted by Kennedy (1969), Hayashi (1970) or Jain & Kennedy
(1974).

Given these limitations of potential-flow analyses, Gradowczyk (1968) commented
about the Kennedy analyses ‘. . . is it possible to obtain the same wave configurations
by means of a potential flow theory which does not assume quasi-steadiness and
without the lag β? The answer to this question may help to clear up the meaning
of the (phase lag) parameter’. By considering an unsteady, rather than quasi-steady,
potential-flow model, Gradowczyk (1970) did obtain a reasonable explanation of some
features of bed-form regimes without inclusion into the analyses of Kennedy’s explicit
phase lag. Gradowczyk nevertheless predicted only neutral bed forms of zero growth
rate. Gradowczyk also indicated that the singularity evident for previous potential-
flow models can be removed, although this is not carried out for the analyses he
presented. Despite the subsequent investigations of numerous authors, the questions
posed by Gradowczyk (1968) remain unanswered over three decades later.

In reviewing the understanding of bed waves at the time, Kennedy (1980) com-
mented that Kennedy (1969) ‘. . . treats in almost exhaustive detail the potential flow
theory of bed forms . . .’. Kennedy (1980) nevertheless did not answer several impor-
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Figure 1. Flow system to be modelled.

tant criticisms, such as those indicated above, of the potential-flow theory to date and
its implications. Indeed Kennedy (1980) is found to concur with most of the criticisms
of potential-flow theory levelled by Reynolds (1976).

In addition to theoretical conjecture as to the validity of conventional models of
alluvial-bed instability, recent data also bring into question the physical validity of
the predictions of these instability models. In particular, the measured data describing
the lengths of waves first generated from plane bed conditions have been assessed
and collated in Coleman (1996) and Coleman & Melville (1996). Conventional insta-
bility models, which are typically designed to describe these initial wavelengths, are
nevertheless generally found to incorrectly predict the magnitudes of and trends in
these measured lengths (Coleman & Melville 1996).

The present work constitutes a comprehensive assessment of the potential-flow
model of alluvial-bed instability. With the fluid–sediment flow system considered to
be fully unsteady, and with any lags between local sediment transport rate and local
flow conditions being implicit in analyses, the potential-flow model formulated herein
provides answers to the lingering questions of Gradowczyk (1968). By subsequently
introducing the explicit phase lag β of earlier models, the true nature and implications
of this lag are revealed. Predictions of the present potential-flow model are used
to critically examine over three decades of conjecture regarding the potential-flow
description of alluvial-flow instability. The present results also have implications for
rotational-flow models, because the flow behaviour described by potential-flow theory
underpins the behaviour described by rotational-flow theory.

2. Unsteady linearized potential flow with unconstrained wave phases
The two-dimensional, irrotational, unsteady, free-surface flow to be modelled is

shown in figure 1. The fluid is assumed to be incompressible and inviscid. The
erodible bed profile provides the initial system disturbance in the form of a sinusoid
of small amplitude. More complex disturbance profiles can be being obtained by
linear superposition of any number of such functions.

Irrotational flow of an incompressible fluid is described by

∇2φ = 0, (2.1)

where φ is a scalar function of position such that the velocity vector u = (u, v) =
(∂φ/∂x, ∂φ/∂y), where u and v are horizontal and vertical components respectively.
With no relative motion of the fluid across any interface, the two boundary conditions
required for solution of (2.1) can be expressed as

∂ξ

∂t
+ u

∂ξ

∂x
− v = 0 on the water surface y = H + ξ, (2.2)
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and
∂η

∂t
+ u

∂η

∂x
− v = 0 on the bed surface y = η, (2.3)

where ξ(x, t) and η(x, t) describe the water-surface and sediment bed profiles respect-
ively. Having introduced the two extra variables ξ and η, two further equations are
necessary to relate these variables to the variables u and v. The dynamic boundary
condition for the water surface is obtained from the pressure or unsteady Bernoulli
equation for irrotational, unsteady flow of an inviscid, incompressible fluid:

∂φ

∂t
+ 1

2
|∇φ|2 + gξ = f(t)− gH on y = H + ξ, (2.4)

where H is the undisturbed mean flow depth and f(t) represents some function of
time. The erosion equation for sediment movement provides the final equation relating
the flow to the fluid–sediment boundary:

∂η

∂t
+
∂qs

∂x
= 0 on y = η. (2.5)

