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Abstract:  A rating curve represents a supposedly-unique relationship between the stage (surface elevation) of 
water at a gauging station and the flow past that station. A significant problem is that the flow can vary from 
none to that of large floods, and this whole range has to be represented, including everyday small flows. A 
traditional way of doing this is to use log-log axes, but these have a number of problems. This paper considers 
the simple hydraulics of typical natural geometries of controls and river cross-sections and shows that in many 
situations the stage at the gauging station will vary roughly like the square root of the discharge, but with 
different relationships at different flow ranges. This suggests routinely plotting stage against the square root of 
discharge as representing and approximating rating curves. 
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1 INTRODUCTION

In the introduction to the companion paper to this one (Fenton, 2001) the nature of rating curves was described, 
including the comment by Brown, quoted by Chester (1986), who called for the need to examine and "rationalise 
the whole question of discharge rating curves" as it "has received relatively little attention in technical literature" 
and "is covered in a general fashion in the stream gauging manuals". In the companion paper it was remarked 
that since 1983 there has been little progress along those suggested directions. 
 
The companion paper provided a summary of one part of the report by Fenton and Keller (2001), this paper deals 
with another aspect – how they might be plotted and approximated. This uses some elementary hydraulics to 
guide the path. 
 
The idea of plotting a fractional power of discharge was first put forward by Chester (1986), who advocated 
plotting discharge to the power 0.4, which has been implemented in some practical software. In this paper it is 
suggested that 0.5 is to be preferred, as it is more representative of the hydraulics and natural features of rivers 
and controls. Thus, it is advocated that one actually plots on ),( ηQ  axes. 

2 LOGARITHMIC SCALES 

A problem with rating curves is that they have to represent a relationship between stage, which might vary by 10 
metres or so, and discharge which can vary by several orders of magnitude, from 0 to hundreds of thousands of 
discharge units. A traditional solution is to plot the discharge using a logarithmic scale, effectively expanding the 
region for small flows and contracting that for large. In many books and standards (for example, Herschy, 1995, 
and Australian Standard AS 3778.2.3, 1990) it is shown how it is convenient to use a logarithmic scale for the 
stage η  as well, in that often it is found that that by subtracting of some arbitrary value 0η  such that if one plots 
the logarithm of the discharge against the logarithm of 0η−η , points on the rating curve approximately fall on a 
straight line. The implication of this is that the discharge obeys a law of the form 
 

  ( )nCQ 0η−η= , (1) 
 
where C and n are constants. Such a relationship might be valid for low flow, and there might even be a similar 
but different relationship for high flows. To handle this more complicated situation, the curve could be broken up 
into a small number of segments, each of which is a straight line on the log-log plot, such as performed by 
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Herschy, (1995, #4.5). This does seem a rather arbitrary procedure, however. Rather better would be to 
approximate it with a larger number of such segments, when the use of straight-line approximation would be 
sound. This is widely done in practice. 
 
Generally, however, the use of log-log plots is fraught with difficulties, and the continuing and enthusiastic 
advocacy of their use in texts and standards is surprising. Some of the difficulties include 

• The cease-to-flow point, actually just ),0( 0η , cannot be shown on a log-log plot, as on those axes it is at a 
horizontal position of ),( −∞−∞ . This is not necessarily an important disadvantage. The important problem 
is that the cease-to-flow point needs to be found before plotting the figure, by the following method.  

• The cease-to-flow point can be found by a nonlinear analytical procedure involving the use of three data 
points at which values for η  and Q are known, and substituting into a formula for 0η  (see, for example 
#4.4 of Herschy, 1995). While this is a relatively simple method, it is not clear that it is safe to advise it as a 
technique for routine practice. The method depends on choosing three points deemed to satisfy (1) exactly. 
There is no room for a recognition that it would be better to incorporate more data points in a least-squares 
sense. The formula given is badly conditioned if 1≈n , and breaks down completely if 1=n .  

• Subsequently least-squares methods can be used to find values of C and n. The log-log plot allows for this in 
a linear sense, for taking the logarithm of both sides of (1) gives ( )0logloglog η−η+= nCQ , and by using 

Qlog  and ( )0log η−η  the solution follows by standard methods. 

• For small flows and heads the data points are artificially separated, and small differences physically become 
large differences with a tendency to attach more importance to these points in the least squares procedure 
than is really the case. 

• For large flows, the reverse holds, and the points are compressed, large differences are apparently 
compressed, and the points are rendered less important. 

