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ABSTRACT 

The long wave equations for waves in rivers and canals are considered and some results obtained that contradict current 
understanding and practice. Some generalisations of traditional coefficients are described, including a simple 
approximation for non-prismatic channels. Criticism is made of traditional reliance on the Gauckler-Manning equation. 
The method of characteristics is also criticised for providing misleading insight into the nature of the equations and the 
waves they describe. It is shown by linearising the equations that long waves have propagation characteristics that 
depend on wave period, so that the behaviour is more complicated than often believed. Traditional methods of non-
dimensionalising the equations also give a misleading picture of them. Terms that have been previously believed to be 
inertial terms, of the magnitude of the Froude number squared, are in fact of the magnitude of the time rate of change of 
boundary conditions such as the inflow hydrograph. Accordingly, the nomenclature and application of some well-known 
approximations are criticised. Considering computational methods, the simplest forward-time central-space finite 
difference scheme is shown to be more stable than widely believed, and can be used to develop simple simulations. 
Finally, the problem of an open downstream boundary is considered and a good treatment shown to be to simply treat the 
end point as if it were an ordinary point in the stream and numerically solve the equations there also. This is in opposition 
to current theoretical understanding, but it seems to work well. 
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1. THE LONG WAVE EQUATIONS 

The long wave equations form the basis of many 
numerical models for the propagation of disturbances and 
floods in waterways, as well as for backwater analysis. We 
consider the equations as obtained and presented by 
Fenton (2010), here using the formulation in terms of 
cross-sectional area A  and discharge Q  as functions of 
the independent variables, x  and t , where x  is a 
horizontal cartesian co-ordinate along the line of the river, 
making the usual approximation that river curvature can 
be neglected, and t  is time. The mass conservation 
equation is  

  
A Q

i
t x

 
  

 
 [1] 

where i  is the rate of inflow volume per unit length from 
other sources such as rainfall, tributaries, seepage etc.. The 
equation is exact for a straight channel. The momentum 
equation is 
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where we have chosen for simplicity not to expand the 
second term, which can be trivially done. We have used 
the Darcy-Weisbach formulation of resistance, as 
recommended by the ASCE Task Force on Friction Factors 
in Open Channels (1963). 

The symbols used in Eq. [2]are 

 – a Boussinesq momentum coefficient 
g  – gravitational acceleration   
B  – surface width of the channel 
S  – mean bed surface slope at a section 

i  – Boussinesq momentum coefficient of inflow 

iu  – x -component of inflow velocity 
  – the Weisbach resistance coefficient  
P  – wetted perimeter. 

The equations are well-known. We now consider those 
terms appearing here which are not used in other 
presentations.  

S  – Local mean downstream slope of the stream bed 
evaluated across the section 

This is defined at a section as 
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
  


  [3] 

where the bed elevation is  z Z x y  , with y  the 
transverse co-ordinate. S is defined with a negative sign 
such that in the usual situation where the bed slopes 
downwards in the direction of x  so that Z  decreases, S  
will be positive. If the bottom geometry is precisely 
known, this can be precisely evaluated. However the 
geometry is likely to be only approximately known and a 
typical bed slope of the stream is often used. On the other 
hand, if it is known, the term incorporates what in other 
presentations is referred to as the non-prismatic 
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contribution, which seems never to have been specifically 
evaluated and presented.  

  – Boussinesq momentum coefficient 

This allows for non-uniformity of velocity in space and 
time. It is defined as  

22
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where U Q A   is the time and area mean velocity over 
the section, u is the time mean of the streamwise velocity 
u  at any point and u  is the fluctuating departure of 
velocity from the mean at that point, whose mean value is 
zero. The traditional definition of   does not contain the 