Recognizing forms of general sediment transport equations such as the Engelund–
Hansen expression (given later as equation (2.17)), and also that local sediment
transport responds to local rather than average flow conditions, the sediment transport
rate per unit width of flow can be expressed generically as

qs = f(uη, h, S , ρ, ρs, d, g), (2.6)

where uη is the component of point fluid velocity at the bed level that is parallel
to the overall bed slope S , h is flow depth, ρ is fluid density, ρs is sediment density,
and d is a representative sediment size. Equation (2.6) can be taken to describe the
unsteady response of local sediment transport qs to unsteady fluctuations in local
flow conditions uη and h. Equation (2.5) can be rewritten as

∂η

∂t
+ q1

∂uη

∂x
+ q2

(
∂ξ

∂x
− ∂η

∂x

)
= 0 on y = η, (2.7)

where q1 = ∂qs/∂uη , q2 = ∂qs/∂h and h = H + ξ − η.
For the perturbed flow system, the initial disturbance to the system of otherwise

uniform fluid flow (u = (U, 0)) is assumed to be in the form of a sinusoid of small
amplitude such that η, ξ and φ can then be taken to be of the respective forms

η = εC eik(x−ct), (2.8)

ξ = εD eik(x−ct), (2.9)

φ = Ux+ ε(A sinh ky + B cosh ky) eik(x−ct), (2.10)

where ε is a small perturbation parameter, U is undisturbed mean fluid velocity, c is
wave celerity, angular wavenumber is k = 2π/λ, and λ is wavelength.

The adopted form of φ can be shown to satisfy equation (2.1). Substituting for η,
ξ and φ from equations (2.8) to (2.10) into equations (2.2), (2.3), (2.4) and (2.7) and
linearizing the resulting equations gives

f(t) = 1
2
U2 + gH, (2.11)

from the equating of coefficients of ε0. More importantly, the following system of
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equations results from equating coefficients of ε1:
cosh kH sinh kH 0 −i(U − c)

1 0 −i(U − c) 0

i(U − c) sinh kH i(U − c) cosh kH 0 g/k

0 ikq1 −c− q2 q2



A

B

C

D

 =


0

0

0

0

 .
(2.12)

Equation (2.12) is an homogeneous system of four equations in four unknowns for
which the trivial solution A = B = C = D = 0 exists (indicating an unperturbed flow
system). For a non-trivial solution to exist, the determinant of the leading matrix
must be zero. This condition gives the general dispersion relation

δ3
∗ + a2δ

2
∗ + a1δ∗ + a0 = 0, (2.13)

where

a0 =
(−U∗ − q2∗) tanh kH

1 + q1∗ tanh kH
, (2.14)

a1 =
−q1∗ − tanh kH

1 + q1∗ tanh kH
, (2.15)

a2 =
U∗ + q2∗(1− sech kH)

1 + q1∗ tanh kH
, (2.16)

for the flow system of figure 1, where equation (2.13) has been non-dimensionalized
by multiplying through by (k/g)3/2/ cosh kH , and where U∗ = U(k/g)1/2, δ∗ = (c−U)
(k/g)1/2, q1∗ = q1k and q2∗ = q2(k/g)1/2.

With linearization of the governing equations for the flow system, q1 and q2

become ∂qs/∂U and ∂qs/∂H respectively and a sediment transport equation of the
form qs = f(U,H, S, ρ, ρs, d, g) is required for solution of the dispersion relation of
(2.13). The equation adopted for the present analyses is the Engelund–Hansen formula
for total sediment load (Vanoni 1975). This relation can be written in the form

qs =
0.05U2H3/2S3/2

d(s− 1)2g1/2
, (2.17)

where s = ρs/ρ, and shear stress is given by τ = ρgHS for steady, uniform flow over
an essentially flat bed. This transport relation is appropriate to the data of Jain &
Kennedy (1971, 1974) and Guy, Simons & Richardson (1966) analysed herein. Other
transport relations have also been used with only minor numerical variations in the
predictions of the analyses.

For a given flow system of U, H , S , ρ, ρs and d, q1 = ∂qs/∂U and q2 = ∂qs/∂H
can be evaluated, and wave celerities for different wavelengths can be calculated from
equation (2.13) based on standard cubic solving techniques (for example, based on
Abramowitz & Stegun 1968, case 3.8).