• One disadvantage is that the use of log-log scales is open to misinterpretation and abuse. In one 
hydrographic office an elementary misunderstanding has lead to a plotting mistake being made which 
rendered all points incorrectly plotted, although this was only of any consequence only at the low-flow end. 

• In a similar spirit to this is the observation of the quite ubiquitous use of a plot of the logarithm of the stage 
as simply ηlog , where the stage is relative to an arbitrary datum, rather than the plotting the logarithm of 
the stage relative to the cease-to-flow stage, ( )0log η−η . There is no theoretical justification for plotting 

ηlog ; even if the stage discharge relationship were exactly as given by (1) it would not plot as a straight 
line on Qlog  - ηlog axes. Figure 4.12 of Herschy shows how this is the case.  
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Figure 1. Stage-discharge Relationship Using Log-log Axes for Pallamallawa on the Gwydir River, with a Line 
of Best Fit on These Axes to All but the Last Two Points 
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Some problems of the naïve use of log-log scales are demonstrated by an example here, from Pallamallawa on 
the Gwydir River. Data sets for this and other stations on the same river are given in Fenton and Keller (2001). It 
is not suggested here that the simple-minded procedure about to be followed here is implemented in practice at 
that site. In Figure 1 a set of points from the rating curve are plotted and without any attempt to determine the 
cease-to-flow point, a global straight-line approximation fitted to all but the two points of highest discharge, 
where, corresponding to overbank flow occurring, a significant discontinuity occurred. On the axes shown the 
straight line does not seem unreasonable. To obtain the linear fit, however, a least-squares procedure has been 
used in log-log space that means that as this opens out the points very much at the low-flow end, that they 
contribute more than their real importance. This is illustrated by plotting on linear axes, as shown in Figure 2, 
using both the same data and line of best fit, now curved, it becomes obvious how the wide-spacing of data 
points at the low-flow end on the logarithmic plot has distorted the result considerably, and in reality, the 
plausibly-satisfactory results on log scales are not acceptable. Even if a single straight line were not fitted, the 
shrinking of the scale at the upper end is such as to render apparently small changes or errors innocuous, whereas 
in reality they are important, as revealed by Figure 2.  
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Figure 2. The Same Data and Approximation as Figure 1 but Using Natural Axes. 

Of course, a higher degree polynomial fit in terms of the logarithms of the variables could be implemented, in the 
spirit of what is done later in this paper, and better fits could be obtained. However that would still not overcome 
some of the problems of using the logarithmic scales. This seems not to have been done elsewhere, and 
Standards and other sources seem often just to recommend a simple linear plot such as has been shown here, for 
which there is little justification. 

3 THE POSSIBILITY OF USING ( )ην ,Q  SCALES 

Plotting rating curves on simple linear axes could be used to overcome some of the problems of logarithmic 
scales, however the requirement to include large flows means that the region of small flows becomes graphically 
insignificant, as shown in Figure 2. That figure strongly resembles a plot of the square root function. More 
generally it could be a plot of the function νQ , where ν  is any number somewhat greater than 0 and somewhat 

less than 1). This suggests using such an alternative scale, as by Chester (1986), who advocated that 5/2Q  
should be used. The choice for the power 2/5 was made by assuming the discharge formula for a V-shaped 
section control. The use of a 2/5 power scale for discharge has been implemented as an option in the widely used 
HYDSYS package. Although the justification for using 2/5 has not been particularly convincing, the assumption 
of a power law scale is interesting and potentially useful.  
 
Here three different types of controls are considered which might determine the behaviour of a rating curve over 
part of its range at least. Simple hydraulic theory is used in each case to develop a theoretical model, showing 
how stage can approximately be linearly related to some fractional power of the discharge, νQ , for some model 
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cross-sections. It is concluded that 2/1=ν  such that QQ =ν  is a choice which probably more generally 
models the hydraulics of gauging stations. 
 
To provide a model, a family of cross-sections are considered, of both sharp-crested and broad-crested weirs, and 
of the waterway itself. Monomial variation of the breadth b as a function of elevation above the lowest point z is 
considered, such that mzzb β=)( , where β  is a constant for a particular section. This assumption incorporates 
and generalises some simple cross-sections as shown in Figure 3. For 0=m , β=)(zb , which is a constant so 
that this describes a rectangular section. As m increases, a sequence of flat bottomed U-shaped sections is 
obtained, modelling wide mature streams and even an approximation to trapezoidal sections. For 2/1=m  the 
cross-section is a parabola, which could be used as an approximate model for many natural cross-sections. As m 
increases the bottom becomes increasingly sharp, until at 1=m  a sharp V-shaped section is obtained. If one 
were to continue increasing m this would correspond to sections with a deep valley (and in fact, infinite surface 
gradient), as shown by the dashed line for 2=m  in the figure. In some sense these could model some mountain 
streams, as well as the opening out of the river as it reaches bank level. However for more general natural 
topographies it seems not a particularly important case, and values of m only between 0 and 1 will be considered. 
 