2u  term (Fenton 2005). In Nezu& Nakagawa (1993, figs 
4.9 and 4.10) are shown some values of 2u U   (note that 
they use the symbol u  for what we write as 2u  here). 
Squaring them, to give the quantity as it appears in 
equation [4], 2 2u U   varies from roughly 0 1  near the bed 
to 0 01  some 10% of the depth above the bed, to some 
0 006  near the surface. Although small, this ”buffeting” 
effect of turbulence may be significant compared to the 
non-uniformity of u  over the section traditionally used to 
evaluate  . For example, using a power law for a wide 
channel, such that u z  for a typical 1 7   gives a 
contribution to   of 0.016 , while from Nezu & 
Nakagawa’s results we estimate a mean turbulent 
contribution of about 0 01 , giving 1 016 0 01 1 026       . 
The correction of 2.6%  is not particularly important in 
such a straight laboratory channel. In practical situations 
may be rather larger, such as the familiar situation 
where secondary currents drive the maximum of the 
velocity down to a point 60% of the depth above the bed, 
such as shown by Nezu(2005, fig. 11b). In compound 
channels where there are overbank flows such as 
described by Knight (2013, fig. 8) the flow in the shallow 
part may be considerably slower, leading to a rather larger 
value of  . In this case, of course, the actual values are 
poorly known. Fortunately for the dynamics of the 
problem, that does not matter very much in most cases, 
for as we will see below, the fluid momentum term in 
equation [2], identified by the coefficient  , will be shown 
below to be relatively unimportant in many situations. In 
our simple integrated model the interfacial stresses 
between water in the main channel and the overbank flow 
mutually cancel, and the accuracy of modelling of the 
velocity distribution and turbulence is not particularly 
important. 

  – Weisbach dimensionless resistance coefficient 

Using the Weisbach form for the forces of the boundary on 
the flow makes incorporation of the resistance much more 
rational than the Gauckler-Manning form, in terms of 
Manning’s n . The ASCE Task Force on Friction Factors in 
Open Channels (1963) recommended its use, but that 
suggestion has been almost entirely ignored.  

Consider the expression for the magnitude of the shear 
force   on a pipe wall (e.g. §6 of White 2009)  

 2
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
     [5] 

where the Weisbach coefficient   is a dimensionless 
resistance factor (for which the symbol f  is often used, 
but here we follow the terminology of fundamental 
researchers in the field in the first half of the twentieth 
century), and V  is the mean velocity in the pipe. The 
denominator 8  follows from the original introduction of 
  in the Darcy-Weisbach formula for head loss in a pipe, 
with a term 2g  in the expression for head and a term 4 in 
the relationship between head loss and  . It can be seen 
that the last term in equation [2] has been obtained simply 
by assuming V U Q A    for a small slope and 
multiplying the stress by the wetted perimeter P  to give 
the force per unit length. 

One advantage of the Weisbach formulation, being 
directly related to stress and force, is that one can linearly 
superimpose contributions, so that in a more complicated 
situation, where there may be bed-forms and vegetation 
contributing to the resistance, the forces can be added and 
we can write, for contributions from various parts 

i ii
P P   . 

Another example where a formula such as this would be 
useful is a glass-walled laboratory flume with a rough 
bed. 

An idea of the problems which the empiricism of the 
Gauckler-Manning form causes is given by the different 
formulae for the Manning coefficient n , all found in one 
report on resistance in streams: 

   
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1/2
2
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 
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 
   . 

There were different recommendations as to when each 
method is to be preferred, but there was no inclusion of 
weighting according to what fraction of the perimeter is to 
be assigned to each contribution. 

Discussion 

The momentum equation [2] is actually rather simple. 
Except for the inflow momentum term, which is usually 
small and poorly known, there are few parameters in the 
differential equation: the momentum coefficient  , 
gravitational acceleration g , the resistance coefficient  , 
plus the geometric quantities of surface width B , the 
wetted perimeter P , and the local mean slope S . A 
convenient formula for  has been given by Yen (2002, 
eqn 19) in terms of relative roughness and channel 
Reynolds number. Still, it is usually not well known, and it 
remains a problem. However, it is not nearly as large a 
problem as the continued use of the irrational Gauckler-
Manning formulation.  