The dispersion relation of (2.13) is a cubic in terms of wave celerity. For any
given wavelength–flow system combination, two of the celerities evaluated from
this equation will apply to the movement of water-surface waves. These waves are
distinguished herein as the faster-moving (case 1) and slower-moving (case 2) water-
surface waves. The remaining celerity will be related to the motion of waves in the
bed surface.
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Figure 2. Normalized growth parameters predicted by the present model for Run S8
of Jain & Kennedy (1974).

The forms of (2.8) to (2.10) indicate that for a given flow system, any wavelength
for which (2.13) predicts complex solutions of ci > 0 (where c = cr + ici, and cr and
ci are the real and imaginary components of c) is a wavelength for which the given
flow system is predicted to be unstable. The wavelength of the waves that can be
expected to form in such an unstable flow system is conventionally assumed to be
that for which the value of the growth parameter, ci, is the greatest.

3. Instability predictions of the present model
For the purpose of comparison of the present potential-flow instability model with

previous models, flow system instability predictions were analysed for Run S8 of Jain
& Kennedy (1971, 1974). The values of U, H, S, Fr and shear velocity u∗ for this run
are 0.3847 m s−1, 0.0771 m, 0.00267, 0.442, and 0.0418 m s−1 respectively. The sediment
used was a quartz (s = 2.65) sand of geometric mean size dg = 0.25 mm.

Calculated values of the normalized growth parameter, ci/(gH)1/2, are shown in
figure 2, where ci = 0 for all other values of kH , and ci = 0 for the faster-moving
(case 1) water-surface waves. Run S8 is predicted by the present model to be unstable
(ci > 0) for wavelengths of 0.0936 m to 0.0948 m (kH = 5.11 to 5.175). The wavelength
of the waves expected to form in this flow system is 0.0942 m (kH = 5.142).

Predicted normalized wave speeds, cr/(gH)1/2, as functions of wavelength for Run
S8 are presented in figure 3. Bed-wave speed is predicted to generally decrease with
increasing wavelength, shorter bed waves travelling faster than longer ones.

Wave speeds in the region of instability are highlighted in figure 4. It can be seen
that when the flow system is unstable (cf. figure 2), the speeds of the bed waves and
the slower-moving (case 2) water-surface waves are equal.

With the dispersion relation of (2.13) being a cubic in terms of wave celerity,
complex solutions occur in conjugate pairs, and flow system instability is predicted
to occur (ci > 0) for wavelengths for which bed waves are predicted to move at
the same speed as water-surface waves travelling upstream relative to U (that is,
crbed

= crwater surface
). The instability mechanism is then a bed–water-surface resonance

phenomenon, the phenomenon arising with bed and water surface waves remaining
stationary relative to each other. This is the sole instability mechanism predicted by
potential-flow instability theory.

In order to further analyse the bed–water-surface resonance instability mechanism
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Figure 3. Normalized wave speeds predicted by the present model for Run S8
of Jain & Kennedy (1974).
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Figure 4. Normalized wave speeds predicted by the present model for Run S8
of Jain & Kennedy (1974).

predicted by potential-flow theory, flow system instability predictions were analysed
for the experiments of Guy et al. (1966) in which sediments of d = 0.19 mm and
d = 0.93 mm respectively were used in a 2.44 m wide flume. Each point of the
respective data series of d = 0.19 mm and d = 0.93 mm in figure 5 reflects the
resulting wavelength predicted to form from flat bed conditions for an individual
experiment of Guy et al. (1966), 31 and 35 experiments having been analysed by them
for the 0.19 mm and 0.93 mm sands respectively. The predicted wavelength in each
case is that giving the maximum positive growth parameter for the associated flow
system. Each predicted wave magnitude approximately lies on the curve described
by equation (1.1). The wavelengths predicted to form for a given fluid–sediment flow
system can be seen to be independent of the size of the bed sediment. The interaction
of bed and surface waves (figure 4), and thereby flow system instability, is predicted
not to occur for flows of Fr > 0.8 (figure 5, and Coleman 1991).

Although not indicated by the data of figure 5, the range of wavelengths predicted
to be unstable for a flow system generally increases with increasing Fr (Coleman
1991). The size of the sediment comprising the erodible bed affects to only a minor
degree this range of wavelength values. As Froude numbers increase from threshold
conditions, growth parameters, ci, are predicted (Coleman 1991) to increase (initially
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Figure 5. Lengths of sand wavelets generated from flat bed conditions.

rapidly), approach a maximum value, and then decrease slightly in magnitude before
becoming unconditionally zero (indicating no flow system instability). Similar trends
are predicted for wave speeds, cr (Coleman 1991). These predictions reflect observa-
tions of bed waves growing and moving at faster rates for flows of larger Froude
numbers (Coleman & Melville 1994, 1996).

