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Wave forces on vertical bodies of revolution
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e axisymmetry of a body which is diffracting water waves may be exploited to give
ne integral equation to be solved for the scattered wave field and forces on the body.
ch term in a previously established surface integral equation is shown to be expres-
le as a Fourier series, which is then integrated once analytically. The resulting one-
ensional equation is shown to possess singularities, previously ignored by Black
75). This equation, with series transformations and subtraction of singularities such
% all series are quickly convergent and that it has to be solved only along a curve,
uces computational effort by some three orders of magnitude. Results obtained by
s method give good agreement with previous analytical and experimental results,
en if a rather coarse numerical approximation is used.

Introduction

In 1950, John obtained a Green’s function for a fluid layer bounded below by a
rizontal surface and above by a free surface on which (linear) waves were propa-
ting. This function has been used by several workers, notably Garrison & Chow
72), to set up integral equations for the unknown magnitude of an assumed source
tribution on the surface of a body immersed in the fluid. After numerical solution of
is equation the scattered potentials, velocities and pressures may be obtained.
Black (1975) studied the scattering due to bodies which are axisymmetric about a
rtical axis and reduced the surface integral equation of Garrison & Chow to a one-
n. In §2 of his paper Black maintained that his Green’s function
as non-singular. Examination of his equation (2.4) shows that this isnot the case, and
at it possesses a logarithmic singularity. It is surprising that this did not appear in
s subsequent numerical calculations, but it is hinted at in his §5, where it is noted
at the convergence rate of the series term in his Green’s function was ‘roughly 1/n’.
§2 below we derive his function, showing how it is obtained simply from John’s,
d show that the terms at the singularity go as r™ cos (nB)[n, as r—>1, 6—>0. The
m of these terms to infinity gives In [(1—7)®+ 6], showing the nature of the singu-
rity.

In §3 we take John’s equations, as used by Garrison & Chow, and express them as
ourier series in terms of the azimuthal angle about the vertical axis of symmetry,
taining a one-dimensional integral equation analogous to that of Black. The singu-
rity in the kernel function is subtracted in §4, using a transformation of the series by

mensional equatio
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249 J. D. Fenton

subtraction and separate summation of asymptotic terms. After a second subtractio
of the six singularities, these are integrated analytically, so that all subsequent num
erical approximation is with smooth bounded functions. Subsequently the integr:
equation is approximated by a matrix equation which may be solved numerically. I
§5 the results of this, with transformation of series and subtraction of singulariti
similar to those in §4, are used to set up matrix expressions for forces, moments an
pressures on the body. Sample results for a truncated circular cylinder are glve
in §6.

Here we give the equations for a body of arbitrary shape, as used by Garrison
Chow: consider a fixed body of arbitrary shape and position immersed in a fluid
depth % above a horizontal surface. We introduce a rectangular co-ordinate syster
with the origin on the sea bed, z in the direction of propagation of waves, y perpendicu
Jar to this in the plane of the sea bed, and z vertically upwards. The wave train ha
amplitude a (wave height = 2a), wavelength A, wavenumber k = 27/A, and wa
frequency o = 27/T, where T is the period. Using irrotational flow theory and thi
linearized wave approximation, we have the following equations for a body of arb:

trary shape.
A veloclty potential @ exists:
D = Re g, ,2) e, (1
where ¢ is time and ¢ is a complex variable which may be split into incident and scaf
tered parts ¢ = b+ (1

where the incident term is well known from linear wave theory,

&, = —ga coshkz .
¢ o coshkh

in which g is the gravitational acceleration.
The scattered potential, as yet unknown, may be assumed to be generated by
distribution of sources with strength f(X, ¥, Z) over the immersed surface of the bod

bie.92) = 3= | JE.¥.2) 6.4 X, ¥, 2)d,

where the variables of integration (X, ¥, Z) are the co-ordinates of points on the we
surface of the body, denoted by 4. G is a Green’s function, determined by John ( 195@

@ = C,cosh kz cosh kZ[Y,(kq) — iJy(kq)] + 4 § C,, €08 (#,, 2) COS (fh, Z) K oo, 9)s
m=1

T h+y T (W) -V
v = og = ktanh kb,

where 2m(v2 —k?) o 412
C, =

the p,, are positive real roots of v+ u,, tan g, b = 0, and
= (@—-X)P+(y-Y)" (1

An alternative integral expression for G has been determined (see John 1950) but i
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ob as convenient for the present work because the independent variables are not as

mply separated.

