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Abstract 
Simple momentum considerations are used to show how the increase in water levels due to obstacles 
in a natural channel can be calculated. This requires use of a numerical method for solving nonlinear 
equations, which is not difficult. However it is more insightful to consider an approximate explicit 
theory, which shows the important quantities governing the problem, and which is accurate enough for 
practical purposes. It is applicable to obstacles of arbitrary extent and location, in both subcritical and 
supercritical flow in channels of arbitrary section. A method for the numerical refinement of this is 
presented, but it will usually not be necessary. The methods are compared with a theory and 
experimental results for a rectangular channel with vertical cylinders extending the whole depth. Then 
momentum-loss considerations are applied to explaining the nature of friction laws in open channels. 
Instead of boundary shear, momentum loss from discrete elements is used as the means of modelling 
resistance. It is found that the behaviour of Gauckler-Manning's law for wide channels in successfully 
mimicking the frictional behaviour over a range of depths can be explained, but it does not yet provide 
a comprehensive theory for general cross-sections. 

Keywords: afflux, canals, debris, Gauckler, inundation, Manning, momentum, open channels, rivers, 
roughness, surface level. 

INTRODUCTION 
An estimate of the increase in surface levels due to obstacles in a channel can be done using 
simple momentum considerations which require the numerical solution of a nonlinear 
equation. Henderson (1966, p72 & p264) outlined the important considerations and 
procedures, while Montes (1998, #8-10) described empirical work by Rehbock and Yarnell, 
and used the momentum approach to produce formulae for the backwater effect due to bridge 
piers extending the whole depth in rectangular waterways. Such calculations are becoming 
more important for natural waterways, in the installation of large woody debris for 
environmental purposes. Gippel, O'Neill, Finlayson, and Schnatz (1996) presented a summary 
of research in this area. Calculations of the effects of momentum loss were based on the 
theory presented by Ranga Raju, Rana, Asawa and Pillai (1983), which has some limitations 
in that the theory is for a rectangular channel, for subcritical flow, and the obstacles are 
assumed to be subject to the mean velocity in the channel. Also Shields and Gippel (1995) 
developed a method for estimating the effects of debris, bed material, bars, and bends on flow 
resistance in rivers. In this paper more general methods are developed for arbitrary cross-
sections, and subcritical and supercritical flow. A simple explicit approximation is obtained, 
which can be refined if necessary. Finally, consideration is given to the nature of roughness in 
channels and how it might be described by considerations of momentum loss from a number 
of discrete elements. This is found to give an explanation for the success of the Gauckler-
Manning equation for wide streams at least. 
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MOMENTUM THEORY FOR ARBITRARY SECTION 
Consider an obstacle or obstacles in a steady open channel flow, such as the piers of a bridge, 
blocks on the bed, vanes, the bars of a trash-rack, or individual roughness elements such as 
vegetation or bed material. The drag force D on the obstacle can be calculated in terms of 
fluid density ρ , drag coefficient dC , local mean horizontal fluid velocity impinging on the 
object U, and the area of the object measured transverse to the flow, a. The expression from 
conventional fluid mechanics is aUCD d

22/1 ρ×= . Now consider steady flow in the 
channel. The conservation of momentum theorem can be written in terms of the difference in 
the momentum flux between a section upstream of the obstacle at station 1 and one at 3 
further downstream, such that 31 MMD −= , where M is the momentum flux at a section 

)/( 2 AQhgAM c β+ρ= , where g is gravitational acceleration, A is cross-sectional area of the 
channel, ch  is the depth of the centroid of the section below the surface (such that chA  is the 
first moment of area of the section about a transverse axis at the water level), β  is a 
Boussinesq coefficient allowing for the non-uniformity of velocity over the section, 

dAuAQ A∫=β 22 / , where u is the horizontal velocity component, and Q is the discharge. 
Substituting into the momentum theorem: 
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The velocity U on the drag-producing element is expressed in terms of the mean upstream 
velocity 1/ AQ , such that 2

1
22 / AQU γ= , where γ  is a coefficient which allows for the fact 

that the velocity which impinges on the object is not necessarily equal to the mean velocity in 
the flow. For a small object near the bed, γ  could be quite small; for an object near the 
surface it would be greater than one; for objects of a vertical scale that of the whole depth, 

1≈γ . Substituting and dividing equation (1) by gρ  gives 
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A typical problem is where the downstream water level is given, such that the flow is sub-
critical, the control is downstream, and it is necessary to know by how much the water level 
would be raised upstream if an obstacle were placed in the flow. A contemporary example is 
the effect on flood levels if large woody debris is placed in the stream. As both 1A  and 1ch  are 
functions of the surface elevation, the solution is given by solving this nonlinear equation for 
that surface elevation. This is not a complicated procedure, however it is interesting to 
consider an approximate procedure that allows an explicit solution which provides a simple 
answer and insight into the problem. 

