Mech. (1978), vol. 58, part 3, pp. 417-434 417

n Great Britain

noidal waves and bores in uniform channels of
arbitrary cross-section

By J. D. FENTON

Department of Applied Mathematics and Theoretical Physics,
University of Cambridget

(Received 10 July 1972 and in revised form 12 February 1973)

ady nonlinear dispersive wave theory is developed in terms of three
rtant invariants of channel flow: discharge, energy, and momentum flux.
ich, the work is an extension of Benjamin & Lighthill’s approach for
ngular channels.

nsidering the differential equation obtained, we examine the behaviour of
_and wave systems in arbitrary channels for changes of energy and
entum. In particular, the bore problem is studied, and previous approaches
problem, using linear wave theory, are seen to be invalid. The present
ry describes several phenomena of open-channel flow, explains a scatter in
ously obtained experimental results, and enables simple design recom-
ations to be made for channels in which stationary or moving bores are
ted.

e this work does describe the variation of physical quantities across the
nel section, there are some important three-dimensional phenomena, noted
imentally, which remain unexplained.

troduction

e study of surface gravity waves in channels of arbitrary uniform cross-sec-
has followed a path similar to the classical studies of waves in rectangular
nels, of which it is a generalization. The basic equations of motion are the
, while the boundary conditions and three-dimensional effects donot unduly
licate the problem, to first order at least.

Tlland (Kelland 1839; Lamb 1932, § 169) obtained the speed of propagation
itesimal long waves ¢, = (g4,/B,)?, where g is the gravitational accelera-
and A, is the cross-sectional area occupied by the undisturbed liquid, having
th B, at the surface. The ratio 4,/B,, the ‘hydraulic mean depth’, recurs
ently in all studies of wave motion in non-rectangular channels; simple as
oncept may be, it appears to be the fundamental length scale which is crucial
all studies of fluid motion in these channels. In rectangular channels of depth 2,
and’s result reduces to the well-known expression obtained from simple tidal
ry, ¢ = (gh)}.

om here, studies diverge into the two standard nineteenth-century
oaches for water waves. The study of infinitesimal waves, which allows the
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418 J. D. Fenton

equations of motion to be linearized, but which makes no restriction on
velocity distribution, was initiated by Rayleigh (Rayleigh 1876; Lamb 1
§233, §252) to obtain exact dispersion relationships connecting the wave sp
with wavelength for waves in rectangular channels. Solutions for non-rectanguls
channels have only been obtained for some special cases (Lamb 1932, §261

The other approach is the study of disturbances which are propagated by flu
motions in which the pressure distribution is hydrostatie, giving no dispers
while the nonlinear effects can be incorporated exactly. Lamb (1932, §187) g
the solution for rectangular channels. For arbitrary channels, Escoffier (Esco
& Boyd 1962) obtained the exact solution, showing that disturbances involv
a local area of cross-section 4 and surface width B are propagated at a velo
relative to the fluid of ¢ = (g4 /B)%. We see that, since A/B (the local hydra
mean depth) is an increasing function of height, there is a tendency for the w
to steepen, eventually forming a bore, as obtained by Airy for rectang
channels.

For disturbances in which nonlinearity and dispersion are both small
finite (a sort of intersection of the above two theories), Korteweg & de V;
(1895) obtained an equation governing unsteady motion in rectangular channi
When the two effects balance one another, we have steady motion, for which
surface takes on a cn? form, giving ‘cnoidal’ waves, or, for the appropri
boundary condition, a solitary wave. Peregrine (1968) and Shen (1969) h
obtained the equivalent unsteady equation for chanmels of arbitrary cr
section. Peters (1966), meanwhile, had obtained equations for the solitary w:
in such channels, but where the flow was not necessarily irrotational, and S
(1968) had obtained the unsteady equations for the case of stratified flow. '

Experimental studies have been carried out by Sandover & Taylor (19!
Peregrine (1969) and by Benet & Cunge (1971). Peregrine’s experiments
solitary waves in trapezoidal channels verified the results of his theory; the ot
workers carried out their experiments on bores in. model and full-scale trapezo
channels. These reports include (i) observations of curved wave crests w!
viewed along the channel; (ii) a greater tendency for the waves to break
the sides of the channel than for the rectangular case; and (iii) extra th
dimensional effects, which include curvature of the wave crest in plan, a tendel
for the waves to be unsteady, and a marked ‘fish-tail’ pattern which obs
the main wave system for wide shallow channels. Benet & Cunge noticed a
scatter in results.

In a study of bores in rectangular channels, Lemoine (1948) used a linear
theory in an attempt to relate the energy loss at an undular bore to the
created, and to use this theory to describe experimental results of Favre (19
Benjamin & Lighthill (1954) demonstrated the invalidity of such a linear th
showing that a nonlinear dispersive wave theory is more valid, and applied
a theory to the bore problem in a rectangular channel, showing that the
downstream of an undular bore are crnoidal in nature. In the process the
vided an explanation of the scatter of Favre’s results as being due to
variability of energy loss at the bore.

Preissmann & Cunge (1967) used a linear theory similar to that of Lem:
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generalized to include trapezoidal channels; Benet & Cunge (1971) have
lied this theory to their field and experimental observations. They obtained
atter of experimental results, similar to that of Favre.

he present work sets out to examine steady nonlinear dispersive waves in
nnels of arbitrary cross-section, generalizing the work of Benjamin & Lighthill,
se analysis and discussion it closely follows.