The unknown source strength distribution must be such as to satisfy the boundary
ndition on the body surface, that no fluid passes through the surface. Combining
.2)—(1.4) and differentiating with respect to n, the local outwardly directed normal
» the surface, to obtain the normal fluid velocity, we have

2nf(x, y, z)+a%f fX,Y,2)G(x,y,2|X,Y,Z)dA(X, Y, Z)+471%%(x, y,2) = 0.
4

: (1.6)

quation (1.6) is to be satisfied at all points on the wetted body surface 4(x,y,2).

nce this integral equation has been solved for f, this is substituted into (1.4) to give
(2, 9, 2). From this, other physical quantities are easily calculated:

plp = 00ot = Re{—io(g+ ) e, (L.7)

here p is the pressure at any point and p is fluid density;
: 1 = Re{(—icfg) (¢ +d)e} on z=1h, (1.8)
here 7 is the free-surface elevation relative to the undisturbed level. Fluid velocities
re given by U = — VO = Ro{— V(g +¢,) et} (1.9)

he total force exerted on the body F and the moment of this force M are given by

F(t) = -LpﬁdA, (1.10)

M(t)=—Lp(rxﬁ)dA, (1.11)

ere fi is & unit outward normal vector on 4 and r is the vector from the point about
ich moments are taken.

The Green’s function as a Fourier series

n this section we examine the function G defined in (1.5), convert to cylindrical
ordinates and write it as a trigonometric series. Each term in the series is shown to
ve a logarithmic singularity.

Introducing cylindrical co-ordinates we write

72 =a2+y2, R?=X2+Y? tanf =y, tan® = Y/X;

hen g2 = R?+17%—2Rr cos (0 —0). Making use of Graf’s addition theorem (Watson

44, §11.3) gives © ’
= § SR cosi0-0), |

J
J=—®

Yo(kq) = > Yj(k_;) Jy-(klf) cosj (60— 0), (2.1)

j=—o

@ R\ .
Kolpm®) = X Kj(:u’m;) Ij(/"’m 7.) cosj(0—O),

j=—
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where the upper of the alternative arguments is used if r > R and the lower otherwi
In each of the three series the — jth term is equal to the jth term. Introducing a K
necker delta we may write

Jo(kg) = j;ﬁo (2 —8,0) Jj(kR) Jy(kr) cos j (0 — ©), @.

the other two expressions being transformed in the same way. Substituting into (1.5)
we have a doubly infinite series, but one in which all independent variables have be

separated:
G = Cycosh kzcosh kZ 3 (2—8,0) J,.(k f) (Y, (k R) - @J](k ;)) cosj (6—0)

i=0
@ ® 7 R .
+4 ZIC'mcos,umzcos,umZ .20 (2—05) Kj(/sz) Ij(,um 7') cosj(0—®). (2.
m= j=

This is similar to Black’s equation (2.4), the only difference being in the angul
dependence: (2.3) contains cosj(6 — ©), which is cos j& cosjO + sin j6 sin jO, of whi
Black’s expression contains the first term.

The nature of the singularity can be established by considering (2.3) as

(r,0,2)>(R,0, 7).

Examining the first part, all terms of the series in j are finite. However for the doub
infinite part this is not so. Let

G = Cy cosh (kz) cosh (kZ)J,.(lcf) (Y,(k R) -iJ,.(k;)) (2

and r R
G]’m = 401)'1 cos (l“m Z) cos (:“m Z) ‘KJ(:”’m R) 'Z.:)<:um 7,)- (2'

Then we can write (2.3) as
¢ = §O(G,.o+ T G,.m) (2—8,9) 08 (0 — ©). (2.4
j= m=1

As m—>o0, it is easily shown from (1.5) that g, —>ma/k+ O(m™1), C,,— 1/h+ O(m™
while the product of the Bessel functions goes as

h 1
= -3 - —
5 (Rr) > eXP (—mn|R—r|[h).