In practice, the surface elevation   is more important 
than the area A , but for the purposes of this paper it is 
simpler to use area A , as it is more fundamental in the 
mass conservation equation [1] and occurs throughout the 
momentum conservation equation [2] with clear physical 
significance. The only term where it is not quite so 
fundamental is the driving gravity term gA B A x     , 
which actually comes from a term x    from the 
pressure gradient in the fluid.  
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However, there is a possible reason for using A  even in 
computations. If the geometry of the bed of a stream were 
well-known, then ( )A x , ( )B x  and ( )P x  could be 
evaluated at computational sections x , probably in 
discrete tabular form for interpolation, and the use of   
seems justified. However, in rivers the geometry is poorly 
known, and that implied accurate interpolation using 
presumed data and functional relationships is not in 
keeping with the reality of the approximately-known 
problem. If the area A  were used as dependent variable, 
then ideally the corresponding ( )B x A  and ( )P x A  would 
have to be known also. However we suggest they are not 
well-known, and one might use only approximate values 
of B and P , possibly constant at each computational 
section, B  from surveys or aerial photographs and 
possibly using P B  for wide streams, and in any case 
the factor   is only approximately known. One could 
calculate the initial values of A  at computational points 
along the stream by assuming notional approximate 
values of A  at the points, with the given initial constant 
flow Q , and perform a simulation until the values of A  
became steady. These could then be used for the real 
simulation with varying input discharge at the upstream 
boundary. Hence, one does not really need accurate bed 
surveys. This procedure seems simple and in accordance 
with the often-unknown details of river geometry.  

2. THE METHOD OF CHARACTERISTICS 

This has been responsible for the widespread 
misunderstanding of the nature of wave propagation and 
the wrong belief that long waves travel at a speed of 
approximately Depthg  . 

The long wave equations [1] and [2] for no inflow give 
four ordinary differential equations: 

 
d

d

x Q
C

t A
      [6]
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The first pair, Eq. [6] with + and – signs, describes the 
paths of two characteristics in  x t  space, where the 
gradient (velocity) of the characteristics contain an 
advection velocity Q A  , with the momentum coefficient 
  surprisingly multiplying the mean water velocity .Q A
Relative to this, information propagates up- and down-
stream at speed C  defined by  

   
2

2
2

gA Q
C

B A
       [8] 

Using   has provided a surprise, that this so-called "long 
wave speed" is generally not just gA B . Equation [6] 
has led to the widespread belief that long waves travel at a 
unique speed C . In fact, the other pair of ordinary 
differential equations Eq. [7], to be satisfied by A and Q , 
immediately suggest that this is not the case. The right 
side is only zero in steady uniform flow, in all other cases 
A  and Q  are continually changing along the 

characteristics, and hence so is the surface elevation. 
Information of a certain type is travelling at speed C  
relative to the water, but in general, what we might see as 
a wave with an identifiable crest, is not necessarily 
travelling at C . 

Below, in §7 we will suggest that traditional reliance on 
the method of characteristics to determine the nature of 
boundary conditions has given a misleading view of 
downstream open boundary conditions. 

3. THE NATURE OF LONG WAVES 

To obtain the actual behaviour of waves we linearise the 
long wave equations about a uniform steady flow so that 
mathematical solutions can be obtained. This was first 
done by Lighthill& Whitham (1955)and more recently by 
Ponce & Simons (1977).  

3.1 Linearisation 
We consider relatively small disturbances about a uniform 
flow on a constant slope S , with area 0A  and discharge 

0Q  and write  

  0 1 0 1andA A A Q Q Q        

where   is a small quantity. As 0A  and 0Q  are constant, 
all derivatives of A  and Q  in Eqs. [1]and[2]are of order   
so that the coefficients need only be written to zeroth 
order, and the linearisation is simple. The only non-trivial 
operations are in the remaining resistance and slope terms 
on the right of Eq. [2]. We take them to the left of the 
equation and introduce the function   for them  
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
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where we have written 2Q Q Q , as we consider small 
perturbations about a uniform flow, which is 
unidirectional. The linearised equations are 

 1 1 0
A Q

t x

 
  

 
  [10]

 2 2 21 1 1
0 0 0 1 1

00

2 0
Q A Q

C U U Q A
t x x Q A

 
 
 

    
       

    
 [11] 

in which the mean fluid velocity 0 0 0U Q A   has been 
used for simplicity, as well as the speed 

 2 2
0 0 0 0C gA B U     , the linearized value of the 

speed of characteristics, Eq.  [8]. We note that 0   for the 
uniform flow, such that Eq.[9]gives 

  0 0
0 0

0 0 0

8Q g A
U S

A P
  


 [12] 

which is just the Weisbach uniform flow formula.  