Linearized potential-flow theory is designed to describe the growth of small-
amplitude disturbances to a flow system. Such a flow theory should describe the
wavelengths for the waves first generated from plane bed conditions (termed sand
wavelets by Coleman & Melville 1996) for a given flow system. Such measured
wavelengths for flow systems (Coleman & Melville 1996) are given in figure 5 for
comparison with predictions of the present theory. The smaller of the two respective
wavelengths given by Jain & Kennedy (1971) for each run is utilized here because
their presented spectral results indicate the spectral peak of larger kH (smaller λ) to
be markedly more significant than the spectral peak of smaller kH for a run.

Figure 5 indicates that potential-flow theory predicts lengths for sand wavelets
generated from flat bed conditions that are markedly greater than observed lengths.
Furthermore, sand-wavelet lengths predicted by the present potential-flow instability
model can be seen to be a function of flow conditions but independent of sediment
size (figure 5). In contrast, the measured data show these lengths to be relatively
insensitive to applied flow conditions and primarily a function of the size of the
sediment comprising the bed (Coleman 1996; Coleman & Melville 1996). Sand
wavelets are therefore not generated by any potential-flow instability mechanism.

The potential-theory bed–water-surface resonance mechanism elucidated herein is
nevertheless a valid instability mechanism and can be seen to promote accelerated
wave growth for a flow system of larger developing bed waves (not the initial sand
wavelets). To this end, the experimental results of figure 6 indicate rapid development
of bed waves in the vicinity of λ = 0.2169 m for the flow system, instability for
this wavelength–flow system combination being predicted by the present theory (as
indicated by equation (1.1)). Coleman & Fenton (1996) presented similar rapid wave
development in the vicinity of λ = 0.4305 m for a flow system of H = 0.126 m and
Fr = 0.719. Many other examples of this period of accelerated growth at the predicted
wavelength can be cited, but only two are selected for the example purposes of the
present paper. It is postulated that the resonance mechanism of instability provides
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Figure 6. Development of bed-form height (×) and wavelength (�) for Run C8 of
Coleman & Melville (1996); d = 0.82 mm, H = 0.119 m, and Fr = 0.538.

the means whereby the sediment waves commonly referred to as ‘dunes’ develop from
smaller sand waves growing on a sediment bed. In contrast, this instability mechanism
is conjectured not to occur for flow systems of rippled equilibrium beds. Assessment
of the association of the occurrence of this instability mechanism with the formation
of dunes is continuing.

For the commonly accepted arbitrary boundary for ‘deep-water’ waves of H/λ >
1/2, that is kH (= 2πH/λ) > π, the ratio of the velocity on the bed to that at the
water surface is given by exp (−kH) = exp(−π) ≈ 0.043. Despite this value being
small, it is recognized that for the present flow system instability considerations, even
minor perturbations to the system can be of significance. The authors therefore believe
that there is no justification for a hard classification of the present waves generated
by system instabilities into conventional ‘deep-water’ or ‘shallow-water’ waves, with
an accompanying dismissal of any conventional ‘deep-water’ results for the present
resonance mechanism of instability. The authors’ belief is reflected in there being no
obvious discontinuity in the results in figure 5, the system not seeming to recognize
any distinction between conventional ‘deep-water’ and ‘shallow-water’ conditions.

4. Present model predictions with an explicit phase lag
In order to investigate the appropriate role of the explicit phase lag proposed

by Kennedy (1969) in potential-flow instability analyses, the present potential-flow
instability model was reformulated to include this phase lag.

The sediment transport rate per unit width of flow can be related to flow conditions
at a distance β upstream using

qs(x, t) = f(uη(x− β, t), h(x− β, t), S , ρ, ρs, d, g). (4.1)

Using (4.1), equation (2.7) can again be derived from (2.5) if the revised definitions of
q1 = [∂qs/∂uη(x− β, t)] e−ikβ and q2 = [∂qs/∂h(x− β, t)] e−ikβ are adopted. The poten-
tial-flow model formulation is then as presented earlier, with the exception of the
revised coefficients q1 and q2, which are now complex in nature. With linearization
of the governing equations for the flow system, ∂qs/∂uη(x− β, t) and ∂qs/∂h(x− β, t)
again become ∂qs/∂U and ∂qs/∂H respectively. These terms can then be evaluated for
a given fluid–sediment flow system based on the Engelund–Hansen transport formula
of equation (2.17).