Thus G, — 2(mm)~Y(Rr)~} cosmnz[h cosmnZ[hexp (—mm|R —r|[h)
~> (mm)~Y(Rr)~% exp (— mm| R —r|[h) (cos mm(Z + z)[h + cos ma(Z —z)[h).

Except for the cases z— Z — 0 or h, which will be treated in the next section, it is t
second term which is important as z—~ Z, giving

G~ (mm)~Lexp (—ma| R —r|[h) cosmm(Z —2)[h
and Qi ~ % ;;-exp(—mﬂ]R—r}/h)cosmﬂ(Z—z)/h

m=1 m=

~ —3In[1—2exp (—7|R—r|[h) cosm(Z —2)[h+exp (— 27| R —r|[h)]
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ey 1961, §536), which as z—Z and r-> R gives

3 Gy~ B [(B=12+(Z—2)), (2.5)
m=1

wing the logarithmic nature of the singularity.

Reduction of integral equation

In this and succeeding sections we limit our attention to bodies of revolution, as
own in figure 1, formed by rotating a generating curve about the vertical axis. We use
e integral equation (1.6) together with the Fourier expansion of the Green’s function
4) to obtain a Fourier series, the coefficients of which are integral equations valid on
e arc AA’ of figure 1. Subsequently it is shown that only the zeroth and first terms
ed be solved to give the forces on the body.

The source strength f is a function of position on the body and may be written as
s, 0), where the co-ordinate s(r, z) specifies a point on the curve A4’. As the problem is
metrical about the x axis, we may expand fin a cosine series:

F6,0) = 3 fis) coslh. (3.1)
=0
ubstituting (3.1) and (2.4) into (1.6) we have
o 0 ©
- 27 on;(s) cos l0+a—nf [ _Z £i(8) cosl@]
X [§ (2—00) (G]0+ Z G,m) cosj(0— @)] dA +47ra¢z =0. (3.2)
§=0

e also have (1.3) for ¢,, rewritten in cylmdrlcal co-ordinates:

¢, = ga’E?_s_h_]% gtkrcosf,
S o cosh kh

is easily shown that the operator 8/on for an axisymmetric body traced anticlock-
8618 8fon = 2'0/or — 100,

here z' = dz/ds and r’ = dr/ds. Performing the operation we have

ikr cos 0
0p; _ gaket™ ! (r’ sinh kz — 12 cos 6 cosh kz)

‘on ~ o coshkh
- ga’k 1o W @ _ "
~ ocoshkh (r' sinh kz — iz’ cos ¢ cosh kz) z§o (2 8y) (k) cos 10
gak

1 s ’
o'coshkhlz (2 — &) {7’ sinh (kz) Ji(kr) — 2’ cosh (kz)J; (kr)] cos 0, (3.3)

hich shows that the incident velocity field has been expressed as a Fourier series with

oefficients that are functions of r and z.
Now we can rewrite the second term in (3.2), with d4 = Rd©dS, where dS is an

ement of A4’, so that it becomes

o5 ) % [(Gj0+m§;1Gjm)(2——8m)R f;coswcosj(a-@)]d@d& (3.4)'

onJ)s <o
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F1cURE 1. Section through axisymmetric body with co-ordinate systems. Equation (3.6) is to b
satisfied at all points on the generator A4’.

Integrating with respect to ® we have

o 3, [-‘9— f f,(S)R(Gm+ > G,m) dS] cos 16, (3.5
i=olon Jg m=1

From (3.1)-(3.3) and (3.5) we see that the integral equation can be expressed as
Fourier series, with each term satisfying the equation. Thus for each [ we can write

—Jils) ff, (z———r )(G,0+ z:G,m)dS

22— 8,y) gakit

o cosh kh [ sinh (kz) Ji(kr) —2 cosh (kz)Jy(kr)] = 0, 1=10,1,2,..., (3.6

and we now have a series of one-dimensional integral equations in place of the origina
surface integral equation.

