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Abstract

Traditional simple formulae and methods for the everyday practice of flow measurement have been
believed to work well for many years. However practitioners have occasionally expressed doubt
about those formulae as well as the desire to have more accurate methods, should they be necessary.
This paper presents some applications of mathematical and computational methods to the practice
of flow measurement, resulting in more-accurate and possibly simpler hydrographic procedures.
Also, existing procedures for ultrasonic velocimetry are criticised and the more-accurate methods
are recommended for that too. Finally a correction method is presented for the effects of rising or
falling stage on rating curves.

1. Introduction
Traditional formulae and methods for the measurement of streamflow are simple, and given the com-
plexity of the problem they are solving, are surprisingly accurate. One of the most common problems is
to find the mean horizontal velocity on a vertical line in a stream flow. This is usually done with only two
measurements, giving acceptable results. This is quite remarkable, given how rapidly the velocity varies
over the vertical. The streamflows so calculated are accurate enough for many practical purposes. How-
ever, such methods might be used to calibrate rather more sophisticated measuring equipment, when
greater accuracy would be desirable. Also, in the irrigation industry generally better accuracy might be
necessary. In addition, the traditional formulae make no rational allowance for when the velocity profile
bends back or forward, which is often found to be the case. It would seem that, given that computing
equipment is generally available and used, that rather more sophisticated methods for the analysis of
flow data might be implemented. In this, the Australian Standard 3778 Measurement of water flow in
open channels is not particularly helpful.

This paper addresses some traditional problems of flow measurement and proposes some formulae and
methods which are more general and accurate and which might simplify the measurement of discharge
in streams. Some defects and inaccuracies of traditional formulae are noted. It is then shown that in
Australian and International Standards for ultrasonic velocimetry the method for calculating the mean
velocity on a beam path is wrong, even though the result is right. A correct derivation is presented.
Then the problem of vertical integration of beam data for the discharge is considered. Conventional
practice is asserted to be quite defective, and it is suggested that flow results from ultrasonic meters are
not as accurate as they might be. Some suggestions are made for applying the abovementioned methods
developed in this work. Finally methods for correcting points on rating curves for rising and falling
stage are presented.
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2. Measurement of discharge by the velocity-area method
The velocity-area method is widely used to calculate the discharge in streams. It requires integrating the
velocity over the cross-sectional area A, Q =

R
A udA, where Q is the discharge and u is the velocity.

This can be expressed as a double integral

Q =

Z
B

h(y)Z
0

u dz dy. (2.1)

The velocity is integrated from the bed z = 0 to the surface z = h(y), where h is the local depth,
z is a local vertical co-ordinate based on the bed and y is the co-ordinate across the waterway, then
these contributions are integrated across the channel, for values of the transverse co-ordinate y over the
breadth B.

The first step is to compute the integral of velocity with depth, or as it is often expressed, the mean
velocity over the depth. An example of a common formula in hydrography is where the mean velocity
over a vertical is approximated by the two-point formula

ū = 1
2 (u0.2h+u0.8h) , (2.2)

that is, the mean of the readings at 0.2 of the depth and 0.8 of the depth. Here we produce some theory
to examine the accuracy of this equation, and to propose rather more general formulae which should be
more accurate.

3. Calculation of mean velocity on a vertical

3.1 A general two-point formula
Consider the law for turbulent flow over a rough bed, which can be obtained from the expressions on
p582 of Schlichting (1968):

u =
u∗
κ
ln
z

z0
, (3.1)

where u∗ is the shear velocity, κ = 0.4, ln() is the natural logarithm to the base e, z is the elevation
above the bed, and z0 is the elevation at which the velocity is zero. (It is a mathematical artifact that
below this point the velocity is actually negative and indeed infinite when z = 0 – this does not usually
matter in practice). If we integrate equation (3.1) over the depth h we obtain the expression for the mean
velocity:

ū =
1

h

hZ
0

u dz =
u∗
κ

µ
ln
h

z0
− 1
¶
. (3.2)

Now it is assumed that two velocity readings are made, obtaining u1 at z1 and u2 at z2. This gives
enough information to obtain the two quantities u∗/κ and z0. Substituting the values for point 1 into
equation (3.1) gives us one equation and the values for point 2 gives us another equation. Both can be
solved to give the solution

u∗
κ
=

u2 − u1
ln (z2/z1)

and z0 =

µ
zu21
zu12

¶ 1

u2−u1
. (3.3)

It is not necessary to evaluate these, for substituting into equation (3.2) gives a simple formula for the
mean velocity in terms of the readings at the two points:

ū =
u1 (ln(z2/h)+1)− u2 (ln(z1/h)+1)

ln (z2/z1)
. (3.4)
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As it is probably more convenient to measure and record depths rather than elevations above the bottom,
let h1 = h− z1 and h2 = h− z2 be the depths of the two points, when equation (3.4) becomes

ū =
u1 (ln(1− h2/h)+1)− u2 (ln(1− h1/h)+1)

ln ((h− h2) / (h− h1)) . (3.5)

This expression gives the freedom to take the velocity readings at any two points, and not necessarily
at points such as 0.2h and 0.8h. This might simplify streamgauging operations, for it means that the
hydrographer, after measuring the depth h, does not have to calculate the values of 0.2h and 0.8h and
then set the meter at those points. Instead, the meter can be set at any two points, within reason, the
depth and the velocity simply recorded for each, and equation (3.5) applied. This could be done either
in situ or later when the results are being processed. This has the potential to speed up hydrographic
measurements.

If the hydrographer were to use the traditional two points, then setting h1 = 0.2h and h2 = 0.8h in
equation (3.5) gives the result

ū = 0.4396u0.2h + 0.5604u0.8h ≈ 0.44u0.2h + 0.56u0.8h , (3.6)

whereas the conventional hydrographic expression is (see e.g. #7.1.5.3 of Australian Standard 3778.3.1
2001):

ū = 0.5u0.2h + 0.5u0.8h . (3.7)

The nominally more accurate expression, equation (3.6), gives less weight to the upper measurement
and more to the lower. It might be useful, as it is just as simple as the traditional expression, yet is based
on an exact analytical integration of the equation for a turbulent boundary layer.

The author has tested this by taking a set of gauging results. A canal had a maximum depth of 2.6m
and was 28m wide, and a number of verticals were used. The conventional formula (2.2), the mean of
the two velocities, was accurate to within 2% of equation (3.6) over the whole range of the readings,
with a mean difference of 1%. That error was always an overestimate. The more accurate formula (3.6)
is hardly more complicated than the traditional one, and it should in general be preferred. Although
the gain in accuracy is slight, in principle it is desirable to use an expression which makes no numerical
approximations to that which it is purporting to evaluate. This does not necessarily mean that either (2.2)
or (3.6) gives an accurate integration of the velocities which were encountered in the field. In fact, one
complication is where, as often happens in practice, the velocity distribution near the surface actually
bends back such that the maximum velocity is below the surface. This will be considered below.

3.2 Theoretical comparison of traditional formulae for a pure logarithmic
profile

Now we compare several different expressions for the mean velocity. Some of these are set out in Boiten
(2000, p82) and some in Australian Standard 3778.3.1 (2001, #7.1.5):

One-point method

ū = u0.6h . (3.8)

O’Neill’s improved one-point method Dr I. C. O’Neill (personal communication) has suggested,
based on a rational approach, that instead of sampling at 0.6 of the depth it is more accurate to sample
at 0.625, giving

ū = u0.625h . (3.9)

Three-point method (1)

ū = 1
3 (u0.2h + u0.6h + u0.8h) . (3.10)
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Three-point method (2)

ū = 0.25u0.2h + 0.5u0.6h + 0.25u0.8h . (3.11)

Four-point method

ū = 0.25 (u0.2h + u0.4h + u0.7h + u0.9h) . (3.12)

Analytical expressions for the errors of each of these methods were calculated. It is possible to show
that they are simple functions of the relative roughness z0/h as shown in Table 3-1, and in Figure 3-1.In
the figure it can be seen that for increasing roughness, the errors increase. It is interesting that several of
the traditional one, two, and three-point formulae, have the same accuracy. The four-point formula gains
little in accuracy from including an extra point, while the new two-point formula seems quite accurate.
This does not necessarily mean that any of these gives an accurate integration of the velocities which
might be encountered in the field. If the velocity distribution is not strictly logarithmic, then these results
for accuracy do not hold.

Method Error
Traditional one-point method, equation (3.8) − 0.084

loge(z0/h)+1

Traditional two-point formula, (3.7) − 0.084
loge(z0/h)+1

Three-point method (1), (3.10) − 0.084
loge(z0/h)+1

Three-point method (2), (3.11) − 0.084
loge(z0/h)+1

Four-point method, equation (3.12) + 0.060
loge(z0/h)+1

O’Neill’s improved one-point method (3.9) − 0.019
loge(z0/h)+1

New two-point formula, equation (3.6) − 0.00053
loge(z0/h)+1

Table 3-1. Errors of various methods – the dependencies on relative roughness are shown in Figure 1.
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Figure 3-1. Errors of various methods and their variation with relative roughness