Run S8 of Jain & Kennedy (1971, 1974) was analysed using the reformulated
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model, where the flow and sediment parameters for this run are given earlier in this
paper. In line with the theoretical analyses of Jain & Kennedy (1974), β/H = 0.72
was adopted for the present analyses.

Calculated values of the normalized growth parameter, ci/(gH)1/2, are shown in
figure 7 for kH < 10. The bed-wave results of this figure, with the abscissa plotted in
terms of kH , are directly comparable with those of figure 2 of Jain & Kennedy (1974).
Particular details of the two graphs differ owing to Jain & Kennedy additionally
incorporating an allowance for the effect of local bed slope on sediment transport
rate into their analyses.

Figure 7 confirms that the singularity evident for previous potential-flow instability
models can be removed by appropriate formulation of these models. Infinite growth
rate is predicted by Jain & Kennedy for kH = 5.12, with a maximum in growth
rate predicted for kH = 7.54. For the present results of figure 7, the corresponding
maximum in growth rate occurs at kH = 6.84, with no local maximum occurring at
the condition of equation (1.1). In contrast to the results of Jain & Kennedy (1974),
no waves are then predicted to form at this latter value of wavelength (kH = 5.12).

Jain & Kennedy (1971) indicate that the graph of bed-wave growth rate ‘. . . has
a series of maxima at successive higher values of kH . . .’, Kennedy concluding that
‘. . . the maximum corresponding to the largest value of wavelength will dominate’. This
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maximum is in addition to that given by the singularity evident for the quasi-steady
potential flow model.

Figure 8 illustrates the series of maxima in bed-wave growth rate predicted by the
present model, where ci = 0 for the faster-moving (case 1) water-surface waves over
the range of kH values shown. Based on conventional fluid stability considerations,
whereby the wavelength of the waves expected to form from plane bed conditions is
that of the largest associated (positive) predicted growth rate, the results of figure 8
indicate that waves of infinitesimal length (kH →∞ and λ→ 0) are actually predicted
by the present model to form for Run S8 with β/H = 0.72. This prediction is not
reflected in the experimental results presented by Jain & Kennedy (1971, 1974).

Normalized wave speeds, cr/(gH)1/2, as functions of wavelength for Run S8 are
presented in figure 9. Wave speed results at larger values of kH are highlighted
in figure 10. In contrast to the results for no explicit phase lag (β = 0), bed-wave
speeds are predicted to oscillate between positive and negative values with decreasing
wavelengths. That waves of wavelengths indicated by figure 8 to be unstable (for
example, ci > 0 for kH = 14) should be indicated by figure 10 to move in an
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upstream direction (cr < 0) for Run S8 (of Fr = 0.442) is clearly in conflict with
experimental observations.

The incorporation into conventional potential-flow analyses of a phase lag between
sediment transport rate and local flow conditions in the form of the explicit lag β can
be seen to result in analytical predictions contrary to observed flow system behaviour
in terms of predicted lengths and also wave speeds for the unstable waves.

5. Discussion
5.1. Significance of the present potential-flow model

The present model advances previous potential-flow models in two principal respects.
Previously, the change in bed-wave amplitude with time (∂η/∂t in equation (2.3)) has
been neglected based on the assumption that this term is small relative to the other
two terms in the equation. This assumption is perhaps particularly questionable for
sand-wave growth from plane bed conditions (for which ∂η/∂t can be large and ∂η/∂x
tends to zero), which are precisely the conditions to which the assumption is applied
for linearized potential-flow analyses of sand-wave development. The assumption of
neglecting the term ∂η/∂t in equation (2.3) is also questionable in that the focus of the
analyses is bed-wave growth. The present analyses advance the previous quasi-steady
models by being formulated for a fully unsteady flow system, with no time-derivative
terms being neglected. Sediment transport is accordingly modelled as responding to
the unsteady local flow velocities and depths (equation (2.6)). Subsequent linearization
of the equations then facilitates the adoption of a steady-state expression for sediment
transport in the analyses.