 

m = 0 (Rectangular)
m = 1/4

m = 1/2 (Parabolic)
m = 3/4

m = 1 (Triangular)
m = 2

 

Figure 3.  Cross-Sections Belonging to the General Family Given by the Monomial mzzb β=)( . 

3.1 Low Flows  

For low flows it is assumed that there is a local downstream control, such as a weir constructed so as to provide 
that control, or a naturally-occurring feature such as a rock ledge or number of rocks in the stream. In Fenton and 
Keller (2001) it was shown theoretically that in the limit of low flow, even if there is a finite length of river 
between control and gauge, that the system acts like a reservoir with a horizontal surface, and the rating curve 
behaviour is precisely that of the downstream control. Two types of control structures are considered: in 
Appendix A the downstream control is modelled by a family of sharp-crested weirs, and in Appendix B by a 
similar family of broad-crested weirs, such as might be installed, or to approximate a natural feature. The 
surprising result was obtained that in both cases the behaviour is the same, even if the formula is different, and 
for both types of weir it is shown that mHQ +2/3~ , namely that the discharge varies like the total depth there to 
the power m+2/3  (of course the 3/2 law for the rectangular weir - 0=m  - is well known). More importantly, 
this means that the depth at the weir )2/3/(1~ mQH + , and as it is necessary just to add on the difference between 
the datum for the weir and gauging station it is concluded that recorded stage at the gauging station should also 
vary like )2/3/(1 mQ + . Of course, it is not usually known what the value of m is – this problem will be addressed 
below. 
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3.2 Intermediate Flows 

For larger flows, as the depth increases, the local control will drown out and will cease to control the flow at the 
gauging station. Possibly further downstream other local controls might occur, but it is just as likely that the 
control becomes a channel control, where the frictional nature of the waterway controls the flow. In Appendix C 
this is modelled by a uniform flow which is governed by Manning's law. Once again a family of sections 
described by the same monomials is considered, but in this case where the dimensions are those of the waterway 
as a whole, and not just a weir in it. The result found, after assuming that the waterway is rather wider than it is 
deep, so that some integrals can be evaluated, is that the depth of flow, and the inferred recorded stage at the 
gauging station should vary like Q raised to the power )3/5/(1 +m . Chézy's law is also considered, and an 
equivalent power of )2/3/(1 +m  obtained - which happens to be the same value obtained for both sharp and 
broad-crested weirs. It seems remarkable that three different theories, based on three different assumptions and 
processes, should throw up such consistent results. 

3.3 Large Flows 

For flows which approach bank-full and over-bank flows, it is possible that a rather different value of m could be 
used, possibly larger than 1, so that the section contains a deep central section and a convex-up shape on both 
sides away from that, corresponding to the widening of the river at the top of its banks, as shown in Figure 3. As 
this seems a very variable and uncertain situation, it will not be considered here. 

3.4 Results 

The results are summarised in Table 1, which considers five representative sections, ranging from rectangular 
through to triangular, and for each shape, what the exponent ν  in νQ  would be such that this quantity would 
vary linearly with stage according to four different determinants: sharp and broad-crested weirs and uniform 
channel flow according to Manning and Chézy friction laws. As already noted, three of these columns have the 
same values.  
 
 

Exponent of Q giving a linear relationship with stage 

Weir flow Uniform channel flow Nature of weir cross-
section or stream cross-

section 
Exponent m  

Sharp-
crested weir 

)2/3/(1 +m  

Broad-
crested weir 

)2/3/(1 +m  

Manning 
)3/5/(1 +m  

Chézy 
)2/3/(1 +m  

Rectangular  0.00 0.67 0.67 0.60 0.67 
Shallower U-shaped 0.25 0.57 0.57 0.52 0.57 
Parabola 0.50 0.50 0.50 0.46 0.50 
Sharper U-shaped 0.75 0.44 0.44 0.41 0.44 
V-shaped 1.00 0.40 0.40 0.38 0.40 