§2 we briefly consider existing steady wave theories. Linearized theories
e examined, and it is shown that these are not applicable to the waves behind

§3 we produce an expansion scheme, which, when substituted into the
ations of motion, enables nonlinear dispersive solutions to be obtained. The
florence between the present work and previous approaches is that the solutions
obtained in terms of the channel flow quantities: discharge, energy, and
mentum flux. A differential equation is obtained, and is solved to give the
ations for cnoidal waves in channels of any cross-section, in terms of the flow
ariants and certain geometrical parameters of the cross-section, including the
lution of a Neumann problem on the undisturbed cross-section of the channel.
inally, in § 4 we examine the physical implications of the differential equation.
rgy and momentum changes to uniform flows are seen to be able to produce
ave systems, and this is applied to the case of a bore. We see that if there were
osses at the bore then we could only obtain a solitary wave; if we have the
energy loss associated with a hydraulic jump then we have uniform
critical flow and can have no waves. When the energy loss at the bore is
rmediate between these two extremes we expect a train of cnoidal waves,
pletely defined by the energy loss. In this way we explain the scatter of results
d by Benet & Cunge: it is due to a variable energy loss at the bore, as was
d by Benjamin & Lighthill for rectangular channels. The present theory is
to give some simple design recommendations for non-rectangular channels,
shows that the highest wave possible, defining the necessary depth of
nnel, is the solitary wave.
his work does provide evaluations of the change of surface elevation across
e channel, and as such, constitutes a three-dimensional theory. To the order
ccuracy obtained, however, the theory provides no explanation of the more
plicated three-dimensional effects noted in the experimental reports of
egrine and Sandover & Taylor.

Equations of motion and some solutions
2.1. Equations of motion

onsider a steady wave system in a uniform channel of arbitrary cross-section.
superimposing a velocity on the system we have a train of stationary waves
er which we have a steady flow, assumed to be incompressible, inviscid and
tational. We set up a co-ordinate system (x,y,2) in which the waves are
ationary: # is the direction of flow, y is vertically upwards and z is horizontal,
endicular to the flow direction. The origin is at the channel invert, such that

maximum depth over the undisturbed cross-section is 4.
27-2
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We can define a velocity potential ¢(,v,z2) because the flow is irrotation:
As it is incompressible as well, we have
32¢ 62¢ 32¢
ox? + oy 2t 52 022
which holds throughout the flow.
The kinematic condition that flow does not pass through the chanm
boundaries is

o, (2

¢fom = 0

on the solid boundaries, where n is the outward normal to the curve specified

the intersection of the channel bottom with the y, z plane. ,

Fluid particles on the free surface remain on the free surface, glvmg :
kinematic condition

2 _opoy op oy

By T oxox oz oz

on y = 79(x, z), the free surface. We must also have zero pressure on this surfé
giving the dynamic condition

#=3 [(%) +(%§)2+(6¢) ]+977, (

where R is the energy per unit mass, which, in the absence of losses, is a cons
throughout the flow; g is the gravitational acceleration.

Equations (2.1)—(2.4) constitute a system for which solutions for the depen
variables ¢(x,y,2) and 7(x,2) may be sought. At this stage we define
physical quantities which must be constant throughout the flow, and in te:
of which we shall subsequently obtain solutions. These are @, the volume
rate at any cross-section; R, the energy per unit mass at any point, equal to
defined in (2.4); and 8, the momentum flux (including transfer by pressure
by convection) at any cross-section divided by the density p. Thus,

=] paya

B = plp+gy+3(P2+ 2+ ¢2),

s=|[ wlo+gpaya,

where A refers to the region of integration, which is the entire cross-sectis
fluid at each section, and p(z,y,2) is the pressure at any point. Each qua
@, R and 8 must be independent of the cross-section chosen if viscous effe
other losses are neglected. ‘

! 2.2. Ewisting solutions
Lamb (1932, §260) gives a linearized solution of (2.1)—(2.4). This solutio
terms of a mixed boundary-value problem on a constant domain—the
section of flow to which the wave system is a small disturbance. Anal
solutions to this problem have been obtained for some special cases only
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for isosceles triangles, with angles of 37 and &7 at the bottom vertex are
vin Lamb (1932, § 261), while Preissmann & Cunge (1967) obtained numerical
ts for trapezia.

e opposite case to this, where the wave amplitude is finite, but where the
length is so long that dispersion effects can be ignored, has been studied by
flier (Bscoffier & Boyd 1962). The wave speed is an increasing function of
height, thus we have a gradual steepening of waves of elevation until
continuity occurs.

analogy with waves in rectangular channels, we may show that dispersive
ts are proportional to (4,/AB,)? and that nonlinear effects are measured by
A, where A, is the undisturbed cross-sectional area of flow, B, is the breadth
e undisturbed water surface, and where A and a are the wavelength and
litude respectively. For a rectangular channel, the ratio 4,/B, is equal to the
h; for channels of arbitrary cross-section, 4,/B, is the effective depth.
taining the ratio of nonlinear to dispersive effects, we see that this is
ured by aA?/(4,/B,)®. For linearized theory to apply to any situation,
o/ Bo) must be small, and a/lz/(AO/Bo)3 must be small as well. Where waves
ong, the ratio aA2/(4y/B,)® must be large. In cases where this ratio is of order
y, we obtain steady finite waves, where the steepening tendency is balanced
he dispersion effects. For this situation we expect to obtain waves having
orm similar to cnoidal and solitary waves in rectangular channels.