Now we consider a more general problem where measurements are taken at three or more points, to
obtain more information about the velocity field, and hence to allow for it deviating from a precisely
logarithmic distribution.
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3.3 A general three-point method
If greater accuracy is required, possibly where it is clear that the velocity profile is deviating from a
logarithmic form and where it may have a maximum at some point beneath the surface, more points can
be taken, and probably in general, should be. The law for turbulent flow over a rough bed, equation (3.1)
is generalised to allow for a more general variation of velocity, such that we write:

u =
u∗
κ
ln
z

z0
+ a1

z

h
, (3.13)

where a1 is an as-yet unknown coefficient to be found by measurement, with units of velocity. If three
velocity readings are taken at three depths h1, h2, and h3, then using the corresponding three velocity
measurements u1, u2, and u3, equation (3.13) gives three simultaneous equations in the three unknowns
u∗/κ, z0, and a1. It is possible to solve these equations for the unknowns u∗/κ, z0 and a1, and for the
solutions to be written down, and then equation (3.13) can be integrated, giving

ū =
u∗
κ

µ
ln
h

z0
− 1
¶
+
a1
2
.

The results can be presented most economically as the pseudo-code, given in Table 3-2, where it is
assumed that it is the depth of the measurements h1, h2, and h3 which is recorded, as well as the overall
depth h. The accuracy of this method will be examined further below.

for i from 1 to 3 do
Zi = 1− hi/h

for i from 1 to 2
for j from i+ 1 to 3 do
rij = ln(Zi/Zj)

∆ij = Zi − Zj
δ = r12∆23 − r23∆12
a1 = (−u1r23 + u2r13 − u3r12) /δ
u∗/κ = (u1∆23 − u2∆13 + u3∆12)/δ
lnZ0 = lnZ1 + (a1Z1 − u1) / (u∗/κ)
ū = −u∗/κ× (lnZ0 + 1) + a1/2

Table 3-2. Procedure to obtain mean velocity from three measurements

3.4 A general four-point method
A similar procedure can be followed, assuming an additional quadratic term in the velocity profile:

u =
u∗
κ
ln
z

z0
+ a1

z

h
+ a2

³ z
h

´2
, (3.14)

and by taking readings at four depths, enough information is obtained to obtain the solution for ū. Once
again this is best presented as pseudocode, given in Table 3-3. The accuracy of this method too will be
examined further below.
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for i from 1 to 4 do
Zi = 1− hi/h

for i from 1 to 3 do
for j from i+ 1 to 4 do
ri,j = ln(Zi/Zj)

for i from 1 to 2 do
bi = ui ri+1,i+2 − ui+1 ri,i+2 + ui+2 ri,i+1
for j from 1 to 2 do
cij = Z

j
i ri+1,i+2 − Zji+1 ri,i+2 + Zji+2 ri,i+1

δ = c11 c22 − c12 c21
a1 = (c22 b1 − c12 b2)/δ
a2 = (c11 b2 − c21 b1)/δ
u∗/κ = (a1(Z2 − Z1) + a2(Z22 − Z21 ) + u1 − u2)/r1,2
lnZ0 = lnZ1 + (a1Z1 + a2Z

2
1 − u1)/ (u∗/κ)

ū = −u∗/κ× (lnZ0 + 1) + a1/2 + a2/3

Table 3-3. Procedure to obtain mean velocity from four measurements
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3.5 Least-squares approximation methods
The above methods have assumed that the approximating function, whether equation (3.1), (3.13) or
(3.14) actually passes through each of the data points, such that they interpolate the data points. In many
physical situations the process of interpolation, of ensuring that some mathematical function actually
passes through all data points, is unreasonable, because the points show scatter, as is usually the case in
hydrography. In such cases it is more reasonable to use some form of lower-order approximation, such
that the function does not pass through each of the points, but passes close to them, such that the sum of
the squares of the errors is minimised. For the case of hydrographic measurements then, a function of
the form

u = b0 ln z + b1 + b2 z + b3 z
2 + . . . , (3.15)

can be assumed, suggested by equation (3.14), where the coefficients bi are to be determined. This is
done by computing the sum of the errors in the measured velocities Ui for each experimental measure-
ment i:

ε =
X
i

¡
b0 ln z + b1 + b2 z + b3 z

2 − Ui
¢2
,

and then finding the coefficients such that the total error ε is minimised. One possible problem in all
of this is that the logarithm function actually goes to −∞ at z = 0, but for practical hydrography
this is usually not a problem. One way of overcoming this, and satisfying the boundary condition
on the bed that on the bed z = 0 the velocity u = 0 is to use a modified version of the power law
velocity distribution. It has been sometimes used in turbulent boundary layer research that the velocity
distribution varies like zν , where ν is a small number, typically 1/7. That is a result which has been used
in fluid mechanics for flow over flat plates. For flows of large Reynolds number, such as in open channel
flow, a value of 1/10 has been suggested (see p565 of Schlichting, 1968). To generalise for practical
hydrography the more general expression could be written:

u = zν
¡
c0 + c1z + c2z

2 + . . .
¢
, (3.16)

and the procedure described above used to find the coefficients ci.