4. Solution
4.1. Numerical approximation by a matriz equation
Equation (3.6), valid on the curve which generates the body, is solved numerically b

dividing the curve into N line segments and solving the equation at the centre of each
We define i, to be the complex dimensionless source strength at the centre of element 2

o (14 0y) cosh kh o,

Vi =l 4gak (4

and b, to be the dimensionless quantity
b; = z; cosh (kz,) Ji(r,) — v sinh (kz;) Jy(kr;) (4.5

and assume that ¥ is linear over an element. Then (3.6) can be written as

N
—Y+ X ¥jay="5, i=1,..,N, .3
j=1 ‘
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ere the element a;;is the integrated contribution of the kernel function over element

0,0 d
g = ijR(zi =t} 5;) (G,o+m§1G,m) ds. (4.4)
viously (4.3) can be written as a matrix equation
[ay;— 0.1 (] = [b], (4.5)

hich must be solved for [¢,].

4.2. Generation of matrix elements

ow we need to obtain an expression for a,; from (2.4) and (4.4). The first part of the
rnel function is simply handled, for Gy, is continuous and finite. The real part of
,o/or has a discontinuity at » = R, however any numerical errors associated with this
11 be swamped by numerical treatment of the singularity, so that we use a midpoint
proximation throughout and can write

a0, _ ’ Jl(kRj) (Yiykr;) —aJy(kr;))
R—a—n— dS = kCyR; L;cosh kZ, [zi cosh kzi{ Titler) (Gder,) — iilr,)) }

.. J(kRj) (Y(k?‘,;)—'iJ(kri))
—risinh ke | o )~ el @9

Sj

here integration has been approximated over the element j of length L;. In this
pression and subsequently, the upper alternative in the curly brackets is to be used
R; < r;, the lower if R; > r, and the mean of the two if R; = 7;.

The next term, fE (0Gy,/on) RdS, is much more difficult to handle, as the series
es not converge at some points. Performing the differentiation we have

L(pn R) e 7) Kz(/tmf)}),

Oim = 2. #1tm O C°S”mZ{Kz(/»mR>} (= costme{ |+ sin i Hewn )V
4

hich we have shown in §2 to be non-convergent at (r,2) = (R, Z). If the asymptotic
rm of Gy,, as m— oo is'denoted by G, after some manipulation we can show that

_8_?_1,?”‘,‘_,1 = —2hY(Rr)texp (—mu|R—r|[h) [(—%) sin"ﬁ;:—zsin?—nhlz
({+}V_zi'_r,_vr'|R—r|+4n2—1th—r[r,)COSMsinwE_z
— | mmw mm 8mr Ry k h
+ ({ +} V—Z—zi) sin mnZ cos T
—} mm h h
+), vor—R)? ,h4P—1 2’h4%+3  ver mnZ  mnz
+({_}z+ mm "R Smx 7 Smm +37@7T)"°ST°°ST]
+O(m~2exp (—mn|R—r|[h)). (4.8)

'By subtracting terms (4.8) from each term in (4.7) we have a series that converges
everywhere as m~2 at least. Thus we can transform (4.7) to read

5 %
> 6Glm . (aGlm _ aGlm) + > aGlm (49)

on on on on’
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where the first sum can be computed with guaranteed convergence. The second sum
with terms as given in (4.8), has closed-form expressions, as given by Jolley (1961
§§499, 500, 536 and 540). Thus we have

Eaa,m 7~ 1(Rr)—%[{ } 2'y(cos X —7) {—} Z'y(cos A7)

on 1—2ycosX+7y? 1—2ycosA+y?
rysinX  r'ysinA
1—2ycosX+7y% 1-—2ycosA+y?
vz’ hz' 412—1 b2’ 412+3 v’ .
+(§;(T—R)—E——1ﬁ+7—ﬂ;‘+2—7T‘(Z+2))1n(1—2’}/8082+’}’)

vz k' 4P—1 R 4PP+8 v 2
% - 7 7o v Ton +%(Z—Z))In(1—2ycosA+7)

(
)7 o (o) 5 ()
(

(e () (2825

where y =exp(—a|R—r|[h), A=m(Z-2)k, T =mn(Z+2)k,

-+

+

and we can show that each term in (4.10), except the tan—! quantities, shows singular
behavmur, either first order or logarlthmlc Let S, represent the sum of the six smgu-

T s R
SIS IR
+(Ewr) (R + (Z =20
I (R (B2 (.11)
and z%cfg’ﬂ=(zaf’m CARES

where the term inside the brackets is everywhere finite and cntinuous, with the
singularities subtracted. In our numerical approximation of the integral equation we
have taken the source strength outside the integral (§4.1); to the same accuracy we
can do the same with E, so that we may write

RZ—a—G—lZ-"dS = R; Z—a—cﬁ'—”dS
S; on S on

_ 06, 0GL, oa,
_R,.L,.[z(W—W)JF(z —S)]+R,-fstGdS. (4.12)

We can integrate the last term analytically, obtaining a finite contribution to a,
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mbining all the contributions we have a very long expression for the matrix co-
cients a;;, but one in which all series converge quickly and all terms are finite. This
ression is given in the appendix.