the linear theory of Preissmann & Cunge (1967), wavelengths and ampli-
des of undulations behind bores in trapezoidal channels are given. On calcu-
g values of the ratio aA?/(4y/B,)® from these results, we find that it varies
een 4 and 23, showing the incorrectness of neglecting nonlinear effects.
nlinear theory for undular bores is therefore required; we proceed to a theory
which both nonlinear and dispersive effects are finite but small, and are of the
e order of magnitude. The order of accuracy is recognized throughout.

teady nonlinear dispersive waves
3.1. Formation of differential equation

»yw we consider the combined effects of dispersion and nonlinearity by writing
xpansion for ¢, the velocity potential, in which both are included. Thus we

write $ = 1@) — Py, ) f" (@) + Pal, ) {7 (@) — .oy (3.1)

hich the f(x) incorporates all nonlinear effects, for which we subsequently
nd in terms of amplitude, and the P,(y,z), n = 1,2, ..., give the variation
the cross-section, the nth-order dispersion term.

this equation is to be truncated, and we wish to know the order of approxi-
ion throughout the analysis, we scale the independent variables:

z, =zfl, y,=ylh, 2z =z[h, (3.2)

hich [ is a measure of the longitudinal extent of each wave and % is the
imum depth of liquid over the cross-section with an undisturbed free surface,
# co-ordinate of this surface with the origin at the channel invert. Because we
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have non-dimensionalized both y and z with respect to this, we limit our attent
to channels which are not notably broad, having maximum depth the same orde
of magnitude as the width. In the previous sections we have seen that 4,/B
a more characteristic dimension of the cross-section, however, in the equati
of motion and the dependent variables we find that it is more convenient to
the physical dimension 4.

We now expand the dependent variables:

f(@) = log(@; +6q1(w1) + €%5(w1) + O(€)), (3

where ¢, is the wave speed of infinitesimal long waves and ¢ = a/h is the dim
sionless wave amplitude,

F(y,2) = BV (y1, ) 3

and 7%, 2) = (1 +€71(®y,21) + €%15(21, 21) + O(€9)). (3

Substituting (3.3) and (3.4) into the original expansion (3.1) gives
¢ = log(2, + 69 + €%, — €02V (Y1, 24) ;) + O(€%, €202, e07%),

where o = h/l.

In §2 we saw that, for steady nonlinear dispersive waves, aA?/(4,/B,)® = O(
thus for channels in which AB[4, = O(1) we have ¢foc? = O(1), and the €% a
€a? terms in (3.6) are to be taken as being of the same order. Similarly all ¢
error terms in (3.6) are of the same order: we group them and subsequently sh
the error term only in powers of e. In the retained terms, however, we ms
continue to distinguish between € and o2. '

Substituting these expansions for the dependent variables into the equatio
of motion, we group the terms according to order and obtain the following.

Laplace’s equation (2.1), for incompressibility and irrotationality, gives

a3V 2V
B_yﬁ_l—_a;%—_l at order e,

to be satisfied in the undisturbed channel cross-section, non-dimensionalize
each co-ordinate direction with respect to h. Thus the upper boundary i
y, =1 and is of width b, = By/h, and the domain has cross-sectional
@y = Aofh?. The boundary condition on the solid boundary (2.2) gives

dV/[on, = 0 at order o2.

On the surface y; = 1, we obtain from the kinematic boundary condition (

oy OPgy OV
o, el iy P 83/1(1’ z,) =0 at order o,
while the dynamic surface boundary condition (2.4) gives, on y; = 1,
8% _
+gh B, 0 at ordere,

L AT N 2
7724_,(37?0(2(891;1 +3x1 Vl,z)==5 P =0 at order ¢2
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3.3) we have defined the ¢,,, » = 1,2, ..., to be functions of #, alone, thus from
0) we see that 7, is similarly a function of #, only: it is a constant over each
ion. With this knowledge we can easily obtain the first-order expression for
cross-sectional area A(x):

A(@) = Ag+ehByny (%) + O(€?).
b is,
%)[h2 = A% +¢. Bylh . yp5(@;) + O(€?)
= o+ €by 71 (1) + O(€?)
= g+ €60,{%,) + O(€?), (3.12)

. The integrated continuity equation for @, equation (2.5), gives
a;+ayq; = 0 at order e, (3.13)
from this, (3.9) and (3.10) we have

3 2 qa
(1 2) = g(;z_ b—: (3.14)

ing the speed of infinitesimal longitudinal disturbances
¢y = (ghao/bo)t = (gAo/Bo)*

obtained by Kelland (1839), and giving the surface boundary condition for
ation (3.7).

quations (3.7), (3.8) and (3.14) constitute a well-posed Neumann problem on
onstant domain. Solutions to this problem, to give V(y;,2;), are unique to
hin an arbitrary constant; if we can solve the problem for a given cross-section
can obtain the variation of velocity over the cross- -section relative to that at
e fixed point; to obtain actual velocities we still have to solve for 7, and g¢;.
Introducing the momentum equation (2.7), we eliminate the pressure p(2, ¥, ?)
substituting the energy equation (2.6):

s=|] R it pi el (3.15)
ich gives
S—RA(x)+gM(x) = Jf (2 — P2 —@2) dy dz, (3.16)
ere A(x)=f dy dz,
4

e cross-sectional area, and

M(z) = ffAy dy dz,

e first moment of the cross-section about the z axis. This clearly depends on
e choice of co-ordinate origin, however so does the magnitude of R, and it is
simple matter to show that g M (z) — RA(%), and hence (3.16), is independent of
e co-ordinate origin.
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We already have the integrated continuity equation (2.5) for Q:

Q= ff4¢m dy dz.