To evaluate Q    we differentiate Eq. [9] and eliminate 

0Q  by using the uniform flow formula to give the two 
forms 

  0 0 0

0 0 00

2
2

gS gS

Q A P U

 
 

 
. [13] 

We have neglected the dependence of   on Q  (coming 
from its dependence on Reynolds number).  

For the other derivative we obtain  

  0 01
0 3

0 0 00 0

3 1
A P A

gS
A P A A

    
           

 [14] 

In this case, both derivative terms in P A    and A    
in general may have finite contributions, the first 
expressing the effect of finite channel width, and the 
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second because the resistance coefficient has a strong 
variation with relative roughness.  

Equations [10] and [11] are combined into a single 
equation by introducing a function  v x t  such that 

1A v x    and 1Q v t    , so that it satisfies the mass 
conservation Eq. [10] identically. The linearised 
momentum Eq. [11] becomes the Telegrapher’s equation:  

2 2 2
2 2 2

0 0 0 0 02 2
2 ( ) 0

v v v v v
c U C U

t x t x t x

                    
 [15] 

We have introduced the symbols 0 and 0c , where:  

Inverse time scale 0 : this is simply 
0

Q    as given by 
Eq. [13] in terms of the geometry of the channel and the 
resistance coefficient: 

0 0 0
0

0 0 0

2
2

gS gS

A P U


   


 [16] 

The 0  has dimensions of T 1 . It will be found below that 
it is an important scale for wave behaviour.  

A wave speed 0c : this is the ratio of the two derivatives  

 0
0

0

A
c

Q

  
  

  
 

and using Eqs. [13] and [14]:  

 0 0
0 0

0 00 0

3 1
, where 1

2 3

A P A
c U

P A A

   
             

 [17] 

such that  is roughly 3 2 . The quantity 0c  is a wave 
speed, as will be shown below. 

3.2 A simple noteworthy result 
There is one result from above that is worth noting. If we 
take the Weisbach uniform flow formula [12] and calculate 
the Froude number of the uniform flow, we obtain 

2
2 0 0

0 0
0 0 0 0

8U B
F S

gA B P
  

 
 [18] 

and as 0 0B P  will not vary much with depth of flow, and 
for many rivers sufficiently wide, in fact 0 0P B , we have 
the result 

 2 0
0

0 8

S
F  

 
 [19] 

At any section in a stream 0S  is independent of flow, and 

0 does not vary much, showing some variation with 
depth of flow and hence with discharge, and we have the 
conclusion that at any point in a stream, the Froude 
number is almost independent of flow. So, whether in 
normal flow or flood flow, the Froude number at a section 
in a river is about the same. This might just be of 
theoretical interest, but it is worth noting. In passing, we 
estimate a Froude number for a river of velocity 10 5ms  
on a depth of 2m , 2 2

0 0 5 (10 2) 0 0125F       ; for such a 
case, dynamical effects are of the order of 1% .  

3.3 Nature of wave propagation 
The terms in the Telegrapher’s equation [15] can be 
grouped: the first two terms can be characterised as 0 
first derivatives, and the last three terms are all second 

derivatives. We now examine the equation in two limits 
and then the general case:  

Very-long waves:For disturbances that have a long 
period, such that 2 2

0t t       , which we will call 
"very long waves", the last three terms in Eq. [15] can be 
neglected, and the equation becomes  

 0 0
v v

c
t x

 
  

 
 

with a general solution  1 0v f x c t  , where  1f   is an 
arbitrary function given by the upstream conditions. This 
solution is a wave propagating downstream at speed 

0 0c U  . This has been called the "kinematic wave 
speed", and the equation has been widely known as the 
"kinematic wave equation" because the approximation has 
previously been proposed that terms of order 2F  in the 
momentum equation have been neglected. The solution 
here, and the dimensionless analysis below show that no 
approximation has been made by neglecting dynamical 
terms and it is actually a very long wave approximation. 

Not-so-long waves:In the other limit, for disturbances 
which are shorter, such that 2 2

0t t       , for which 
we use the term "not-so-long" waves, Eq. [15] becomes  

  
2 2 2

2 2 2
0 0 02 2

2 ( ) 0
v v v

U C U
t x t x

  
      

   
 

which is a second-order wave equation with solutions 

       21 0 0 22 0 0v f x U C t f x U C t         

where  21f   and  22f   are arbitrary functions 
determined by boundary conditions. In this case the 
solutions are waves propagating upstream and 
downstream at velocities of 0 0U C  , such that in the 
usual terminology 0C  is the "long wave speed". We have 
shown here that it is the speed of waves that are not so 
long, apparently paradoxically: they are long enough that 
the pressure distribution in the fluid is still hydrostatic, 
but only at the short wave limit of such waves.  