AN EXPLICIT APPROXIMATION 
An approximate method is considered for obtaining the rise in water level for relatively small 
channel obstructions. We consider a linear approximation to equation (2), which can be 
interpreted as a local straight-line approximation to the momentum diagram for a small 
reduction in momentum, which yields an explicit formula for the effect of obstacles on a flow. 
Consider a small change of surface elevation η∆  between station 1 upstream and station 3 
downstream of an obstacle which does not change the momentum flux much. The undisturbed 
flow is assumed to be uniform, where in common with much simple open channel hydraulics 
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it is assumed that locally friction and gravity are approximately in balance such that both are 
neglected. That this need not necessarily the case provides support for the approximate nature 
of this analysis.  If the surface width is B, then it is easily shown that the elemental change in 
cross-sectional area is η∆B  such that 

  ))(( 2
13 η∆+η∆+= OBAA , 

where the Landau order symbol )(KO  means that neglected terms vary at most like those 
shown. The first moment of area of the downstream section about a transverse axis at the 
water level is  

  ( ) ( ) ( )2
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113 )( η∆+η∆+=η∆×η∆+η∆+= OAhABhAAh ccc , 

and so equation (2) becomes 
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where a power series expansion in η∆  has been used. Neglecting the higher-order terms, this 
is now a linear equation that can be solved to give an expression for the change in surface 
elevation for a force applied to a flow: 
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where 3
11

22
1 / gABQF =  is the square of the Froude number at section 1. It does not matter that 

for subcritical flow the conditions at point 1 might not be known: within the linearising 
approximation, either of the values at 1 or 3 can be used in this expression, and so, 
generalising by dropping the subscripts altogether, 
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Thus, the relative change of depth (change of depth divided by mean depth) is proportional to 
a coefficient expressing the mean velocity on the obstacle to the mean velocity in the channel, 
the drag coefficient, the fractional area of the blockage, and a term which is a function of the 
square of the Froude number. For subcritical flow the denominator is negative, and hence so 
is η∆ , so that the surface drops after an obstacle, as we expect, and as can be seen when we 
solve the problem exactly using the momentum diagram. If upstream flow is supercritical, the 
surface rises. Clearly, if the flow is near critical, 12 ≈βF , the change in depth will be large 
(the gradient on the momentum diagram is vertical), when the theory, and all hydraulic 
theory, has limited validity. Whereas equation (3) provides a dimensionless insight, in 
practice it is simpler to evaluate it in terms of physical quantities: 
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where u is the actual fluid velocity at the obstacle. This is similar to an equation presented by 
Montes (1998, p396) for the effects of bridge piers in a rectangular channel, but where a 
series expansion has been used, obscuring the fact that as flow approaches critical, effects 



 12

become large and the theory breaks down. Usually in river engineering the quantities in 
equation (4) are at best approximately known, as the following example illustrates. Although 
the calculation is approximate only, it was important in a practical study to demonstrate to 
riparian landholders that the small effects on river levels of large woody debris installed for 
environmental purposes. 

Example: Calculate the effect on river levels of a straight habitat log of diameter 600mm and 
length 10m installed on the bed of a stream at 30º to the stream of width 100m and depth 6m. 
The maximum mean daily discharge is 3500 m3s-1. 

The projected area of the log in the direction of flow is 2m330sin6.010 =×× , hence 
600/3/ =Aa . The river is wide enough that it can be assumed to be rectangular, in the 

absence of any other information. The Froude number is estimated approximately using 
2ms10 −≈g as 75.0610/)600/3500( ≈×=F . The cross-section of the log in the direction 

of flow of the water is an elliptical cylinder with ratio of axes 1:21:30sin/1 = , for which the 
drag coefficient for turbulent flow is 2.0=dC  (White, 1986, Table 7.2). To estimate the 

velocities a power law with 7/1
max )/( dzUu ×=  is used. The value of β  can be calculated 

from this, which is so close to one that we can use 1=β . Requiring that the integral of the 
velocity give the required discharge gives 1

max ms7.6 −=U , and so the velocity at a height of 

half the log diameter becomes 1ms3.4 − . Substituting into equation (4) gives m002.0−=η∆ , 
or a drop of mm2 . Locally of course, it will be more, but as the momentum defect diffuses 
through the water, this will be the overall effect on the stream. 