The form of (2.5) and (3.16) suggests the subtraction of 1Q?/4 () from (3.16)
eliminate leading terms in the series for ¢, so that the equation will be in terms
the dispersive and nonlinear parts of the expansion for ¢.

Before we make this substitution we have to introduce a symbol for integrat
quantities. Thus we introduce an integral operator, denoted by I(z), to represe:
the integral over the cross-section so that we have, for example,

(@) Vg 2) f Vg2 dys oy

Uf +6U +€ZH ']V(%,Zl)dyldzl

=L V+el, V+eL,V+0(c).
Substituting the expansion (3.6),

¢ = leo(w, + gy (%) +€°95(%,) — €52V (y1, 21) 431(%,)) + O(€?),
into (2.5) and (3.16), after performing the necessary differentiations, integra

symbolically by means of the operator I(x) and then subtracting 1Q?/A(x
suggested, we obtain after lengthy manipulations

S—RBA(x)+gM(z) — Q% A(x) = O(e3),

showing the surprising result that the equation is identically satisfied up to
including terms in €2, Retracing our steps, adding an extra third-order term
completeness into the expansions, €3I; into (3.17) and €3¢, + €%02¢,, + €0
into (3.6), and then substituting gives

8 —RA() +gM(z) —3Q[A(%) = —30%F L, ¢2(@) + O(e*), (3
where I, = f (V2 +V2)dy, dz,.

The variables on the left-hand side are all exact, being in terms of integrals ¢
the entire cross-section of the fluid. The differential term g7 is of first order, t
we see that any solutions obtained from this differential equation will be of
order accuracy only. All second- and third-order terms are satisfied ident:
to O(e?).

Multiplying through by 4(z), substituting (3.13), which connects ¢; and ¢
converting all non-dimensional terms back to their physical counterpart
that the order of accuracy of each term has been recognized, we have

3Q2Ip Ag® Af(w) +gM(x) A(w) — BAY %)+ SA(x) — Q% = O(e),
in which 4, (x) is defined by 4A(x) = 4+ 4, (%) +O(e2) and

Ip, = WL, f f 2+ PL,) dy dz.
A,
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3.2. Solution of differential equation

coefficient of the differential term may be transformed by the following
em, easily obtained from the divergence theorem:

f (VP)*dydz =f P, E—f P, V2P, dy dz.
4, By 4,

o o

ave V2P, = 1 throughout, P;/on = 0 on solid boundaries, and
0P, Jom = A,|B,

fhe surface y = h. Therefore

1 1
= 4, (E fBoPl(h, 2) dz—Z;[onPl(y, 2) dydz)

= 4(Pip—Ppy). (3.20)

he term Ip_is a positive-definite integral; the arbitrary constant in the solu-
n Pi(y,2) plays no part because the integral is in terms of the gradient of this
antity. Similarly in (3.20) we have the difference between two values, elimi-
ing the constant. Physically, I represents some measure of the physical

ent of the cross-section relative to the channel bottom. For a rectangular
ss-section, B, = {y*, giving Ip = 4Bk, the second moment of area of the
annel cross-section ‘about the z axis. The function P,(y, z) has also been obtained
some more general sections: Peters gave the solution for a semicircle, while
egrine gave that for a triangle: Py(y,2) = }(y*+#2?). From this golution as well,
see that Ip_is roughly related to some second moment of the cross- sectlon
om (3.20), we can rewrite the differential equation (3.19) as

3Q¥Pyp— Py (A5(2)[ Ao +9 M (@) A(w) — RA* @) + SA(2) - 3Q* = O(¢?).

is quite similar to the equation developed by Benjamin & Lighthill for
tangular channels in terms of 7(x), the free-surface elevation. They obtained

3Q%'2(z) + 1g7°(x) — Bry*(x) + Sy(w) — Q% = 0

- a channel of unit width, which is easily obtained from the above equation.
only real complication in the more general case is that the differential term
s a coefficient in terms of a Neumann problem on the undisturbed channel
ss-section, and we have the first moment of area of the variable cross-section
(#)) in one term. This equation has been obtained by, and still represents,
momentum balance in the channel obtained by integrating the physical
antities over the irregular cross-section. The differential term, as is clearly
own by (3.18), represents the dispersion effects, allowing for velocity variation
er the cross-section. Now, we eliminate M (x) by relating it to A(x) to give
lifferential equation in A(x).
Writing a Taylor expansion for the width B, about the undisturbed level, we
, where 4y, = y—h, :

B(yx) = By+Byy« + 3By + O(€).
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Now the first-order solution %, is a constant on any cross-section, from (3.1(
hence we may write for the area

eh;
4= 4g+ [ By dya+dy g0,
0

where A4, and 4, are contributions to the cross-sectional area by the second-
third-order solutions. Substituting for B(y,) and integrating, we obtain

A = Ay+eByhyy +€2(3h*p3 By + A,) + €3(3h%1y3 By + Ag) + O(e%).