Table 1.  Family of Cross-Sections Between a Rectangular and a V-shaped Stream and the Corresponding  
Exponent of Q such that a Rating Curve based on Uniform Flows Would be a Straight Line 

The important question then arises as to what value of the exponent should be used? It can be seen that over the 
whole table, numbers range from 0.38 to 0.67, and for a value of 0.5 to correspond to sections which have a 
finite, intermediate curvature. As in Fenton and Keller (2001), who did not produce as detailed a study as this, a 
value of about 0.5 should be an average representative value, if a single value is to be chosen. A value of 0.4 
might be too extreme, as in many local controls by natural features, a well-developed V-notch section to be 
relatively rare, and features like rock ledges, providing the impoundment at low levels, to be much more 
common, while at higher flows a flat-bottomed stream is still much more likely. In general, both on the scale of 
local controls and stream cross-sections, U-sections are rather more likely than V-sections. 
 
The value of 0.5 implies that the stage-discharge relationship will tend to show stage varying approximately like 

QQ =η 2/1~ , which has a certain charm to it as the square root function is more familiar and standard than 
any other fractional power. Also, its inverse, the square function is slightly easier to handle and make 
interpretations from using mental arithmetic than the inverse function of the 0.4 scale raising quantities to the 
power 2.5. If special plotting paper were drawn up, with tick marks at major values as with a log scale, this 
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would not matter, but in practice with non-specialist standard software as used to produce the figures, with 
equally-spaced tick marks, the square root scale is simpler. 
 
For these reasons, as yet based on few examples, the idea of plotting stage-discharge relationships on ( )η,Q  
axes is pursued. At low flows the relationship should be roughly linear, such that it should be relatively easy and 
accurate to establish the cease-to-flow point. At larger flows the relationship should also be roughly linear, but 
not necessarily the same relationship as the low-flow one at all. For higher flows some deviation from linearity is 
expected. Using these scales should contract large flows and expand small flows on the plots. The tendency to be 
linear, at least at the bottom end and without marked curvature at the upper end, means that it may be possible to 
use global means of approximation, as the curves should show rather less irregular behaviour. It is not expected 
that any curve will approximate a single straight line. 

4 USE OF ( )η,Q  SCALES FOR REPRESENTING RATING CURVES 

The data from the previous example are shown plotted on ),( ηQ  axes in Figure 4. It can be seen that the low-
flow points still collapse into a relatively small region, but they do locally form a straight line of finite gradient. 
The low flow region is shown, the behaviour is clear, but unlike the log-log plot it does not dominate the plot. 
One can still extract low-flow information, but in that region the results resume their real importance, and 
plotting stage to within 1cm vertically would be satisfactory without moving a point an apparently large distance 
as on the log-log plot. It is clear that a piecewise-linear representation of the rating curve would be adequate. The 
two data points for high overbank flow, unsurprisingly, do not seem to follow the trend of the previous data (they 
were obtained partly from readings taken from a boat over flooded farmland!). In general, for such a 
discontinuity it might be better to use something like piecewise linear approximation. 
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Figure 4. Rating Curve for Pallamallawa, Showing the Data and a 6th degree Polynomial Fit. 

 
However, here the possible power of a global approximation is shown in approximating the actual rating data so 
as to automatically generate data for the rating curve at Pallamallawa. A trial is made of a global approximation, 
expressing Q  as a sixth-degree polynomial in stage, using the methods described in the Appendices of Fenton 
and Keller (2001). The results shown in Figure 4, are encouraging. At the cease-to-flow end of the data, the 
polynomial was able to describe the region dominated by the local control. Possibly even more usefully, it seems 
able to make a plausible continuous relationship that incorporates the two high flow points. 
  
An advantage that the power plots have, for both 2/5 and 1/2 exponents, is that the treatment of the cease-to-flow 
point is more satisfactory than with a log-log scale. If the cease-to-flow point is known, it can be plotted without 
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any special treatment. If it is not known, it seems that the tendency of the points to lie on straight or very-nearly 
straight lines provides a reasonable way of extrapolating the low-flow data to determine the cease-to-flow stage. 
On the other hand, using a log-log scale, if the cease-to-flow point is not known it has to be found by using an 
approximation such as equation (1) and finding 0η  such that the expression plots as a straight line, all requiring 
non-trivial operations.  