Intermediately-long waves:It is possible to obtain general 
solutions of the Telegrapher’s equation [15] by assuming a 
solution periodic in time, which we might consider to be a 
single component of a Fourier series describing a general 
input hydrograph. We assume   exp iv x t   where i

1  , and where the frequency   is real, but in general 
  is a complex quantity whose nature determines the 
behaviour of the solutions in space. Substituting this 
solution into equation[15] gives a quadratic equation for 
the coefficient   which in general has real and imaginary 
parts r ( )  and i ( )  , both of which are functions of real 
frequency  . The solution is  

   i r
r

exp ( ) exp i ( )
( )

v x x t
  

            
 [20] 

so that as waves are input into the channel with a 
frequency  , they decay along the channel at a spatial 
rate given by i ( )   and progress at a propagation 
velocity of r ( )    . We have the important physical 
result that a wave periodic in time will propagate at a 
velocity dependent on the wave frequency (i.e.it depends 
also on period) of r ( )c       and will decay in space 
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due to resistance with a decay rate i ( )  , also dependent 
on wave period/frequency. This means that the whole 
system is, in general, diffusive (rate of decay depends on 
frequency) and dispersive (propagation velocity depends 
on frequency), which is much more complicated than the 
superficial deductions from the method of characteristics. 

Results from the linear solutions are plotted on Figure 1, 
along with an approximation to be obtained below. The 
figure shows that the wave speed depends on wave 
period, that shorter waves travel faster than longer waves, 
that in the “not-so-long” limit, 0 2T  , the wave speed is 

0 0c U C   , corresponding to the result from the method 
of characteristics, and for “very long” waves, 0 500T  , 

0c U  . 

4. NON-DIMENSIONAL LONG WAVE EQUATIONS 

Consider the full long wave equations [1] and [2]. Here, in 
contrast to previous work, we assert that the variation 
with time in the channel is determined by the time 
variation of the input to the system, of scale T , say, while 
the length scale of disturbances L  is not known a priori. 
We introduce dimensionless quantities denoted by 
asterisks, such that t t T , and x x L . For channel width 
we use the width scale 0B  such that 0B B B , and for the 
perimeter we write 0P PP , in terms of a perimeter scale 

0P . Now introducing the area scale 0A  and discharge scale 

0 0 0Q U A , the dependent variables A  and Q  are scaled 
as 0A A A  aid 0 0Q QU A . In addition we write the 
channel slope and friction factors in terms of reference 
values with a 0 subscript as 0S S S , and 0     . The 
equations we obtain are  

 0 0
A U T Q

t L x
 

 

 
  

 
  [21] 

 

2
0 0

0

2
0 0

2
0

0
8

U Q U T Q

gS T t L x A

A B A A Q
P A S

S L B x A

 
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where we have used the uniform flow Eq. [12] to write 0  
in terms of 0U , and where it has been assumed that flow 
does not reverse so that we can use 2Q  in the resistance 
term. It can be seen that in each equation the coefficient 

0 /U T L  expresses the relative importance of a spatial x  
derivative to the time derivative. 

In the traditional approach (e.g. Woolhiser and Liggett 
1967, and subsequent researchers), the length and time 
scales of disturbances, and hence their velocity of 
propagation, are assumed related by the mean fluid 
velocity, such that 0T L U  , the equations become after 
re-arrangement: 
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where  2 2
0 0 0 0F U gA B   . In this way, in the commonly-

used so-called "low inertia approximation", if the two 
leading terms, the time derivative term and the fluid 
momentum flux term in   are neglected, it seems to be 
appealing to 2

0F  being small, hence the appellation "low 
inertia".  