Similarly we write, for the first moment about the z axis,

ehy
M= Ay +f b+ ) B(ys) dy s+ €®hdy + (RA5+ hAy7,) + O(e?)
0 .

= Aoy +eh? By, + e [3h713(hBy + By) + kA,
+E[3h¥i(3hBy+ By) + hAg+ hAyp ]+ O(et
Now we can invert the series for 4, and substituting into this expression gi

_ 1 1 B; .
M = 4,g+nAd—-Ao)+ QE(A“AO) 6B3(A —AoP+0(). (3

The terms in 4,, 4; and By have disappeared but B, remains in the third-o
term: we must limit our attention to channels which are not so shallow that
term is of a lower order, and which have By similarly not large.

Equation (3.21) suggests the use of 4, = 4 — 4, as the area variable; sub
tuting this and (3.21) into the differential equation (3.19) yields

3Q2(Prip—Pry) (As]Ao)* + A%(9/2B, — 9By A,[6 53)
+A§_<(gk+gA0/2Bo —R)+ A, (gloh+94,5—2RA,+S)
+ (9437 — RAZ+84,—3Q%) = O(e"),
giving a differential equation for 4 ,(x) in terms of the invariants of the :
Q, R and 8, and the geometrical parameters of the channel 4y, By, By, kb, ¥ |
P, —P,,. We have now found the direct equivalent of the Benjamin & Ligh
equation, but with more complicated coefficients; importantly, the
differential terms are in the form of a cubic, so that we can use the same phys
arguments as Benjamin & Lighthill. This will be done in § 4, meanwhile we st
the terms of the equation as follows.
Multiplying through by B,/gA}, we can write (3.22) as
$(Q2BofgAR) (Pp —Pra) (Aie Ao+ (A o[ Ao} (3 — B3 Ao/ BY)
A 4[A0)? (3 +hBy[4dy— EByg4,)
+ (A [Ao) (hBo[Ao+¥Bo[Ag— 2BB,[g A+ SB,[g Af)
+ (§Bo[Ag— BByJg Ao+ 8ByJgA§— 3Q*B,[gA3) = O(e*).
We have made the equation dimensionless, in terms of the following quan

() Variables:
o = A [A,, &= xBylA,.
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) Geometrical parameters of the channel cross-section:

A,/B2, a measure of the bank slope at the undisturbed waterline.
kBO/AO, a measure of the non-rectangularity of the cross-section by area.
(B —7)/(34,/B,), & measure of non-rectangularity by the first moment of
- area about the undisturbed waterline.

(Pig— P y)[(Ay/By)2, in terms of the solution of the Neumann problem,
which is some measure of the second moment of the cross-section relative
to the bottom.

¢) Physical quantities associated with the flow:

qg= Q(Bo/gAg)é: r = RBygd,, s=S8By/g43.

oughout this non-dimensionalization, as throughout this work, the funda- ;
ntal importance of the hydraulic mean depth is obvious.
n examining (3.23) we see that it is convenient to redefine  and s as

SB, B
T gdz

=%<R—gh>, 2 0-9).

stituting the newly defined quantities into (3.23) we have

q20,(dA [dE)2 + Z3(1 — 10,) + L2(1 — 27) + L (25 — 47)

+(2s—2r—¢?) = O(e?). (3.24)
equation will be discussed more fully in §4; at this point we proceed to an
lytical solution.
If the cubic in (3.24) has the roots y; > y, > 3, we obtain one of the following
solutions, depending on the sign of the coefficient of /2. When this is positive,
more usual case, we have

A = va+ (y1—7e) 0% (a6, k),
Y1—7Ye\} ) 1[(71“'}’3) (1“‘%“‘91)]th
ere k= ( ) , == , . 3.25
Yi—7s 2 9°0, ( )
e other case, when 6; > 3, is given by

A =y~ (Ya—7s) cn?(af, k),

Y 7’3)% o =_1_|i(')’1_')’3) (%01_1)]% 3.96

(7/1 Vs 2 9°0, ) (3.26)
ving obtained solutions to the governing differential equation, the cross-

tional area has less significance than the elevation of the free surface, so we
nvert, using the first-order relationship

ehny (%) = P4(2) = (Ao/Bo) Z(8),

owing that to this order the free-surface elevation varies as cn2 (g, k), giving
noidal wave form.

The second case (3.26) is a wave of depression, having the usual cn® shape, but
h sharper troughs than crests, showing that the normal tendency of nonlinear
ves to have sharper crests has been more than offset by the geometrical
aracteristics of the channel. Peregrine (1968) has given examples of channels
ving this property.
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To the first-order accuracy of the present analysis there is no change in th
free-surface elevation across the channel. We can, however, obtain the secon
order cross-channel variation using the equations already derived. In (3.1
which is valid for all z; on the surface y; = 1, only 7, and V(1,2,) are functi
of z;. Thus we separate 7, into constant and variable parts on a particul
cross-section:

Ny = No1(%1) +P20(%1,2,), ‘

and, equating the terms in (3.11) which are functions of z,,

c; o p
Noa(®1,21) = g_(;b ?V(I, 2)41

giving €M9a(@1,21) = — €102V (1, 2).
Thus we have 7 = h+ehyy + €2, + O(e?),
which, converting to physical variables, gives

9@, 2) = h+7(x) — Fi(h, 2) ps(x) + O(e?),

where 1, = & A,[B,, obtained from (3.25) or (3.26). Thus we have a first-or:
solution # (%) which is constant across the channel, and varies as en2(ag, k) alo
the channel, and a second-order solution which gives the variation across 1
channel. At the order of approximation used throughout the analysis, 7,(
cannot be obtained, so the error term is of second order as shown. The solu
Py(h,2) includes an arbitrary constant: we set this so that the minimum val
of P, on the surface is zero; all cross-channel variation occurs relative to
point.