5 CONCLUSIONS AND RECOMMENDATIONS 

The hydraulics of three different possible determinants of parts of the range of rating curves have been 
considered, namely both sharp and broad-crested weirs and uniform flows. By considering a family of cross-
sections, from rectangular through U-shaped to triangular cross-sections, it was found that in most cases there 
was a tendency for the variation of stage to be like the square root of the discharge, so that if the stage and the 
square root of discharge were used for plotting rating curves, important parts of them would appear as straight 
lines, or close to straight lines. This would make the determination of the cease-to-flow point rather easier, and 
make approximation and description of the curves rather better. 
 
This work has concentrated on exploring the hydraulics, especially in the Appendices, and has provided 
relatively few examples of real rating curves and their representation on axes of stage and the square root of 
discharge. A number of extra examples have been provided in Fenton and Keller (2001), which support the 
conclusions here. 
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APPENDIX A.  DISCHARGE OVER SHARP-CRESTED WEIRS 

Consider the downstream control to be modelled by a sharp-crested weir of arbitrary width )(zb , where z is the 
surface elevation above the cease-to-flow point. Applying the conventional theory of sharp-crested weirs the 
general expression is obtained: 
 

  dzzHgzbCQ
H

∫ −=
0

)(2)( , (A.1) 

 
where Q is discharge, C is a coefficient of discharge, g is gravitational acceleration, and H is the total depth 
above the cease-to-flow point. While the hydraulics of this conventional approach are very poor (pressure over 
the crest is not zero as assumed, horizontal velocity distribution is also not as assumed) it seems to work well in 
practice, as the coefficient C shows relatively little variation with head for a particular shape. 
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Now (A.1) for monomial variation is evaluated, mzzb β=)( , which incorporates and generalises some simple 
cross-sections as shown in Figure 3. Equation (A.1) now becomes 
 

  dzzHgzCQ
H

m∫ −β=
0

)(2 . (A.2) 

 
The variable Hz /=θ  is introduced, and (A.2) becomes 
 

  

)2/3,1(2

12

2/3

1

0

2/3

+β=

θθ−θβ=

+

+ ∫

mBHgC

dHgCQ

m

mm

 (A.3) 

 
where )2/3,1( +mB  is a Beta function (see Abramowitz and Stegun, 1965). For our purposes the numerical 
value of the result is not so important – what has been shown is that the dependence of discharge on head is like 

mH +2/3 .  
 
Some special cases are: 
 
Rectangular weir: 0=m , and Bzb =β=)( , the constant width of this rectangular weir, the familiar expression 
is obtained: 
 
  2/3

3
2 2 HgCQ β= . 

 
The theory on which this is based has very little theoretical validity, but when the coefficient of discharge C is 
studied experimentally, it is found not to vary much with head H, and practically it can be deduced that for a 
downstream control which is a rectangular weir, possible if one such were constructed but admittedly rather 
unlikely if the downstream control were a natural feature, then the head over the weir varies like Q to the power 

67.03/2 ≈ . 
 
For a triangular or V-notch weir, 1=m , )2/tan(2 θ×=β : 
 
  2/5

15
4 2 HgCQ β= . 

 
Also in this case when the coefficient of discharge C is studied experimentally, it is found not to vary very much 
with head H, and practically it can be deduced that for a downstream control which is a triangular weir, then the 
head over the weir varies like Q to the power 4.05/2 = . It was this result that led Chester (1986) to his original 
suggestion. 
 
In many cases in nature, however, it is unlikely that the downstream control will be a notch with a sharp V-
shape, but may well be more like a U-shape, as shown by some of the intermediate cases in Figure 3. For a 
parabola 2/1=m , half-way between the above two cases, then zzb β=)( , and  
 
  2

8 2 HgCQ β= π , 
 
with the deduction that head over the weir varies like Q to the power 5.02/1 = . This might also be the value if 
the control were trapezoidal in cross-section, having a horizontal crest and side walls which are sloping straight 
lines, a combined rectangular and triangular weir, with the effective exponent being somewhere between the 
values of 0.67 and 0.4 of those two cases, possibly not far from the value here of 0.5. 