Both these approaches were used to obtain some of the results in the following section which took some
real velocity distribution data, and applied the various methods.

3.6 Some field measurements

Case 1 Case 2 Case 3
The four-point logarithmic interpolation formula, equation (3.14) 0.307 0.315 0.294
Least-squares fit of a logarithmic function, (3.15) truncated after b2 term 0.304 0.314 0.312
Least-squares fit of a power-law function, (3.16), ν = 1/7, truncated after c2 term 0.308 0.322 0.307
Traditional four-point rule, equation (3.12) 0.310 0.322 0.294
New two-point rule, equation (3.6) 0.306 0.319 0.295
Traditional two-point rule, equation (2.2) 0.303 0.324 0.304

Table 3-4. Results for mean velocity on three verticals obtained by several different formulae and methods.

Some measurements in a large irrigation canal of depth about 2.5m were taken by professional hydro-
graphers. In the middle of the canal, on each of three verticals 1m apart five velocity readings were
taken, at depths 0.2h, 0.4h, 0.7h, 0.8h, and 0.9h such that different standard formulae for mean velocity
could be applied. The various methods which were applied to the results, in descending order of nominal
accuracy are given in Table 3-4. These should be best interpreted in association with the results shown
in Figure 3-2, which show the measured values by filled circles. Considering the first profile, Case 1, it
can be seen that the first three formulae, the nominally most accurate methods, agree quite closely, to
within 1% with each other, the four-point rule equation (3.12) is 1% high, the new two-point rule equa-
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tion (3.6) agrees well with the accurate methods, and the traditional two-point rule equation (2.2) is 1%
low. Examining the figure, however, the arbitrariness of even the nominally-accurate methods becomes
obvious, for it can be seen that they do not all agree near the bed nor near the surface, even though
when integrated they give results which agree quite closely, as shown in the Table. Further evidence for
this is provided in Case 2, where the logarithmic interpolation and approximation results agree closely,
the four-point rule equation (3.12) is some 3% high, as is the traditional two-point rule equation (2.2),
while the new two-point rule equation (3.6) again agrees well with what we might believe to be accurate
results.

Logarithmic approximation
Logarithmic interpolation
Power law appoximation

Figure 3-2. Gauging results for three verticals and the approximations used to obtain values for the mean velocities

All of this comes undone in the last Case 3, where Figure 3-2 shows that the streamgauging results near
the bed are quite irregular, and this has caused problems for the logarithmic methods in particular. It
can be seen that both predict a velocity of +∞ at the bed rather than the −∞ which the traditional
approximation implies. Given the obviously incorrect distributions for the two methods, one cannot
really believe either of the results from logarithmic laws for the mean velocity in the last column of the
Table, but the value of 0.307m s−1 obtained from the power law approximation seems plausible. In this
case both the four-point rule equation (3.12) and the new two-point rule equation (3.6) agree but are
lower than the rest, while the traditional two-point rule equation (2.2) is more consistent with the others.
What is true is that none of the methods are particularly good for this case where the measured values
show considerable irregularity.

These examples have shown that when good-quality results are obtained, consistent results for mean
velocity are obtained, even though the underlying assumed velocity distributions can be noticeably dif-
ferent. On the other hand, if poor-quality results are obtained, we cannot be certain of any of the results
for mean velocity. This seems to suggest the importance of determining the velocity profile at the extrem-
ities, near the bed, and near the surface, to reduce the arbitrariness of the results, as noted in Australian
Standard 3778.3.1 (2001).