4. Discussion
4.1. Physical interpretation of the governing differential equation

While the solutions (3.25) and (3.26) show the variation of the free-s
elevation, the role of the physical flow invariants is not as explicit as v
examined using the differential equation (3.24). We set out to do this, folloy
the discussion of Benjamin & Lighthill (1954), who studied cnoidal waves
bores in rectangular channels.

Considering channels of arbitrary cross-section, we note that =7 is a
tonically increasing function of wave height, so that an increase in & me
increase in , and we naturally refer to it as a higher wave.

If we substitute P4(of) for the polynomial in (3.24), we can write

QPO,(dA [dE)2 + Py( ) = 0,
where Po(A) = 31 —30,) + A1 —2r) + (28 — 47) + 28 — 2r — @2,

noting that the error term O(e*) is ignored henceforth. We can also write
for the quadratic terms:

Po(A) = Py )+ L3(1 - 50,).
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Fieurs 1. Typical &, (broken line) and & -(solid line) curves for given
channel geometry and flow invariants.

om (4.1) we can only have solutions when &, < 0, and we can only have
es when there are two distinct roots, between which %4(7) is negative. This
hown by figure 1, on which Z,(«/) and Zy(s7) are plotted for a particular
annel and particular ¢, 7 and s. The only region for which waves are possible is
t contained between the roots y, and 7,, corresponding respectively to crests
to troughs. For & < s, we satisfy the condition 273 < 0, but we cannot have
tions, for this corresponds to the depth becoming zero in a finite distance.
sing figure 1, the role of the coefficient 1 —46, of 2/ becomes more clear.
his is positive, we have &5 as shown; if it is zero, then &, becomes &, and no
odic solutions are possible, for the gravitational nonlinearities are cancelled
the channel properties, and there are no two roots between which &, is
ative. Then, if 1—36, < 0, we shall have a cubic which has &; negative
ween roots v, and y;, and we shall have waves where the troughs are sharper
an the crests, and if a solitary wave exists it will be one of depression, not
evation. Conditions where this occurs, where BjA,/B} > 3, are for channels
ith a large area but small surface width and finite surface slope, as given by
eregrine (1968). As this type of channel is seldom encountered, we shall not
sider it again; in any case the arguments produced here can be used for this
e as well.

he coefficient 1 — 2r of 272 has some significance: if it is zero, &, reduces to a
aight line and Z; has only one root, corresponding to uniform flow. As
1U2B,/gA, for all uniform flows, in this case we obtain U? = g4 ,/B,, defining
ical flow, on which no waves are possible and for which &7 = 0.

imilarly we can study the coefficients of o#* and «7° for the uniform flow case.
m the invariant equations (2.5)—(2.7), written for uniform flow and non-
nensionalized as above,

.

q=F: T=%F2, 8=F2: (43)
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Fraore 2. &, curves for uniform fow: 4 A4, supercritical flow and the
solitary wave; BB, subecritical flow.

where F is the Froude number deﬁneel for channels of arbitrary cross-section
F = U(B,Jgd,):
If we substitute (4.3) into (4.2) the coefficients of both 27! and =79 dlsappea

Po(A) = A1 - F2+ 4 (1-10,)],
and we have the roots

& = 0 (repeated), o = (F2—1)/(1—16,)

As we donot treat 6, > 3 here, we have two cases as shown in figure 2, depend
on whether FZ 1. '

If F > 1, we have the curve 44, with & = 0 corresponding to unifc
supercrltmal flow. However, the other root y, 4 is possible, and we have a soli
wave rising out of the uniform flow. If the amplitude of this wave is a,,, then
have the first-order geometrical relationship o/ = a,, By/4,, and obtain f
(4.5) the first-order expression for wave speed '

U= (gAO/BO)%(l +ia,, T (1 )) +0(e?)

and solving (4.1) and (4.4), then converting to 7, the height of the free surf:

By, 1-36, |}
m g 1?*—=1—A] + O(e?).
This result agrees with Peters (1966) and Peregrine (1968), and is the partict
case of (3.25) for uniform supercritical flow, when y, = y; = 0, giving k = 1,
cn? (af, 1) = sech?af.

The other case, when F' < 1, is for uniform subcritical flow, when we hav
curve BB shown in figure 2. Root v;5 is not possible, leaving only the root £
corresponding to uniform flow: finite amplitude waves are not possible.