HIGHER-ORDER SOLUTIONS 
Now procedures for refinement of the solution will be developed. The problem is really just 
the numerical solution of a nonlinear equation, for which the previous solution was not really 
necessary. What it provided, however, was a simple theory which revealed the dominant 
features governing the problem. The author initially developed the above theory to second 
order to obtain a more accurate version. In fact, the resulting second-order expression was 
very long indeed, and it was decided not to present that approach. Instead, a well-known 
numerical method is applied. Newton's method (see any introductory book on numerical 
methods) for the solution of transcendental equations is, if 0)( 1 =ηf  is the equation to be 
solved for the quantity 1η , and if )(

1
nη  is an estimate of the solution, then a better 

approximation is: 
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Using equation (2), such that 
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then differentiating with respect to 1η  and using the results that AdAhd c =η/)( , 
BddA =η/ , both already used above, and bdda =η/ , the width of the obstacle at the surface 

(which might be zero if the obstacle is submerged), the result is obtained: 
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and in both expressions, any quantity with a subscript 1 is evaluated with surface elevation 
1η . The improved estimate of this quantity follows, using Newton's method, equation (5). 

This can be repeated until convergence occurs. Below it will be shown that a single pass gave 
four-figure accuracy in the change of depth. In terms of the actual depth, the linear 
approximation (3) gave three-figure accuracy. 

VERTICAL CYLINDERS IN A RECTANGULAR CHANNEL  
Ranga Raju et al. (1983) considered the special case of a rectangular stream with equispaced 
vertical cylinders extending the whole depth, implicitly assuming 1=γ  and also that 1=β . 
Considering the stream to have width B, with a vertical cylinder of diameter b, and 
substituting into equation (2) using 1bha = , and at both sections 1 and 3 BhA =  and 

2/hhc = , they presented a quadratic equation and presented one solution which in the 
nomenclature of this work can be written 

  ( ) 





 +−−−=η∆ 2

3
22

3
2

33
1

3
311 FCFF

h B
b

d . (8) 

That expression is, however, valid only for subcritical flow – in supercritical flow the sign of 
the square root term must be changed. In the spirit of the more general study above, it is 
interesting to obtain a lower-order approximation, and to expand as a power series in terms of 
the drag term, giving the linear solution 
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which is valid for both subcritical and supercritical flow, provided the momentum loss is not 
too large. It is easily shown that, equation (3) reduces to this equation for a rectangular 
channel and 1=β=γ  (with the different sign convention noted above). It is interesting that in 
equation (8) the real role of Froude number is not made clear, because the leading terms in 
which it appears tend to cancel. 

Figure 1 shows the experimental results from Ranga Raju et al. for the afflux, the increase in 
water level upstream due to the presence of a number of cylinders in an otherwise uniform 
flow. They indirectly measured the force on a cylinder and the afflux across the cylinders, and 
applied their theory, equation (8). In this present work two more sets of results were 
calculated. First, the linear approximation developed here, equation (3) (or, (9)) was used, 
with results shown by diamonds on the figure. Then a single pass of Newton's method 
(equations (5), (6), and (7)) was applied. Results are shown by squares, as well as the second-
order approximation of Ranga Raju et al shown by crosses. The quadratic approximation 
closely agrees with the accurate Newton's method solutions, which had converged to four-
figure accuracy after one step. For small disturbances to the flow, and hence small change of 
surface elevation, the simple explicit linear expression also was accurate. However, for large 
disturbances to the flow (when the momentum loss was as much as 10% of the momentum 
flux in the channel), it was not so accurate. It is clear, however, that it is sufficiently accurate 
for practical situations where the details of the flow distribution, the drag coefficient, and 
possibly even the geometry of the obstacle in the flow might be poorly known. It should be 
remembered that the quantities shown above are the changes in surface elevation which 
shows differences between the methods. When the actual surface elevations were considered, 
even the linear method was accurate to within 2mm in a total depth of 100-200mm, so that in 
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practical problems it seems to be quite accurate enough. While the expression of Ranga Raju 
et al. is rather simpler to apply than the Newton's method here, it should be remembered that 
it only applies to rectangular channels where the obstacles extend throughout the depth of 
flow. 
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Figure 1. Change of surface elevation (afflux) across obstacle 