4. Global approximation methods
This suggests a couple of procedures for more accurate determination of the mean velocity. One proce-
dure would be to take a reading close to the surface and one close to the bed, and to fill in with one or
two in the middle, and then to use any of the multi-point methods described above. This might gain a
few percent in accuracy, desirable in some situations, but unimportant in others. However, if only two
points were measured, it would seem to be advisable to use the general formula given above as equation
(3.5) rather than the conventional two-point formula.
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There is another procedure which could lead to rather quicker and yet more accurate streamgauging.
This would be to install some form of constant velocity lifting mechanism which would traverse the flow
meter through the water column such that it samples the flow velocity at all points equally, effectively
doing the integration itself. Such a procedure is already recommended in #7.1.5.4 of Australian Standard
3778.3.1 (2001), but without the emphasis on constant velocity of traverse to give an accurate result.
The conventional multi-point procedure is to set the meter at each of several depths, and let it count
revolutions at each depth for a finite interval. The results described above show how that can occasionally
be inaccurate. The traversing procedure might be to set the meter near the bottom, start the lifting
mechanism, and count the number of revolutions that the meter takes as it samples at a constant vertical
rate the velocity at all depths until it appears at the surface. One need only record the total depth,
the time taken for the traverse and the total number of revolutions. This procedure could conceivably
take half or even a quarter of the time of the existing approach, yet would be much less susceptible
to error as it is doing the procedure of determining the mean velocity itself. There might be some
practical considerations, such as when starting the traverse having to very quickly reach the full velocity
of traverse, maintaining the angle of the meter, stopping the count the instant that the meter breaks
the surface, ensuring that the rise velocity does not affect the meter calibration, and so on. Most of
these effects could be minimised by having a relatively slow velocity of traverse. If this procedure were
followed, then, of course, none of the formulae presented above would be necessary.

5. Integration of the mean velocities across the channel
Having obtained the mean velocity on each vertical, the problem now is to integrate across the width of
the channel. Here traditional practice seems to be in error – often the Mean-Section method is used. In
this the mean velocity between two verticals is calculated and then multiplied by the area between them,
so that, given two verticals i and i+ 1 separated by bi the expression for the contribution to discharge is
assumed to be

δQi =
1
4bi (di + di+1) (ui + ui+1) . (5.1)

This is actually not correct. From equation (2.1), the task is actually to integrate across the channel the
quantity which is the mean velocity times the depth, and equation (5.1) is not a consistent approximation
to that task, however plausible the procedure might sound. The simplest expression which is a consistent
approximation, and which is as accurate as is reasonable under the circumstances of irregularly varying
depth and mean velocity, is the Trapezoidal rule:

δQi =
1
2bi (ui+1 di+1+ui di) .

In fact, the well-knownMid-SectionMethod takes as the elemental contribution

δQi = ui di × 1
2 (bi + bi+1) ,

which when the individual contributions are summed, is the same as the Trapezoidal Rule, although the
latter is slightly simpler to apply.

To examine where the Mean-Section Method is most obviously inaccurate, we consider the case at one
side of the channel, where the area is a triangle. We let the water’s edge be i = 0 and the first internal
point be i = 1, then the Mean-Section Method gives

δQ0 =
1
4b0u1d1,

while the Trapezoidal rule gives

δQ0 =
1
2b0u1d1,

which is correct, and we see that the Mean-Section Method computes only half of the actual contribution.
The same happens at the other side. Contributions at these edges are not large, and in the middle of the
channel the formula is not so much in error, but in principle the Mean-Section Method is wrong and
should not be used. Australian Standard 3778.3.1 (2001) still presents the Mean-Section Method, but
with a warning and correction procedure at the edges. We are of the opinion it should never be used.
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Rather, the Trapezoidal rule should be used, which is just as easily implemented. In a gauging in which
the author participated, a flow of 1693 Ml/d was calculated using the Mean-Section Method. Using the
Trapezoidal rule, the flow calculated was 1721 Ml/d, a difference of 1.6% in this case. Although the
difference was not great, practitioners should be discouraged from using a formula which is wrong.

6. Ultrasonic velocimetry

Figure 6-1. Array of four ultrasonic beams in a channel

This is a method primarily used in the irrigation industry in Australia. Consider the situation shown
in the figure, where some three or four beams of ultrasonic sound are propagated diagonally across a
stream at different levels. The time of travel of sound in one direction is measured, as is the time in the
other. The two are different because the velocity of propagation is increased in the downstream direction
and decreased when the sound propagates back up against the current. The difference can be used to
compute the mean velocity along that path, i.e. at that level. These values then have to be integrated in
the vertical.

6.1 Mean velocity on a path
The first problem is to calculate the mean velocity along a beam path. In all textbooks and the Inter-
national and Australian Standards (#2.8 of Australian Standard 3778.3.7 2001), a constant velocity is
assumed - precisely what is being sought to measure, and ignoring the fact that velocity actually varies
along the path and indeed is zero at the ends, as suggested in Figure 6-2. Here we include the variability
of velocity in our analysis.