% = h+a,,sech?= [
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'RE 3. Typical &; curve for a given channel, showing vertical displacements caused by
rgy and momentum changes. A4, uniform supereritical flow and the solitary wave;
, periodic waves of cnoidal form; CC, uniform subecritical flow.
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4.2. Energy and momentum changes for waves and uniform flows

e governing differential equation (3.24) has been obtained in terms of energy,
mentum and discharge. Considering a flow system as a whole, it is of con-
erable use in predicting the type of flow or wave system generated on a flow
bringing about energy and momentum changes. Examples are bores and
draulic jumps, barriers across the flow such as sluice gates, and changes of
ss-section. These are all examples where the change occurs rapidly, in which
e we can quantitatively predict downstream conditions for given upstream
nditions in terms of intermediate changes, and vice versa. Even in situations
ere the changes occur gradually, we can use the type of plot shown in figures
ind 2 to describe the flow qualitatively.

To illustrate use of the equation, we consider the case of a bore, where we have
energy loss in a flow of constant momentum and discharge. Figure 3, in which
vertical axis is displaced by unity so that the abscissa is 4[4, =1+, is
herwise the same plot as figures 1 and 2. The limitation for the theory to be
plicable is that waves should be small, that is, 4,,— 4, < 4,.

Considering a co-ordinate system in which the bore is stationary, we have
iform supercritical flow upstream, as defined by curve 44 touching the axis
A = A,. As we have seen, the only wave possible is a solitary wave, and we do
have a proper bore.

we lose some energy, however little, at the bore, then the effect will be to
e the curve to one like BB in the figure. This is because the coefficient of r is
(1+27)2, which is always negative, hence a reduction in r raises the curve.
nediately we have the general case, with the free surface defined by (3.25),
ng periodic waves of cnoidal form, with the maximum and minimum depth
ned by the roots of BB in figure 3. Importantly, as we shall see later, the
imum and minimum are bounded by the limits of the solitary wave. If we
more energy, the curve is raised further, and the wave amplitude is reduced
her: if the maximum amount possible is lost, we havé the uniform suberitical
am of area A,, given by the repeated root of curve CC, which is between
nd 4,

hus, a cnoidal wave train can be present behind the bore provided that the
rgy dissipated at the bore is between zero and the value corresponding to
ymplete hydraulic jump.
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Experimental observations (Sandover & Taylor 1962; Peregrine 1969) ha
shown that waves in channels with appreciably sloping sides have a tendency
break at the edges, thus if we have a wave system with amplitude defined by t
roots of BB in figure 3, there may be a continuing tendency for the waves to bre
at part or all of the crest, losing energy, thereby raising the curve and reduc
the wave amplitude until no further breaking ocecurs.

The above analysis, which predicts the wave form downstream of a bore
terms of the energy loss at the bore, which may be anywhere between zero an
that of a complete hydraulic jump, can be used to explain the scatter in resul
obtained experimentally by Benet & Cunge (1971). They plotted experimen
results for different values of the ratio Uy[(gh)?, where U, is the absolute veloct
of flow upstream, and found less scatter where this was zero or small. Also, th
noted that the critical breaking condition closely depended on the initial flow,
measured by the above ratio. This is & clear indication that energy loss in a bo
is closely related to the upstream flow conditions. We can imagine that a bo
progressing onto still water, where the absolute velocity of the fluid anywhere
the system is small, is much more likely to propagate with little breaking or lo
than the case of a bore on running water, in which surface irregularities a:
roughness and real-fluid effects all contribute to the development of ener
losses, breaking and the variability of results. The extreme case is that of
stationary bore on supercritical flow emerging from, say, a sluice gate, with
greatly enhanced tendency to breaking and loss.

Accepting then, the variability of energy losses in bores, we explain
scatter of recorded wave amplitudes; we have closely related energy loss to wa
form for given momentum and discharge. The present theory makes no pred
tion of these losses for given upstream conditions, but it does enable the do
stream waves to be calculated for a given energy loss. This may be comp
with the theory of Preissmann & Cunge (1967), which assumes that in all bos
the energy loss is the maximum possible, that based on hydraulic jump the
and that any wave system downstreain, assumed to be sinusoidal, must po
all of this energy. No allowance is made for variability in the amount of en
loss, and hence no explanation can be given for the scatter in experimental res

In this discussion of the applications of the present theory, we have limited
attention to a uniform supercritical flow subject to a finite energy loss.
theory, and figure 3, are more general than this, and we can study the behavi
of uniform flows or of systems of waves in which energy or momentum cha
occur. If a momentum decrease occurs, for example, when uniform suberi
flow passes over a positive step or some other obstacle in the flow, then bec
the coefficient of s in &, is 2(1 + &), always positive, the curve is lowered an
have the development of a wave system. When we cause enough loss, as ft
sluice gate across the flow, then we pass from uniform suberitical flow to unife
supercritical flow. If the downstream conditions are such that this flow cannc
supported, if the depth is too great, say, there will be some kind of bore, in w
case the technique is re-applied to estimate the nature of the flow downstr
and so on.
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4.3. Practical design note

include a practical note, concerning the design of channels of non-rectangular
oss-section in which stationary or travelling bores are expected to occur: the
ent theory shows a simple design criterion.

