
Bull. Austral. Math. Soc. 26 (1982), 81-105, Retyped in 2011

The numerical solution of convective equations1

J. D. Fenton

Communicated by James M. Hill

Abstract

Finite-difference and spectral methods for the numerical solution of partial differential equa-
tions with convective terms are discussed. The finite accuracy and limited stability properties
of such schemes are shown to follow from their non-recognition of the convective nature of
the solutions which they seek, unlike schemes based on the use of characteristics. A numeri-
cal method for convective equations is proposed which incorporates the solution nature. The
method is obvious and can be trivially derived, but seems not to have been exploited as it might
have been. It uses interpolation only, rather than numerical differentiation, and for linear equa-
tions with constant coefficients it is exact and unconditionally stable. Although for more general
equations the basic two-time level scheme is of relatively low accuracy, it can be simply used
to generate a hierarchy of single-step multi-level methods of high accuracy.

1. Introduction

It is a widely-held view that numerical differentiation is an operation which should ideally be
avoided, and yet the approximation of partial differential equations by finite-difference approxima-
tions to derivatives lies at the heart of computational fluid mechanics, particularly in the simulation
of geophysical problems such as the motion of the sea and atmosphere. Such finite-difference ex-
pressions and methods are simply derived from the original equations, are computationally cheap,
are capable of use in regions of arbitrary geometry, and they provide information in a convenient
Eulerian sense at points fixed in space. While each finite difference approximation tries to mimic
the differential equation, most make no attempt to incorporate the nature of the solution.

Most of the equations which are to be solved in fluid mechanics are of a rather similar convective
nature, containing a linear time derivative term, plus convective terms in which velocities multiply
spatial derivatives, then perhaps some terms due to pressure gradients, viscosity, rotational effects,
and so on. The dominant feature of solutions to these equations is their essentially convective or
travelling-wave nature.

A number of other methods, involving the use of characteristics, do attempt to build in the wave-like
nature of the solutions. These, however, seem to find greater favour with theoreticians than with
problem solvers. While characteristic-based methods have some very attractive features, such as
usually-unrestricted stability, and the ability to describe the propagation of discontinuities, relatively
little numerical analysis has been performed on them, often their accuracy is quite low and not
made specific, and information may not be provided when and where it is wanted. Also, in many
problems, characteristics do not exist.

This paper attempts to examine the relationships between the solution of a simple convective equa-
tion, and finite-difference and spectral approximations to that solution, as a model for rather more
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Figure 1. Three typical characteristics, including that passing through (x, t)

general systems whose solutions show the same behaviour. The equation is

∂θ

∂t
+ u

∂θ

∂x
= 0 for −∞ < x <∞, t > 0 (1)

which describes the variation of a scalar θ(x, t) in one space dimension x and time t, as it is carried
by a velocity field u(θ, x, t) , subject to the initial condition

θ(x, 0) = f(x), −∞ < x <∞. (2)

Subsequently a numerical method is developed which, although derived using characteristics, is
given in a form so that θ may be solved at given fixed values of x and t , as with finite-difference
methods. The method is unconditionally stable, and for certain problems is exact. Instead of nu-
merical differentiation, the spatial operations are those of interpolation, which is less susceptible to
error. It is suggested that approximation by cubic splines is the most robust, accurate and conve-
nient means of interpolation. As far as representation in time is concerned, the method is nominally
of first-order accuracy only. However, it is shown how solution methods of high order are easily
generated.

2. An exact solution

The differential equation (1) shows that on a characteristic curve given by dx/dt = u(θ, x, t) the
convective derivative of θ is zero, thus θ is a constant. To solve for θ(x, t) it is necessary only to
find the value of x , x0 say, through which the characteristic passes at t = 0 . The situation is shown
in Figure 1: for a given (x, t) one has to find which of the characteristics emanating from the x axis
passes through (x, t) .