4.3. Solution of matrix equation

uation (4.5), which we are to solve for ¢, has a complex matrix [a;;— §;;] multi-
ing a complex column vector [¢;], the result being equal to a real column vector
. There are techniques available for separating the real and imaginary parts of the
trix and solving a series of matrix equations (see, for example, Hogben & Standing
4). This seems unnecessarily complicated, for in the present work the matrices
enerated have heavily dominant leading-diagonal terms because of the &;; contribu-
ons, hence iterative techniques may be used. In the process of testing the present

k, a Gauss-Seidel method with complex arithmetic was used. That is, if we have an
proximation ¥/¥ to the solution after k iterations, a better approximation is had by
bstituting this into the re-arranged matrix equation (4.3):

-1 N
b~ (z > )w;faw) (4-13)
Il j=1 j=itl 2=1,2,...,N.

2
a;—1

is process is repeated until it has converged.

4.4. Estimate of saving with one-dimensional equation

onsider a fixed sphere which is scattering waves. If the sphere has a radius R and the
rface is divided into a number of planar elements of side length S, then the number of
cets is approximately 47R2[S2. If the above one-dimensional method is used, the
umber of line segments is approximately 7.R/S. The amount of computational effort
quired to set up and solve the matrix is proportional to at least the square of the
umber of unknowns, hence the ratio of effort involved using the present method to
at with a surface integral equation is ~ 4(S/R)2. If we need the total force on a body
e need to do the I = 0 and I = 1 cases, so the ratio is (S/R)2. If we assume S/E = {5,

i 1
e ratio ~ ggjy-

. Forces on body

Having solved for ¥, and hence f,(s;) we may now obtain the scattered potential
. by taking (1.4), with all terms expanded in Fourier series, and subsequently sub-
ituting into (1.7), (1.10) and (1.11). We have

1
4= i | s6aa
quation (1.4)] and we have written

f(5,0) = ¥ f(s)cosl®, dA = RdOdS
1=0 :

[equation (3.1)] and G = §0 (2—=8;) (Gjo+ ZGy,,) cos j(0 —0O)
j=
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[equation (2.4)]. Substituting into (1.4) and integrating with respect to ©, we obtain

¢s("" 05 2) = % ¢sl(’r’ Z) cos lﬁ,
=0

where

bo(r,7) = 1 fs SR [00 cosh () cosh (k2) (Y,(k 1:),7, (Ic 12) —iJ(kR)J, (kr))

d r R
+4. 3 0005 (1,2) 08 (i 2) Ko ) K ) |85 65
m=1 7
Now we write this for an element ¢ on the body, using the same degree of approx
mation as in §4:

puls) = 1 3 oo,

Where 01-]- = .R;,J‘ (GIO+ 2 Gl-m) dS. (5.
Sj m=1

The calculation of ¢; presents the same problems as that of a;, for the integrand has
singularity because of the non-convergence of the series in m. In this case, however, it i
logarithmic rather than first order, and the manipulations are somewhat shorter
Performing asymptotics and subtraction of singularities similar to those in §4, w
obtain the expression for ¢,; given in the appendix.
From (5.2) and {4.1) we have
2gaks N
Pals;) = WEI Vit (5.3

and from §3 we have ga cosh kz .

i =— o cosh kh

ikr cos 0,

which may be written as ¢ = 3 dycosld,
=0

with 2gacoshkz 7

P == ocoshkh (1+ Szo)Jl(kr)’ (5.4
giving Ais;) = Pals;) + bals;)
_ 2gat ” : ‘
= (158, cosh (k ]E‘,I ¥ ¢y~ cosh (kz;) J,(k?'z-)) (5.5

for the Ith component of the combined incident and scattered velocity potential.
From (1.7) and (1.10) we have

F(t) = Re [ipa'e—‘"’t fA (P + )1 dA] ,

in which il =iz cos®+j2'sin®@—kr', dA = RAOdS.