The second principal advance comes in the formulation of the analyses. It is
conventional understanding that phase shifts between the perturbations to flow,
bed and water surface are necessary for prediction of flow system instability (e.g.
Kennedy 1980). As indicated above, an artificial explicit phase lag between local
sediment transport and local flow conditions has previously been introduced into
potential-flow analyses in order to facilitate predictions of flow system instability. In
contrast to previous models, the present analyses implicitly facilitate free variation
of phase between the perturbations to the flow system. To this end, the flow system
perturbations of equations (2.8), (2.9) and (2.10) are sinusoids incorporating the
coefficients A, B, C and D which are complex, e.g. C = c exp(iβc), where c is a real
coefficient and βc is a phase shift of the bed perturbation relative to the perturbations
in the flow and the water surface. This implicitly permits phase shifts between the
flow, bed and water surface perturbations (of respective phase lags of βa, βb, βc, and
βd). Both the determination of the dispersion relation of equation (2.13) and also
the subsequent analyses of flow system instability are independent of the coefficients
A, B, C , and D, and are thereby implicitly valid for all phase lags between the flow
system perturbations.

For sediment being moved by the flow shear stress acting on the sediment grains, it
is the lag between the bed topography and the flow shear stress that is conventionally
viewed as being required for bed-form growth. By freely facilitating all lags between
the bed surface η, the flow velocity (= f(φ)), and the water surface ξ (or the flow
depth h = H + ξ− η, or the shear stress τ or shear velocity u∗, where τ = ρu2∗ = ρghS ,
or alternatively τ = f(ρ,U, h, d50) based on the turbulent-flow velocity profile), the
present analyses then also appropriately facilitate lags between the flow shear stress
and the bed.
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An additional advance of the present model is that for the first time celerities
are calculated for both the bed wave and also the two surface waves for each flow
system–wavelength combination analysed. In contrast to previous models, the present
model can then be used to investigate in detail any interrelations between the flow
system bed and surface waves.

5.2. Potential-flow descriptions for β 6= 0

The similarities between the results of figure 7 and the results of the equivalent figure
2 of Jain & Kennedy (1974) confirm the accuracy of our analyses for the inclusion
of an explicit phase lag β between flow conditions and sediment transport. The
differences in results that are apparent are nevertheless very significant.

Previous potential-flow theories are recognized to not describe plane-bed instability
in the absence of an explicit phase lag between flow conditions and sediment transport
(β = 0). The present analyses reveal that for the alternative situation of β 6= 0, flow
system instability is predicted by potential-flow models for a variety of wavelengths,
with waves of infinitesimal lengths (λ→ 0) actually predicted to form for a given flow
system. In addition, the bed waves generated from plane bed conditions are predicted
to move either upstream or downstream, depending upon the length of the wave. Both
of these central results are clearly contrary to observed flow system behaviour, with
bed waves being observed to move downstream owing to the propagation-of-mass
nature of their movement (Coleman & Melville 1994), and with waves of distinct finite
lengths being observed to appear from plane bed conditions (Coleman & Melville
1996). These erroneous predictions of physical behaviour by potential flow theories
for β 6= 0 have not previously been recognized.

In addition, from figures 8 and 9, instability (ci > 0) is predicted for β 6= 0 in
the absence of any resonance interaction between the bed and water-surface waves,
with unstable (growing) bed waves predicted to move upstream and downstream at
celerities significantly less than corresponding free-surface-wave celerities. For β 6= 0,
instability is then arbitrarily predicted for bed waves without an apparent physical
basis.

Furthermore, Jain & Kennedy (1971, 1974) and Kennedy (1980) propose a variance
cascade mechanism of progressive bed development whereby smaller waves travel
at faster speeds, and wave growth occurs through the smaller waves catching and
coalescing with larger waves. This is in essence a valid mechanism of bed development
as indicated by Coleman & Melville (1994). Nevertheless, with bed-wave speed not
predicted to consistently decrease with increasing bed-wave length (figure 10), and with
waves of different lengths predicted to move in upstream and downstream directions,
previous potential flow instability models for β 6= 0 cannot correctly represent this
mechanism of bed development. The basis of the mechanism proposed was purely
conjecture, although of remarkable insight.

Finally, in contrast to the results of Jain & Kennedy (1971, 1974), the removal of
the singularity at condition (1.1) for the present unsteady model results in instability
not necessarily being predicted at the associated wavelength for the model with β 6= 0
(figure 7). The twin modes of instability basis for bed development processes as
conjectured by Jain & Kennedy (1971, 1974) is then not predicted for a correctly
formulated potential-flow description of bed development.