The solution is

θ(x, t) = θ(x0, 0) = f(x0), (3)

from (2). The differential equation governing the characteristic is dx/dt = u(θ(x, t), x, t) , in
which θ is a constant, and the initial condition is x(0) = x0, which is as yet unknown. If the
solution is

x = x0 + g(θ(x, t), t), (4)
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Figure 2. Iterative calculation of x0

then eliminating x0 between (3) and (4) gives the exact but implicit solution

θ(x, t) = f(x− g(θ(x, t), t)). (5)

This is in a form suitable for fixed-point iteration, such that for given x and t , and some estimate θn
for θ(x, t) , another estimate is θn+1 = f(x− g(θn, t)), the procedure being repeated successively.
As shown in [2, §3.3], this will converge to a solution provided |df/dθ| < 1. Perhaps the least
arbitrary initial estimate θ1 is θ(x, 0), which is given by f(x), in which case (5) can be written as
the explicit iterated function

θ(x, t) = . . . f(x− (f(x− g(f(x), t)), t)) . . . . (6)

The physical significance of this is simple. From (4), g(θ(x, t), t) = x − x0 is the horizontal dis-
placement of the characteristic as it travels from (x0, 0) to (x, t), so that g(f(x), t) is the horizontal
displacement of the characteristic through (x, 0), and x

(1)
0 = x − g(f(x), t) is the value of x at

which that characteristic would intersect the t axis if it were displaced so as to pass through (x, t).
The next iteration then uses this value of x(1)0 to calculate the next characteristic, subsequently dis-
placed to give x(2)0 and so on. This process is shown geometrically in Figure 2.

As an example, consider the quasilinear problem

∂θ

∂t
+ θ

∂θ

∂x
= 0,

with the initial condition θ(x, 0) = f(x) = − tanhx. Solutions of such a problem show gradual
steepening, as large values of θ travel with a corresponding large velocity θ. Using the method
described above, it.is easily shown that g(θ, t) = tθ, so that the implicit solution is θ(x, t) =
− tanh(x− tθ(x, t)) , and the explicit iterated solution is

θ(x, t) = . . .− tanh (x− t (− tanh (x− t (− tanhx)))) . . . .

The condition that this iteration converges becomes t sech(x − tθ) < 1. Thus, the method will
converge only for finite t. The significance of this can be shown by considering the origin x = 0
,at which θ(0, t) = 0 , so that t < 1 for convergence. Locally, θ(x, 0) is a straight line for x small,
whose horizontal velocity increases linearly with θ, thus the profile of θ rotates as a straight line in
the vicinity of the origin, until at t = 1 when the iteration method fails, the profile has a vertical
tangent at the origin. It can be shown that this corresponds to two characteristics crossing at (0, 1).
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3. Approximate solutions

For rather more general problems than the system (1) and (2), such as those involving more than
one differential equation in more than one space variable, the luxury of an exact solution is not
available. Here, two different types of approximations to (1) and (2) and to the solution (5) will be
developed, which are applicable to more complicated problems.

A convective approximation
The most obvious approximation to the solution obtained through use of characteristics is to assume
that all characteristics, locally at least, are straight and parallel so that g ≈ u(x, 0)t, and solution
(5) becomes

θ(x, t) ≈ f(x− u(x, 0)t), (7)

If the velocity u is constant, all characteristics are parallel straight lines, and (7) is an exact solution.
If the velocity is a function of x or of t , then it is an approximation. It does, however, incorporate the
convective nature of the original differential equation and allows for travelling wavelike solutions.
Henceforth in this paper it will be referred to as the convective approximation, on which convective
methods are developed. It assumes that the value of θ at (x, t) is that which was upstream at time 0,
at just the right distance to have been carried downstream at a mean velocity equal to that at (x, 0).

Taylor series approximations
Consider the exact infinite Taylor expansion for θ(x, t) in terms of the initial θ(x, 0) and its deriva-
tives:

θ(x, t) = θ(x, 0) + t θt(x, 0) +
1
2
t2θtt(x, 0) + . . . .