THE NATURE OF BOUNDARY ROUGHNESS IN A CHANNEL 
Considering a slice of water in an open channel carrying steady uniform flow it can be shown 
that the net horizontal component of force due to gravity is xSgA ∆ρ 0 , where 0S  is the bed 
slope and x∆  the thickness of the slice. Suppose that this force is resisted by the combined 
drag force on a number of discrete roughness elements and/or vegetation elements, so that the 
drag force can be written auCd

2
2
1 ∑ρ , where the summation is over all the drag-producing 

elements in the volume, almost all probably around the boundary. In this it will be assumed 
that the channel is not very steep so that all considerations of velocity components and force 
components being in the horizontal x direction or along the bed of the channel can be glossed 
over. Equating the two forces gives 

  ∑=∆ auCxgAS d
2

2
1

0 , 

and, as above, assuming that on a drag element 222 / AQu ×γ= ,  
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Now it is assumed that the sum over all the drag-producing elements is proportional to the 
wetted perimeter, such that ∑ ∆=γ xPCaC dd2

1 , and it is trivial to show that 8/fCd = , 
where f is the Darcy friction factor. Substituting into equation (10) gives the equation 
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which is simply Chézy's law as it is often presented in textbooks, derived on the basis of shear 
stresses rather than drag forces as here. It is trivial to show that 

  Chézy's coefficient 
f
gC 8=  and Manning's coefficient 
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Now the behaviour of f  is examined. Consider a stream modelled by roughness elements on 
the bottom of a stream, which we will assume to be wide so that the problem is two-
dimensional, and the total area of the elements does not increase as the depth increases, and 
neither does the wetted perimeter. In this case the flow over each of the elements should be 
the same such that γ  is constant and if they are the same shape such that dC  is constant, then 
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Assuming that the drag coefficient on roughness elements is constant, the coefficient γ  is the 
only quantity which varies with stream depth, as it is given by 

  2channel)in ity Mean veloc / elements roughnessat (Velocity =γ . (13) 

Suppose that the roughness elements extend a height k into the stream, which is of total depth 
h. Then the velocity distribution can be written (see, for example, Montes, 1998, p85) in terms 
of *u  the shear velocity, the von Kármán constant 4.0=κ , and the vertical co-ordinate z: 
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The mean velocity in the flow is obtained by integrating equation (14), such that 
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Substituting kz =  into equation (14) to give the velocity at the roughness elements, and then 
into equation (13) gives  
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showing that the velocity at the roughness elements is a function of relative roughness. From 
equations (11) and (12) then, it is possible to show the variation of the Chézy and Manning 
coefficients with relative roughness by normalising to the value at 10/ =kh : 
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Results are shown on Figure 2, and it is obvious how the Chézy coefficient varies markedly 
with relative depth, while Manning's coefficient, based on a logarithmic velocity profile, 
varies but little. The calculations were repeated by calculating the variation of Manning's 
coefficient for power law velocity profiles, and the results are shown. For a velocity-law 
exponent of 1/6, Manning's coefficient does not vary at all, clearly related to Strickler's 
relationship (Montes, 1998, p103). Unfortunately this approach cannot immediately be 
applied to more general cross-sections, to develop a general theory of boundary roughness, as 
the applicability of the logarithmic velocity law is not so sure, and the shear stress on the 
boundary will vary. 
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Figure 2. Variation of roughness coefficients with relative depth of flow 

CONCLUSIONS 
The relationship between the drag force on an obstacle in a channel flow and the change in 
water level across the obstacle has been considered. A simple approximate theory has been 
developed for obstacles of arbitrary extent and location in channels of arbitrary cross-section 
and for both subcritical and supercritical flow. That theory can be refined by a numerical 
procedure, however, it is accurate enough for most practical situations, and shows the 
important parameters of the problem. Amongst other applications, it can be used for 
calculating increased water levels due to the provision of woody debris in rivers. 

Then the problem of the nature of boundary roughness in open channels is considered. Shear 
stresses on the boundary are modelled by the drag on roughness elements. Then by using 
simple two-dimensional flow laws for a wide stream it is shown how the drag varies with 
depth of flow, and this is seen to be mimicked quite well by the Gauckler-Manning equation 
with constant roughness coefficient, going a little distance to theoretically justifying its use. 
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