APPENDIX B.  DISCHARGE OVER BROAD-CRESTED WEIRS 

Now consider a family of broad-crested weirs, of the same cross-sections as shown in Figure 3. Some natural 
controls will be more of this nature for low flows, when the control might, for example, be a rock ledge. The 
basic theory used here is the rather conventional simple one, that flow upstream of the weir is subcritical, that the 
broad-crested weir allows transition to supercritical flow, and that tailwater does not interfere with this. 
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Surprisingly, in this case the simple theory is more applicable than is the case for thin-plate weirs described 
above. The expression for the specific energy relative to the channel bottom is 
 

  ,
2 2

2

gA
QHE α+=  (B.1) 

 
where α  is a Coriolis energy coefficient, with a magnitude of roughly 1.1, which is included here for generality, 
but it does not affect our results. Assume that critical flow on the broad-crested weir will provide the control, the 
depth being such that energy is a minimum. Now, it is easily shown that if the breadth mzzb β=)( , then the area 
 

  
1

1

+
β=

+

m
HA

m
.  (B.2) 

 
Substituting into (B.1), differentiating with respect to H and setting to zero for the minimum, gives 
 

  
)23/(1

2

32 )1(
m

g
mQH

+












β
+α= . (B.3) 

 
However, the stage upstream at the gauging station, assuming that for these low flows that the Froude number 
there is small so that η=E , giving 
 

  
2

2)23/(1

2

32

2
)1(

gA
Q

g
mQ

m

α+










β
+α=η

+

. 

 
Substituting (B.2) and then (B.3), after some manipulations the surprisingly simple result for the stage relative to 
the crest of the weir is obtained 
 

  







+

+










β
+α=η

+

)1(2
11)1(

)23/(1

2

32

mg
mQ

m

. 

 
This shows that the ratio of the depth at the gauging station to that over the broad-crested weir is )1(2/11 ++ m . 
This is a generalisation of the well-known result for rectangular broad-crested weirs ( 0=m ) that the ratio is 

2/3 . For our purposes this is not so important, however. What is important is the result that the stage varies like 
Q  to the power )2/3/(1)23/(2 mm +=+ , which is precisely the result that obtained above for sharp-crested 
weirs using a different theory! 

APPENDIX C 

Now consider the case where the local control is drowned out and effectively it is the frictional nature of the 
channel which provides the control. To first approximation flow past the gauging station will be assumed to be 
uniform, given by Manning's and Chézy's laws. 
 
Consider a channel cross-section given by the monomial mzzb β=)( , where the same terminology as above is 
used, where this expression was used for both thin-plate and broad-crested weirs. The channel bottom is at 

 0=z  and the surface at Hz = . It is convenient to consider a symmetrical channel, with the equation of the 
bank, relative to the centreline, to be  
 
  mzzbzy ×β== 2/2/)()( . (C.1) 
 
The cross-sectional area of the section is given by (B.2). The wetted perimeter of the section is given by 
 

  ( ) dzP
H

dz
dy∫ +=

0

2
12 . 
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In fact, on substituting (C.1) for )(zy this expression cannot be evaluated in terms of simple functions. It is 
easier to re-write it as 
 

  ( ) dzP
H

dy
dz

dz
dy∫ +=

0

2
12 , 

where it is recognised that in most rivers the depth is much less than the width, so that the square of the slope 
( )2/ dydz  is a small quantity and the binomial expansion of the square root can be used to give 
 

  ( ) dzP
d

dy
dz

dz
dy∫ 






 +≈

0

2
2
112 . 

 
Substituting (C.1) gives 
 

  










β−
+β=

−

2

22

)2/1(
1

mm
HHP

m
m , (C.2) 

 
showing how the wetted perimeter varies with total depth above the cease-to-flow point. A bit more insight into 
this can be gained if it is recognised that the surface width B is given by mdB β= , and the expression can be 
written in terms of total depth and surface width as 
 

  









×

−
+= 2

2

)2/1(
11

B
H

mm
BP . 

 
To first order the wetted perimeter is equal to the surface width, while there are corrections proportional to the 
square of the ratio of depth to width, which will be a small quantity in many circumstances.  
 
Now using Manning's equation for steady uniform flow 
 

  S
P
A

n
AQ

3/2






= , 

 
where n is the friction coefficient, and S  is the mean slope. Substituting (B.2) for area A and (C.2) for perimeter 
P gives 
 

  
( ) 











β−
−××

+
β=

−
+

2

22
3/5

3/5 )2/1(3
21

1 mm
HH

mn
SQ

m
m . 

 
This seems to be too complicated for simple deductions, so the second term in the brackets will be neglected, 
which has already been shown to be small. The result for is that in a waterway where the breadth varies like 
depth to the power m, the discharge varies like depth to the power 3/5+m . Solving for H gives 

)3/5/(1~ +mQH , and as stage is given by the depth plus an arbitrary reference level, it is concluded that if the 

flow were uniform at all depths there should be a linear relationship between stage and )3/5/(1 +mQ . If Chézy's 
friction law had been used, the fraction 3/5  would be replaced by 2/3 . 