If the differential equation (1) and the initial condition (2) are substituted into this, then

θ(x, t) = f − tufx +
1
2
t2
¡
u2fxx + uux fx − utfx

¢
+O

¡
t3
¢
, (8)

where f = f(x) and u = u(x, 0). Finite difference and spectral methods use this expression or
part of it, and approximate the spatial derivatives numerically.

Comparison of accuracy
The level of accuracy of the convective expression (7) can be found by writing it as the infinite
Taylor series

θ(x, t) = f − tufx +
1
2
t2u2fxx − . . . . (9)

Comparing (8) and (9) it is clear that (7) has the relatively low order error term O(t2); it makes no
explicit allowance for a changing velocity, as shown in the second order terms in (8), which equation
has made no attempt to include the convective nature of solutions of the differential equation. It will
be shown that this latter omission has some important consequences.

As the solutions (7) and (8) are valid only for small t, in any numerical solution a number of small
time steps will have to be taken. The two schemes are here re-written so that if at a given time t,
θ(x, t) and u(x, t) are known, denoted by θ and u respectively, then θ(x, t+∆) after an increment
of time ∆ is given by

(i) the convective scheme as

θ(x, t+∆) = θ(x− u∆, t) +O
¡
∆2
¢
, (10)

while (ii) the Taylor series becomes

θ(x, t+∆) = θ − u∆θx +
1
2
∆2
¡
u2θxx + uux θx − utθx

¢
+O

¡
∆3
¢
. (11)
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Figure 3. Instability of forward-time centred-space numerical scheme. Circles show initial profile. The
crosses show the profile at the next time step, for u∆ = δ.

4. Finite difference methods

These are based on approximations to the Taylor series (11). Here, only explicit schemes will be
described.

First-order schemes
Consider (11) to be truncated after the second term

θ(x, t+∆) = θ − u∆θx +O
¡
∆2
¢
, (12)

the error term is of the same order as in (10). If it is assumed that the value of θx(x, t) is given by
the centred-difference expression θx(x, t) = (θ(x+δ, t)−θ(x−δ, t))/2δ+O

¡
δ2
¢
, in terms of the

point values of θ at grid points x± δ , then the scheme (12) can be represented as shown in Figure
3, for some points near a local extremum. According to (12) the value of θ(x, t+∆) is equal to that
at θ(x, t) plus the change obtained by travelling along the tangent at x a horizontal displacement of
−∆u . For a time step ∆ such that ∆u = δ the values thus predicted are shown by the crosses in
Figure 3, the wave defined by the crosses being shifted to the right. It is obvious that the scheme
exaggerates extrema and would be unstable. The failure of this simple and obvious scheme is well
known and can be shown by the less-graphic but more rigorous von Neumann method of stability
analysis to be unconditionally unstable (see Noye [4,§5.1]).

This instability has often been attributed to the use of downstream information through the use
of θ(x + δ, t),however the above geometric interpretation suggests that it is not the use of the
downstream values per se that causes the instability. Rather, it is the poor attempt of the scheme
(12) at extrapolating the upstream shape of the wave, to predict what it is at the next time step.

Now consider the scheme (12) but where θx is approximated by the backward-difference expression

θx(x, t) = (θ(x, t)− θ(x− δ, t))/δ +O (δ)

which actually is less accurate than the centred-difference expression. Predicted points now lie on
the line joining θ(x, t) and θ(x − δ, t). Results for u∆ = 1

2
δ are shown in Figure 4(a). The

method seems to be stable, however numerical diffusion or damping becomes apparent because of
the relative poorness of straight line interpolation, and is emphasised by the results given for the
succeeding time step. For a value of u∆ = δ the scheme is exact, and corresponds the convective
expression, because (12) now gives θ(x, t + ∆) = θ(x − δ, t). However, in the general context
of possibly quasi-linear equations this value of u∆ cannot be ensured, and the exactitude is not an
important result. For u∆ = 3

2
δ as shown in Figure 4(b) it is clear that the method is unstable, as it

would be for any u∆ > δ, when the straight line interpolation becomes extrapolation. This stability
criterion can be established by the von Neumann method [4, §5.17].