s the critical design parameter is the amount of freeboard at the sides of the
1annel, governing the amount of excavation or materials used, we are primarily
cerned with the maximum water level, rather than wavelength or wave speed.
rom figure 3 we see that the highest water level possible is that at the crest of
litary wave, corresponding to a bore with no energy loss. For this wave we
e a first-order expression for the amplitude:

o _ Ay UPBJgAy—1
™ By 1—4ByAy[B}

s we have a simple estimate of the necessary freeboard in terms of the Froude
umber, hydraulic mean depth and a dimensionless measure of the side slope.
s concept, of using the solitary wave as the design criterion, is borne out by
results of Sandover & Taylor, who noted that channel friction had little effect
the height of the first wave in an undular bore, indicating that losses before
first wave had been small, showing that it is close to a solitary wave.

factor to be considered in the design of non-rectangular channels is the
iation of the free-surface elevation across the cross-section as given by (3.27).
the type of regular cross-section encountered in practice (e.g. trapezoidal),
h,z) appears to be a well-behaved function which has a minimum at the centre
he channel and increases towards the banks (Peregrine 1968, 1969). From
7) we see that for wave crests, where 77, is a maximum and 7% has a maximum
ative value, that the highest surface elevation occurs at the sides of the
nnel, providing the design criterion. The quantity 7y is greater for periodic
ves than for the solitary wave, but as it is a second-order contribution we can
tinue to consider the solitary wave as the worst case.

Jifferentiating (4.7), the equation for the solitary wave, and substituting into
7) we have

(4.8)

= 1,2 Bo L“%B(I)AQ/_I_?E)
77crest(z) =h+ @yt §am:4‘(‘) PLB '—PlA Pl(k’ z), (4-9)
ng the variation across the crest in terms of the solution P(y, z). Animportant
itation to this consideration of cross-channel variation is that the channel be
broad, which will be discussed in the next section. For most types of channel
countered in practice, however, (4.8) and (4.9) give a rational design criterion
the necessary depth of channel based on the highest possible waves for a given

erating discharge and channel geometry.

4.4. Limitations of the theory

e nonlinear dispersive wave theory presented in §3 has several limitations,
th mathematical and practical. We can only use the theory to describe wave
ms which are of small amplitude and which are shallow (where the depth
flow is small compared with the wavelength).
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Applications of this theory are limited to channels which are of a regular cro
section and which are not broad. Peregrine (1968) has shown that for br
channels with sloping sides, the cross-channel variation is of such a magnitud
that one of the major assumptions (that wave amplitude is small) is violated

Conditions at the bank are complicated by two more factors. The waves m
break at the banks, giving local energy dissipation, which cannot be studied
the present theory. Also, because the local depth is small, nonlinearity is m
important near the bank. This is a cause of some of the effects noted exp
mentally (Sandover & Taylor 1962; Peregrine 1969), for which the present worl
can offer no explanation. These effects include the tendency for waves to
unsteady in broad channels, and for the crests to be curved in plan. The occ
rence of a ‘fish-tail’ wave pattern, which almost obscures the main wav
remains similarly unexplained.

I wish to thank Prof. Sir James Lighthill for his encouragement, interest a;
assistance throughout, and the Shell Company of Australia for continued supp.
in the form of a Shell Postgraduate Scholarship.

REFERENCES

Bexer, F. & Coxer, J. A. 1971 Analysis of experiments on secondary undulations ca
by surge waves in trapezoidal channels. J. Hyd. Res. 9, 11-33.
BensamN, T. B. & LicaTamnn, M. J. 1954 On cnoidal waves and bores. Proc. Roy.
A 224 448-460. :
Escorrier, F. F. & Boyp, M. B. 1962 Stability aspects of flow in open channels. J. H;
Div. Proc. A.S.C.E. 88, 145-166.
Favee, H. 1935 Eiude Théorique et Expérimentale des Ondes de Translation dans
Canaux Découverts. Paris: Dunod. v
KELLAND, P. 1839 On the theory of waves. Trans. Roy. Soc. Edin. 14, 497-545.
KorTEWEG, D.J. & DE VrIss, G. 1895 On the change of form of long waves advan
in a rectangular canal and on a new type of long stationary wave. Phil. Mag. 39
422-443. ‘
Laws, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
LeMoINE, R. 1948 Sur les ondes positives de translation dans-les canaux et sur le re
ondulé de faible amplitude. Houzlle Blanche, 3, 183-185.
PerEcriNe, D. H. 1968 Long waves in a uniformn channel of arbitrary cross-sec
J. Fluid Mech. 32, 353-365. .
PrreEGrINE, D. H. 1969 Solitary waves in trapezoidal channels. J. Fluid Mech. 35, .
PETERS, A. S. 1966 Rotational and irrotational solitary waves in a channel with arbit
cross-section. Commun. Pure Appl. Math. 19, 445-471. .
PreEissMaNN, A. & ConNeg, J. A. 1967 Low-amplitude undulating hydraulic jumy
trapezoidal canals. J. Hyd. Res. 5, 263-279.
Ravieicm, LorDp 1876 On waves. Phil. Mag. 1 (5), 257-279. (See also Papers, vol
pp- 251-271. Cambridge University Press.)
SANDOVER, J.A. & Tavior, C. 1962 Cnoidal waves and bores. Howille Blanci
443-455.
SmeEw, M. C. 1968 Long waves in a stratified fluid over a channel of arbitrary
section. Phys. Fluids, 11, 1853-1862.
SzEN, M. C. 1969 Asymptotic theory of unsteady three-dimensional waves in a ch:
of arbitrary cross section. SIAM J. Appl. Math. 17, 260-271.