We assert, however, that T  is imposed on the system 
from outside in the form of a boundary condition and the 
channel has to respond with that value. Also, it is not 
correct always to assume that L  and T  are related by 

0T L U  . This is shown by the solution of the linearised 
equations for ( )   above, translating into ( )L T  here, 
which is a known complicated function of T . In fact from 
equation [16] we can express the leading coefficient of the 
momentum equation [22] simply as 02 T  . This gives the 
dimensionless long wave equations 
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  [25] 

 

2
0

0

2
0 0

2
0

2

0
8

Q U T Q

T t L x A

A B A A Q
P A S

S L B x A

 

  

   
  

  

   
          

  
   



 [26] 

Immediately we see a different result in the momentum 
equation, that neglecting the time derivative and the fluid 
momentum term is not a "zero inertia approximation" but 
is actually valid when 0T  is large, so it is actually a very 
long wave approximation, or, as "long" has connotations of 
length, we might prefer the term slow change approximation, 
expressing the behaviour in time. Froude number has not 
entered the equations. In view of this, the term "kinematic 
wave", originating with Lighthill & Whitham (1955) seems 
to be a misnomer.  

5. A COMMON APPROXIMATION – NEGLECT OF 
TIME DERIVATIVE AND FLUID INERTIA TERMS 

Now we introduce the common approximation to the 
momentum equation where both the time derivative and 
the inertial terms are neglected, commonly referred to as 
the "low-inertia approximation" but which we have shown 
to be a slow change approximation for 0T  large. As 
equation [26] suggests, we retain the last three terms in the 
momentum equation [2], giving 

Figure 1Dependence of wave speed on wave period and Froude
number, also shown is the slow-change approximation 
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For the equations with Eq. [1] and this very long wave 
approximation, Eq. [27], the propagation velocity of the 
linearised solution are also shown plotted on Figure 1, 
including an extra curve for critical Froude number 

2
0 1F   (with 1   here), as the solution Eq. [27]is valid 

for that value also. The results show very surprising 
agreement with the full solution for longer downstream 
travelling waves even for large Froude numbers. For these 
downstream travelling waves the accuracy of the 
approximation does depend only on the period and is 
independent of Froude number, supporting our 
contention that Eq. [27] is not a low-inertia approximation, 
but is a long period or slow-change approximation. 

6. NUMERICAL SOLUTION BY EXPLICIT FINITE 
DIFFERENCES 

The simplest scheme for the numerical solution of the long 
wave equations is that using explicit finite differences. 
Time derivatives in the differential equations [1] and [2] 
are approximated by forward-time approximations 

  
 

   
x t

f x t f x tf

t 

    
 

 
 [28] 

where f  can be Q  or the other dependent variable, A , 
, or h , and where   as shown is a time step. Space 
derivatives are approximated by the centre-space 
expression 

  
 

   
2x t

f x t f x tf

x 

    
 

 
 [29] 

where   is a space step. Substituting these expressions 
with f  replaced by A and Q into equations [1] and [2] 
gives a pair of explicit equations for the values at the next 
time step  A x t    and  Q x t    in terms of the values 
of A  and Q  at the three points  x t  ,  x t , and 
 x t   at the present time step t . 

Liggett & Cunge (1975, p111) suggested that such an 
explicit scheme (Forward-Time-Central-Space) was 
unconditionally unstable and instead of FTCS they named 
it "The Unstable Scheme". This may have contributed to 
the extensive use of implicit methods, such as the 
Preissmann Box scheme. Such schemes are stable and 
allow large time steps, but they are complicated and 
require many more calculations, including the solution at 
each time step of a system of nonlinear equations, the 
number of equations being equal to the number of space 
steps. This complexity may have contributed to 
computational hydraulics, once being a cottage industry 
with skilled people, similarly to the tendencies of the 
industrial revolution, becoming dominated by large 
software houses and the down-skilling of such people.  

The author believes that the deductions of Liggett & 
Cunge concerning the simple explicit method are wrong. 
A linear stability analysis, unfortunately too long and 
complicated to present here, shows that the scheme has a 
quite acceptable stability limitation, and it opens up the 
possibility of this as a much simpler method for 
computations of floods and flows in open channels. When 

compared with computations over a wide range of slopes 
and roughnesses encountered in practice, the stability 
limit found gives quite a sharp estimate of the allowable 
time step in practical calculations.  

Now we present the results of the stability analysis, giving 
a procedure to follow.  