α

s

Figure 6-2. Layout of ultrasonic beam path in the turbulent shear flow of an open channel
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Consider the fluid velocity vector down the channel u be inclined to the beam path at an angle α,
as shown in Figure 6-2. The streamwise velocity component is written as u(s), where s is distance
along the path, and which shows that the velocity does, in general, depend on position along the beam,
then the component along the path is u(s) cosα. Let c be the speed of sound in water. The time
dt taken for a sound wave to travel a distance ds along the path with the general direction of flow is
dt = ds/ (c+ u(s) cosα). If the path has total length L, then the total time of travel T1 is obtained by
integrating to give

T1 =

T1Z
0

dt =

LZ
0

ds

c+ u(s) cosα
, (6.1)

and repeating for a traverse in the reverse direction against the general direction of flow:

T2 =

T2Z
0

dt =

LZ
0

ds

c− u(s) cosα . (6.2)

Now we expand the denominators of both integrals by the binomial theorem:

T1 =
1

c

LZ
0

µ
1−u(s)

c
cosα

¶
ds and T2 =

1

c

LZ
0

µ
1 +

u(s)

c
cosα

¶
ds, (6.3)

where we have ignored terms proportional to the square of the fluid velocity divided by the speed of
sound, u2(s)/c2 (that is, the square of the Mach number of the channel flow!), so this should be an
excellent approximation. Evaluating gives

T1 =
L

c
− 1

c2

LZ
0

u(s) cosα ds and T2 =
L

c
+
1

c2

LZ
0

u(s) cosα ds. (6.4)

Adding the two equations and solving for c and re-substituting we obtain

LZ
0

u(s) cosα ds = 2L2
T2 − T1
(T1 + T2)

2 . (6.5)

In computing discharge, it is necessary to compute the flow from the integral of the velocity component
transverse to the beam path, which is

q =

Z L

0
u(s) sinα ds. (6.6)

Now we are forced to assume that the angle that the velocity vector makes with the beam is constant
over the path (or at least in some rough averaged sense), and so for α constant, taking the trigonometric
functions outside the integral signs and combining equations (6.5) and (6.6) we obtain

q = 2 tanαL2
T2 − T1
(T1 + T2)

2 . (6.7)

This shows how the result is obtained by assuming the angle of inclination of the fluid velocity to the
beam is constant, but importantly it shows that it is not necessary to assume that velocity u is constant
over the beam path.

The expression presented in Standards and textbooks (for example, equation 2.1 of Australian Standard
AS 3778.3.7, 1990; or equation 4.63 of Boiten, 2000) is obtained by assuming that u(s) is constant in
(6.1) and (6.2), giving

T1 =
L

c+ u cosα
and T2 =

L

c− u cosα ,
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from which c can be eliminated and the result for u substituted into equation (6.6) to give

q =
tanαL2

2

µ
1

T1
− 1

T2

¶
. (6.8)

It can be shown that the relative error of using this equation, obtained by assuming that the velocity is
constant, compared with the one derived more rationally, equation (6.7), is of the order of the Mach
number of the streamflow, u/c, which is very small. It is fortunate that the end result, presented in
Standards and trade brochures and implemented in practice, is sufficiently correct for practical purposes.

6.2 Vertical integration of beam data
The mean velocities on different levels obtained from the beam data are considered to be highly accu-
rate, provided all the technical problems associated with beam focussing etc. are overcome, and the
streamflow has a constant angle α to the beam. The problem remains to calculate the discharge in the
channel by evaluating the vertical integral of q, which, as shown by equation (6.6), is the integral along
the beam of the velocity transverse to the beam. The problem is then to evaluate

Q =

hZ
0

q(z) dz, (6.9)

where in practice the information available is that q = 0 on the bottom of the channel z = 0 and the
two to four values of q which have been obtained from beam data, as well as the total depth h. It is in
the evaluation of this integral that the performance of the trade and scientific literature has been poor.
Several trade brochures advocate the routine use of a single beam, or maybe two, suggesting that that
is adequate (see, for example, Boiten 2000, p141). In fact, with high-quality data for q at two or three
levels, there is no reason not to use accurate integration formulae. However, practice in this area has
been quite poor, as trade brochures that the author has seen use the inaccurate Mean-Section Method
for integrating vertically over only three or four data points, when its errors would be rather larger than
when it is used for many verticals across a channel, as described previously. This seems to be a ripe
area for research. The author has applied some of the methods described previously for determining the
velocity on a vertical, but as in Figure 3-2 there was some variation between them. They were however,
better than traditional practice, which handles the top and bottom rather clumsily.