Substituting the Fourier expansion

¢=¢i+¢s=§0¢,cosw
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FigURE 2. Variation of (a) dimensionless drag force and (b) dimensionless vertical force with
wavenumber for s truncated circular cylinder of height 0-7 and diameter 0-4 of the water depth
1. @, experimental results from Hogben & Standing (1975); , results from the present theory
_using the elemental subdivision shown in the inset in (a). F, = horizontal force, F, = vertical
force, p = fluid density, @ = wave amplitude, D = cylinder diameter, k& = wavenumber.
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025
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3
Ro125F
=

0

Fieure 3. Dimensionless moment about the base of the cylinder.

and integrating with respect to ¢, the orthogonality of the trigonometric terms shows
that there is no transverse force, while only the [ = 0 term contributes to vertical forces
and the [ = 1 term to horizontal forces. Thus

F(t) = Re [iﬂpae—wt f . R(iz'¢y(s) — 20 $y(s)) dS]

= Ro inpoeiet 3, L, Ry(iz] dion) —i2ri (s, (5.6)
n=1

Similarly we have (1.11) for the moment on the body. Performing the manipulations
we find that there is only a (‘pitching’) moment about the y axis, given by the I = 1
term:

N
M(t) = j Re [fzwpoe—fvt 5% Lyt y(52) (2= 2) 72 m],
n=1

where z, is the elevation of the point about which moments are to be taken.

6. Results

A computer program was written for bodies of arbitrary cross-section. As a simple
test this was applied to a right circular cylinder fixed to the bed in water of depth A: the
cylinder was 0-7h high and had a diameter of 0-4%. These are the same relative dimen-
sions as those of one of the cylinders tested by Hogben & Standing (1975) at the Nat-
ional Physical Laboratory, which gave the experimental points on figures 2 and 3.
Results from the calculations of the present work are shown by the continuous line in
each case. Agreement for this case, as for others tested, was good. The elemental
subdivision, shown in the inset of figure 2 (@), had 11 elements. Convergence of the
series for the Green’s function, given in the appendix, was extremely rapid, so that
generally 4-6 terms, rising to 20 at the singularities, were sufficient to achieve an
accuracy of 0-0001.

The computer program, using the theory and numerical procedures described in this
paper, was written for axially symmetric bodies of any cross-section. Details are
available from Dr L. R. Wootton, Atkins Research and Development, Epsom, Surrey.
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ould like to thank Dr Wootton and colleagues for the encouragement and advice I
eived during the execution of this work.

ppendix ,

Here we give the expressions for the coefficients of the two main influence matrices
Jescribed in the body of the paper. The first, a;;, is the normal velocity at the point
r,, 2;) on the body cross-section due to a unit source at the point (R;, Z;); similarly ¢,
ives the induced velocity potential. Where two alternatives in curly brackets are
given, the upper is used if B; < r;, the lower if B; > 7, and the mean of the two if
v = 15,

JkRy) (Yylor;) —iJ é(km)}

, e Jz(kRj) (Y,(krl) - @Jt(k%))
~risinb ’“""’{Jl(km (G(kR;)—ih(kR;))
e Lem R\ (., {Ké(/tmn-)}
+ 2 [4"’” O By Ly €05 1 Z"{Klwm m} (zi 08 Mm %4\ 1, ;)
. Kyfom )})
+ry8inu,, 2,
TeRIn g {Iz (tom By)
+ E}ij (By[r,)t exp (—mm|R;—7;|[h) (cos m;:Z" cos ﬁ%—;:—%

y ({+}Z%+V(ri—;TRj)z;:—é—’-b 472 —1 z_il& 41243 +vzir§)
- i

R; 8mm Smir mir

. mnZ; mmz, vZ., 2, . mnZ; . mnz, vZ.z,
+sin ! cos "“({4-}7’773)—{-3111 Isin ’“(— 2 "“)

h Ro\— h h mm
maZ; . mmz ((+\vez o, vri|Bi—ri hrf| R;— ;| 4l2—l>)]
sy msn Ty ({ - } ma 0 mm + By, 8mar

+2, 3 ()" exp (~12, -y
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