To date, it has been accepted that the explicit phase lag of β 6= 0 is valid and is
the sole means by which potential flow analyses can be made to describe flow system
instability. Based on the present findings, this explicit phase is actually an artificial
measure that results in model predictions that are not consistent with observed flow
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system behaviour. Conventional use of the explicit phase lag of β 6= 0 in the potential-
flow approach is accordingly concluded herein to be erroneous. In the absence of the
explicit lag, conventional potential-flow analyses predict no flow system instability.

5.3. Potential-flow descriptions for β = 0

In contrast with previous models, the present potential-flow model of no explicit
phase lag between flow conditions and sediment transport (β = 0) predicts flow
system instability for Fr < 0.8. Instability is predicted to occur at finite growth rates
for a range of wavelengths via a resonance mechanism occurring for surface waves
and bed waves travelling at the same celerity. In addition, bed-wave speeds are
predicted to decrease with increasing wavelength, and bed waves are predicted to
grow and move at faster rates for flows of larger Froude numbers. These predictions
are entirely consistent with observations of flow systems (Coleman & Melville 1994,
1996). With bed-wave speed predicted to consistently decrease with increasing bed-
wave length, and with waves predicted to move in the downstream direction, the
present potential-flow instability model of β = 0 is furthermore consistent with the
recognized variance cascade mechanism of progressive bed development (Coleman &
Melville 1994).

The identified resonance mechanism of flow system instability has not previously
been shown to exist. Up to now (e.g. Jain & Kennedy 1971, 1974, and others there-
after), it has only been hypothesized that instability arises when bed waves and
surface waves travel at a common celerity. Comparisons of measured or calculated
bed-wave and surface-wave celerities have not previously been presented to confirm
the occurrence of the resonance instability mechanism. For the first time, the present
work calculates the three (two free-surface and one bed) wave celerities for a flow
system and shows that at the point of instability, the celerity of one of the surface
waves equals that of the bed wave. The present model thereby for the first time proves
the existence of the bed-wave–water-surface-wave resonance mechanism of instability.

Further to the previous postulated nature of resonance for a flow system, Jain
& Kennedy (1974) quote instability arising for a surface-wave train moving relative
to the fluid with velocity just equal in magnitude but opposite in direction to the
mean flow velocity. They then conjectured instability to occur when the surface waves
appeared to be stationary. As proved by the present analyses (figure 4), however, with
small bed-wave speeds of crbed

� U, instability actually arises when the surface waves
travel at celerities equal to the small bed-wave speeds, i.e. crwater surface

= crbed
� U. The

present work thus clarifies previous conjecture regarding the occurrence of resonance
for flow systems.

The present analyses also advance previous hypotheses of resonance generation
of bed waves by predicting that the resonance mechanism will not occur for large
Froude numbers (Fr > 0.8). To this end, the present model is the first potential-flow
model to describe in detail the complex interactions of bed-wave and surface-wave
speeds as shown in figure 4. For larger Froude numbers, the present model shows bed
and surface waves interacting to prevent their speeds from matching and resonance
occurring (Coleman 1991). There is no equivalent prediction of stability at larger
Froude numbers for previous potential-flow models, these models either being unduly
influenced by incorporation of the erroneous explicit phase lag of β 6= 0, or predicting
instability unconditionally for all flows at the singularity condition (1.1).

As indicated by figure 5 (with the exception of flow systems of Fr > 0.8, for
which no flow system instability is predicted by the present model), the wavelength
of maximum growth rate predicted by the present model with β = 0 can be described
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by equation (1.1). Previously, flow system behaviour at this condition could not be
determined, as equation (1.1) defined a singularity in instability theory (Kennedy
1969; Gradowczyk 1970; Jain & Kennedy 1974). This relation (1.1) has nevertheless
previously been interpreted as delineating regions of occurrence for ripples and dunes
collectively and antidunes (Kennedy 1969; Gradowczyk 1970), or defining the lengths
of waves generated at infinite growth rates from plane bed conditions (Jain & Kennedy
1974). In contrast, the present fully unsteady model has resulted in the removal of the
singularity evident for previous models, with equation (1.1) defining the wavelength
of bed waves expected to develop at finite growth rates from plane bed conditions
for a flow system of Fr < 0.8.