7. Correcting for rising or falling stage – the looped flood
trajectory

Consider the problem of a flood wave propagating along a waterway and the effects on the surface slope
at a gauging station. Ahead of a flood, the slope is greater than at the rear, and so according to elementary
hydraulic theory, for a given stage the discharge will be greater ahead of a flood event than after it. This
leads to a looped flood trajectory – see Fenton & Keller (2001) and Fenton (2001). In those papers two
methods for calculating the discharge for rising or falling stage were obtained. The first method used
the full long wave equations and gave a differential equation for dQ/dt in terms of Q and stage and
the derivatives of stage dη/dt and d2η/dt2, which could be calculated from the record of stage with
time. It could be solved numerically. The second method is rather simpler, and is based on a low-inertia
approximation to the long wave equations, where inertial terms, which are of the order of the square of
the Froude number, are ignored, giving an advection-diffusion equation which approximates motion in
most waterways quite well. In that equation, the surface slope is expressed in terms of the first two time
derivatives of stage. The resulting expression is:

Q = Qr(η)

vuuuut 1|{z}
Rating curve

+
1

cS̄

dη

dt| {z }
Jones formula

− D

c3S̄

d2η

dt2| {z }
Diffusion term

(7.1)
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where Q is the discharge at the gauging station, Qr(η) is the rated discharge for the station as a function
of stage, S̄ is the bed slope, c is the kinematic wave speed given by:

c =

√
S̄

B

dK

dη
=
1

B

dQr

dη
,

in terms of the gradient of the conveyance (K) curve or gradient of the rating curve;B is the width of the
water surface; and the coefficient D is the diffusion coefficient in advection-diffusion flood routing:

D =
K

2B
√
S̄
=

Qr

2BS̄
. (7.2)

In equation (7.1) it is clear that the extra diffusion term is a simple correction to the Jones formula,
allowing for the subsidence of the wave crest as if the flood wave were following an advection-diffusion
law, a good approximation for much flood propagation. Equation (7.1) provides a means of analysing
stage records and correcting for the effects of unsteadiness and variable slope. It can be used in either of
two directions:
1. If a gauging exercise has been carried out while the stage has been varying (and been recorded), the

value of Q obtained can be corrected for the effects of variable slope, giving the steady-state value
of discharge for the stage-discharge relation, Qr, or

2. Proceeding in the other direction, in operational practice, the equation can be used for the routine
analysis of stage records to correct for any effects of unsteadiness.

Corrections are largest for rivers where the conditions change quickly but which are otherwise slow-
moving with a mild slope. In fact, these conditions are often mutually exclusive, such that slow-moving
rivers are likely to be slow to rise and fall. Nevertheless, it is quite possible that there are stations where
the corrections are necessary.

7.1 Implementation of the theory for practical problems
The theory described above could be implemented at two levels. The first would be a screening of
a particular gauging station and its records simply to determine whether it is necessary to correct for
unsteady effects. This will mean initially estimating the slope of the river. Then the data from a particular
flood can be taken and the stage record processed. In these formulae it would be simplest and quite
accurate enough, provided the time interval of the readings is small enough to describe the variation,
especially at the crest, to use the three-point finite difference approximations for the derivatives:

dη

dt

¯̄̄̄
i

≈ ηi+1 − ηi−1
2δ

and
d2η

dt2

¯̄̄̄
i

≈ ηi+1 − 2ηi + ηi−1
δ2

, (7.3)

where ηi−1, ηi, and ηi+1 are three successive stage readings, taken with a time interval between readings
of δ. In this preliminary screening case it has only been necessary to take representative values of
velocity, which might involve using a representative value of area, and mean depth.

All that is necessary is, firstly the traditional information to hand:
1. The stage record, giving measured values of stage at equally-spaced times separated by an interval δ:

ηi, i = 1, 2, . . .. At a particular reading the first and second derivatives can be calculated numerically
using the difference approximations (7.3). If the data is not equally spaced, then different formulae
for the time derivatives are necessary, and spline interpolation might be useful.

2. The rating curve in the form of a number of data pairs of stage and rated discharge:
¡
ηj ,Qr,j

¢
, for

j = 1, 2, . . .. In Australian hydrographic practice these might have to be converted from Megal-
itre/day to cubic metres per second by dividing by a conversion factor of 86.4. It is necessary to be
able to interpolate in this data to be able to calculate a discharge for an arbitrary stage value.

3. The rating curve has to be able to be differentiated to give the dQ/dη, also at an arbitrary stage. For
sufficiently large numbers of data points (small intervals) simple finite difference formulae could be
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used, however it might be reasonable to develop a global approximation.

4. The mean bed slope S̄.

5. The cross-sectional geometry simply in the form of a number of data pairs of stage and surface
width: (ηk,Bk), for k = 1, 2, . . .. These would probably be obtained from cross-sectional data in
the form of tables of readings of position and elevation, as well as judgement and knowledge of the
site.