Procedure to determine time step for stability: 

1. For each of the minimum and maximum flows 
expected, 1 minQ Q and 2 maxQ Q , solve the uniform 
flow problem to give values in both cases of area 1 2A  , 
top widths 1 2B   and wetted perimeters 1 2P . 

2. Calculate Froude numbers 3
1 2 1 2 1 2 1 2F Q B gA 

     
   

3. Calculate 1 1 1 2 2 2
1 2

0 0

2
and

F A B F A B

N S S

  
    

 
where 

  is the computational step length in x , and there are 
N  steps. 

4. For 1i   to 2  do 
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A P
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2 2
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i i
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 2 2

0

2 2
Else

1
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i
i i i

F

F


 

  
 

5. The maximum time step for stability is the minimum of 
the two values i  so calculated. 

It is interesting that the time rate constant 0  found above 
to be so important in theoretical studies of the wave 
propagation behaviour, has re-appeared here as 
fundamental in determining stability.  

To test this procedure we considered a single example 
stream with a trapezoidal section, 10m  wide at the 
bottom with side slopes 1 1 , with 1  . The stream was 
20km  long and was divided into 16N   computational 
steps. We also considered a range of slopes and resistance 
coefficients corresponding to the majority of streams in the 
USA and New Zealand according to the two compendia of 
resistance coefficients by Barnes (1967) and Hicks& Mason 
(1991), given by notional Froude numbers in the range 

00 1 0 8F     and resistance 00 025 0 25     . From those 
two quantities, in each case, slope was calculated from the 
approximation to equation [19] 2

0 0 0 8S F   , so that the 
slope varied between 53 10 and 22 10 . The range of 
parameters is shown by the shadowed grey lines on the 
base of Figure 2.  

The procedure described above was followed to 
determine the theoretical limits on time step in each case. 
Next, to compare those predictions with actual 
computations, for each slope and resistance coefficient, a 
flood was simulated using the FTCS scheme described 
above. The minimum initial flow was that given by the 
conditions in each case from Barnes and Hicks & Mason, 
the maximum flow10 times that.  

The results are shown on Figure 2, where the actual 
limiting time steps   are plotted. Typical values varied 
between several seconds for steep and fast flows, to 
something of the order of a hundred seconds over much of 
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the domain. Generally the predictions of the theory here 
predicted the actual stability limit found by computations 
to within a few percent, however for some small slopes 
and Froude numbers it can be seen that there is as much 
as a 100% disagreement for some points, made less 
apparent by the logarithmic scale. For practical purposes, 
this does not matter – an order of magnitude estimate for 
the limiting time step is often enough. It is surprising that, 
despite the highly nonlinear nature of the problem, with a 
ten-fold flow increase, generally the simplified linear 
stability analysis gave a reasonably accurate value for the 
allowable time step. 

What is clear is that the Forward-Time-Central-Space 
method is quite capable of simulating flows and waves in 
open channels. The time steps allowed might be less than 
for implicit schemes, but the simplicity is an important 
advantage. While the time steps obtained can sometimes 
be small, a typical run time on a personal computer was 
only second(s). Such small time steps do not seem to be a 
problem in practice.  

That is not a conclusive proof of the applicability of the 
limits in real streams and floods, of course, but provides a 
guide to the estimation procedure that might be followed 
– and to the sorts of time steps expected: small in the case 
of streams on large slopes, but finite for the majority of 
streams.  

7. DOWNSTREAM OPEN BOUNDARY CONDITION 

Finally, the downstream boundary condition for open 
channel computations is considered. There are four types 
which are most common, much as described by HEC-RAS 
(2010, p2-45):  

Stage Hydrograph – such as for a lake, reservoir, or the 
sea, where the water surface elevation downstream is 
specified as constant or as a function of time.  

Flow Hydrograph– where recorded gauge data is 
available and the model is being calibrated to a specific 
flood event, however this seems relatively rare.  

Rating Curve –where there is a unique functional 
relationship between flow and surface elevation. Most 

commonly this is where there is a control structure such as 
a spillway, weir, gate, or flume. HEC-RAS (2010) mentions 
the existence of a looped rating curve and provides a 
warning. We believe that this is more of a manifestation of 
a problem which is improperly posed, such as when the 
stream roughness increases during and after a flood event, 
or unsteady effects are important, so that the functional 
relationship varies with time. This could be included in a 
program.  