Based on predicted unstable wavelengths (approximated by (1.1)) markedly exceed-
ing observed sand-wavelet lengths (figure 5), and based also on respective trends in
predicted and observed wavelengths with increasing flow strength, it is concluded
that bed waves are not generated from plane bed conditions by any potential-flow
instability mechanism. Conventional thinking is that potential-flow analyses, while
being superseded by more complex models, still provide valid descriptions of plane-
bed instability, with the explicit phase lag adjusted to produce the necessary results.
That potential-flow analyses are inadequate for the description of flat-sediment-bed
instability has not previously been shown.

The true mechanism of instability for plane alluvial beds thus lies in flow features
not apparent in potential-flow descriptions of flow, and not just in phase-lag descrip-
tions advanced from those of previous potential flows. This is an important under-
standing, both for use of potential-flow analyses and also for understanding of what
actually is occurring when a plane bed becomes unstable. Potential-flow descriptions
of flows should thus no longer form the basis of instability analyses describing bed-
wave generation from plane bed conditions. The potential-theory bed–water-surface
resonance mechanism is nevertheless a valid instability mechanism that is found to
promote accelerated wave growth for a flow system of larger finite developing waves.
As indicated above, correctly formulated potential-flow theory is also consistent with
a number of further aspects of observed physical flow system behaviour.

6. Summary
The present work constitutes a review of the role of potential-flow analyses in

describing alluvial-bed instability, the analyses and findings answering lingering ques-
tions posed by Gradowczyk (1968) and completing a series of research by numerous
authors spanning over three decades.

The basis of the present work is an unsteady potential-flow description of alluvial-
bed instability, the model predicting instability of flow systems of rippled or dune-
covered equilibrium beds without inclusion of the conventional artificial explicit phase
lag adopted in previous potential-flow models. The form of the present model and the
associated finding of instability in the absence of an explicit phase lag have eluded
all previous potential-flow analyses.

Predictions of the revised flow model prove the inadequacies of conventional
potential-flow models incorporating explicit phase lags between sediment transport
and local flow conditions.

In contrast, the present potential-flow model with no explicit phase lag predicts
instability to occur at finite growth rates for a range of wavelengths via a resonance
mechanism occurring for surface waves and bed waves travelling at the same celerity.
In addition, bed-wave speeds are predicted to decrease with increasing wavelength, and
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bed waves are predicted to grow and move at faster rates for flows of larger Froude
numbers. All predictions of the present potential-flow model are consistent with
observations of physical flow systems. Based on the predicted unstable wavelengths
for a given alluvial flow, it is concluded that bed waves are not generated from plane
bed conditions by any potential-flow instability mechanism. Potential-flow description
of alluvial flows should thus no longer form the basis of instability analyses describing
bed-form generation from flat bed conditions. Nevertheless, potential-flow theory is
actually shown to correctly predict flow system instability in the form of accelerated
wave growth for flow systems of larger finite developing waves.

The present work corrects three decades of misunderstanding of basic flow be-
haviour, clarifies flow understanding that underpins other flow descriptions, and
corrects several aspects of presumed established knowledge that have actually never
before been proven. The understanding of the mechanics of alluvial stream bed forms
as inferred from previous potential-flow instability models, which require β 6= 0 for
prediction of flow system instability, must be reconsidered with the implications of
the present results in mind.

The relevance of the present work to the description of alluvial bed waves is proven
by the centrality of the potential-flow approach (over three decades) to describing
the given phenomenon, the importance of the present findings to evaluation of the
validity of the potential-flow approach to describing alluvial-bed instability, and the
implications of the present findings for more complex instability analyses. In regard to
the last perspective, it is recognized that analytical descriptions of flows have advanced
since the potential-flow descriptions of the 1960s, but these advances have come with
an inadequate understanding of the underlying potential-flow description. In order
to properly understand rotational-flow predictions, one first needs to recognize what
potential-flow analyses really predict, and the true limitations of these underlying
analyses. Similarly, in order to determine which aspect of the alluvial flow system
produces plane-bed instability, the true contribution to instability of the potential-flow
aspect of the flow, as highlighted in the present work, needs to be recognized.

The present advances in theory and findings are entirely consistent with potential-
flow description of alluvial flows. With current understanding of alluvial-bed insta-
bility built on flawed analyses and flawed understandings of flows, the present work
provides a necessary step towards obtaining a full understanding and description
of this phenomenon. In this regard, basic analyses and understanding are corrected
herein such that crucial terms in the analyses can be identified, correct understanding
of flows can be obtained, and paths to be pursued to achieve the goal of correct
description of alluvial-bed instability can be refined.
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