It is interesting that to implement the method, little extra data is necessary beyond that used to implement
the simple rating curve method.

7.2 A theoretical example
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Figure 7-1. Simulated flood with hydrographs computed from stage record using three levels of approximation

A numerical solution was obtained for the particular case of a fast-rising and falling flood in a stream of
10 km length, of slope 0.001, which had a trapezoidal section 10mwide at the bottom with side slopes of
1:2, and a Manning’s friction coefficient of 0.04. The downstream control was a weir. Initially the depth
of flow was 2m, while carrying a flow of 10m3 s−1. The incoming flow upstream was linearly increased
ten-fold to 100m3 s−1 over 60 mins and then reduced to the original flow over the same interval. The
initial backwater curve problem was solved and then the long wave equations in the channel were solved
over six hours to simulate the flood. At a station halfway along the waterway the computed stages were
recorded (the data one would normally have), as well as the computed discharges so that some of the
above-mentioned methods could be applied and the accuracy of this work tested.

Results are shown on Figure 7-1. It can be seen that the application of the diffusion level of approxi-
mation has succeeded well in obtaining the actual peak discharge. The results are not exact however,
as the derivation depends on the diffusion being sufficiently small that the interchange between space
and time differentiation will be accurate. In the case of a stream such as the example here, diffusion
is relatively large, and our results are not exact, but they are better than the Jones method at predicting
the peak flow. Nevertheless, the results from the Jones method are interesting. A widely-held opinion
is that it is not accurate. Indeed, we see here that in predicting the peak flow it was not accurate in this
problem. However, over almost all of the flood it was accurate, and predicted the time of the flood peak
well, which is also an important result. It showed that both before and after the peak the ”discharge
wave” led the ”stage wave”, which is of course in phase with the curve showing the flow computed from
the stage graph and the rating curve. As there may be applications where it is enough to know the arrival
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time of the flood peak, this is a useful property of the Jones formula. Near the crest, however, the rate
of rise became small and so did the Jones correction. Now, and only now, the inclusion of the extra
diffusion term gave a significant correction to the maximum flow computed, and was quite accurate in
its prediction that the real flow was some 10% greater than that which would have been calculated just
from the rating curve. In this fast-rising example the application of the unsteady corrections seems to
have worked well and to be justified. It is no more difficult to apply the diffusion correction than the
Jones correction, both being given by derivatives of the stage record.

8. Conclusions
Some more-accurate formulae for the velocity-area method of streamgauging have been obtained and
presented for cases of two, three, and four velocity measurements. Traditional formulae require that
the velocities be measured at pre-determined depths. The formulae presented here are applicable to
arbitrary depths, so that hydrographers need not compute required depths and set the velocity meter
there. Instead, the arbitrary actual depths used and corresponding measured velocities can simply be
recorded and processed.

It has been shown that the traditional formulae are not as accurate as is sometimes believed. The new
formulae presented here should be more accurate, as they are based on a rational approximation of the
theoretical logarithmic profile, but where they allow the profile to bend forwards or backwards as is often
observed. Two families of methods have been presented, one based on interpolation, where the function
describing the velocity profile passes through every data point; and one based on approximation, where
the points are described in an approximate sense, minimising the error of the approximation.

When compared with some streamgauging results, the new formulae generally gave good and consistent
results. However in one profile, where the measurements showed irregularities and inconsistencies, the
deduced profiles seemed inaccurate, even though the calculated mean velocities were not greatly in error.

In view of the sensitivity of the higher-accuracy methods to irregular results, the new two-point formula
may be accurate enough for most purposes. However, a procedure was suggested which would obviate
use of all the formulae considered here, and give a robust and accurate method for calculating the mean
by simply traversing the current meter at constant velocity vertically through the water so that it performs
the integration automatically to obtain the mean.

In integrating the results of such data across the channel, the traditional Mean-Section method for cal-
culating the discharge has been shown to be wrong, and it should not be used.

Turning to ultrasonic velocimetry, the basic equation for ultrasonic flow measurement has been derived
on a more satisfactory basis, without having to assume a constant velocity of flow. Then, the problem of
vertical integration of beam data for the discharge has been considered. It has been noted that the trade
literature and conventional practice are quite defective, and that flow results from ultrasonic meters are
not as accurate as they might be, partly through use of the inaccurate Mean-Section method and partly
through crude treatment of velocities above the highest beam and below the lowest. To obtain more
accurate results it has been suggested that the methods described above for mean velocity in the vertical
could be used.

Finally, a method is proposed and tested for allowing for the effects of rising and falling stage while
gauging is in progress, or afterwards when a rating curve has been obtained.
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