Open boundary – The remaining boundary condition is 
where the computational domain is truncated, and no 
computations are performed downstream of that point.  

The first three boundary conditions are capable of rational 
implementation. For the last, the open boundary, HEC-
RAS (2010) calls it the Normal Depth boundary and 
advocates using Manning’s equation to give a stage 
considered to be normal depth if uniform flow conditions 
existed downstream. However because uniform flow 
conditions do not usually exist in natural streams, they 
suggest that this boundary condition should be used far 
enough downstream from the study area that it does not 
affect the results in the study area".  

We believe that one does not have to use that approach, 
and that a very simple and rational alternative is at hand 
for an open boundary. However, it goes in the opposite 
direction from the conventional understanding of open 
channel hydraulics, where an important principle is “one 
boundary condition has to be given for every 
characteristic entering through the boundaries of the 
solution domain”(Cunge Holly & Verwey 1980, p31). 
Szymkiewicz (2010, p170) similarly notes “… the correct 
classification of considered partial differential equations 
and the knowledge of their characteristics structure has 
fundamental meaning for well posedness of solution”. 

In this way, conventionally a boundary condition is 
applied even at an open boundary at a truncated position 
in the stream. However, if one can truncate a 
computational domain then it must be because 
downstream the region is unimportant and no significant 
information is coming back from that region. This means 
that by applying an arbitrary boundary condition, such as 
the uniform flow condition, the information entering the 
computational domain is incorrect, and hence the warning 
by HEC-RAS (2010) to place such a boundary far from the 
region of interest.  

Here, we advocate simply doing away with the 
downstream boundary condition if it is wrong or 
arbitrarily approximated. Instead we suggest simply 
treating the end point as if it were an ordinary point in the 
stream and numerically solving the equations there also, 
but using backward differences for the derivatives. If the 
boundary condition is open, all important information is 
coming from upstream, as the waves that are input at the 
upstream boundary progress downstream. To use 
upstream or backward differences seems sensible. 

Accordingly, instead of using the centre difference 
equation [29], we use the three-point backward-difference 
expression (more accurate than the obvious two-point 
one): 

Figure 2Comparison of actual computational time steps required
for stability with those predicted by the approximate linear
theory. 
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where f  can be Q  or the other dependent variable A , ,
or h . Substituting into equations [1] and [2] at x L  and 
manipulating, gives two explicit equations for A  and Q at 
 L t   . 

This was tested in a model case: a stream of slope 0.0001, 
length 20km , with a trapezoidal section of bottom width 
20m  and sides 1 1 , and with a Manning 0 035n   . An 
initial flow of 3 110m s  was increased smoothly to 3 1100m s  
and back down to the original flow. Two calculations were 
performed, using a uniform flow boundary and no 
boundary condition, as we have suggested here. 
Calculations were repeated, considering the same stream 
but with a length of 40km . We were only interested in the 
results at the 20km  point, so that we could test our two 
boundary conditions applied at the truncation point. 
Results are shown in Figure 3. It can be seen that three of 
the results agree closely: where the boundary condition 
was applied a further 20km  downstream, both the 
uniform flow boundary condition and our no boundary 
condition agreed closely, as we might expect. Importantly 
for our purposes, the figure shows that the no boundary 
condition applied at the actual boundary also agreed 
closely with the presumably accurate other calculations. 
However, the widely-used uniform flow boundary 
condition gave quite different results, in both magnitude 

and time.  

We performed other calculations. For steeper streams, 
with less diffusion, the conventional uniform flow 
boundary condition did perform better than in the 
example. However the example shows that the uniform 
flow boundary condition must be viewed with some 
doubt. The ability just to deal simply and rationally with 
the end point, within the river reach of computational 
interest, and not to have to arbitrarily add on a uniform 

flow where uniform flow may not exist, seems to be a 
desirable one.  

The apparent success of this approach, following the 
essential nature of the physical problem, but not that 
dictated by the characteristic formulation leads us to the 
conclusion that the characteristic formulation has failed 
again, in this case of providing adequate boundary 
conditions. We suggest that the rule stated by other 
authors above, of requiring one boundary condition for 
each entering characteristic, is misleading. Instead, a more 
pragmatic deduction is possible, that boundary conditions 
should be provided where they make physical sense. 
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