To compare various schemes a model problem was posed, that of a sharp-crested profile, defined by
only five points, being convected by a constant velocity. Because of the gradient discontinuities this
is a rather severe test of approximation methods, however it is a useful example as it shows in an
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Figure 4. Conditional stability of upwind difference schemes. ◦ Initial profile, + first time step, • second
time step; (a) is for u∆ = 1

2
δ, showing numerical damping of the solution; (b) is for u∆ = 3

2
δ, showing

instability.

exaggerated the phenomena to be demonstrated. Results are shown in Figure 5, after a total time of
1.5 δ/u when the wave should have travelled a distance of 1.5 grid intervals. In Figure 5(a) results
are shown for a time step such that u∆ = 0.5, necessitating 3 steps to reach the stage required. The
numerical damping is obvious. A value of u∆ = 1.5 was used to obtain the results in Figure 5(b).
After just one step, the dramatic instability can be seen.

Second-order (Lax-Wendroff) schemes
The defects of the first-order schemes have been seen to flow from the inadequacy of their spatial
approximation, thus the use of higher-order schemes is suggested. If all the quadratic terms in (11)
are retained the methods are generally known as Lax-Wendroff, whereas if the terms containing
variation in u are not included this is known as Leith’s method. Both are described in Roache
[15, pp. 75-83, pp. 244-250]. Typically these methods interpolate over two grid intervals by a
parabola, defined by the three points θ(x− δ, t), θ(x, t), and θ(x+ δ, t) to give values of θx(x, t)
and θxx(x, t).

The Leith/ Lax-Wendroff method for u∆/δ = 1/2 was used on the test problem described above,
with results shown in Figure 5(c). The approximation is better, the numerical damping is less, but
the well-known phase error of the method is apparent, as the numerical solution lags behind the
exact solution. The rather irregular curves joining the computational points are the interpolating
parabolae, drawn upstream over the interval in which they are required to interpolate. The compu-
tational points at the next time step would be those at the mid-point of each curve for u∆/δ = 1/2.
It can be how the use of piecewise- quadratic approximation can lead to irregularities in the profile.
The situation is worse in Figure 5(d), for u∆/δ = 3/2, where the plotted points arose from a single
time step and the initial parabolae used to extrapolate upstream, outside the interval containing the
three defining points. The results are even more wildly divergent than those shown in Figure 5(b)
for linear extrapolation, not so surprising when one considers the behaviour of parabolae compared
with that of straight lines. The method seems to be unstable for u∆ > δ, for the same geometric
reasons as for linear extrapolation, and this stability criterion is the case [5, p. 78].
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Figure 5. Comparison of different schemes for the problem of a sharp-crested profile being convected by a
constant velocity, after a time such that the profile has moved 1.5 grid intervals. The dashed line shows the
exact solution., the small closed circles show the numerical results at the grid points; they are connected by
the interpolating function used in each case.

Higher order schemes
Kreiss and Oliger [3] studied several higher order schemes and concluded that higher-order schemes
are indeed more accurate. They considered a sharp profile as in Figure 5, but they took grid intervals
1/10 of those in Figure 5, and time steps such that u∆/δ = 0.1; that is, they interpolated upstream
only 1/10 of a grid interval, in which case high-order interpolation should be safe and accurate. For
demanding cases, results from the present work suggest that the use of higher-order methods with
their attendant higher-degree polynomial interpolation may be hardly worthwhile. The above geo-
metric arguments show that for any local polynomial approximation, the stability limit of u∆/δ = 1
remains the same, and there seems to be the danger that higher order schemes are less robust.

Other timestepping schemes
There are many other schemes in addition to the two time level (that is, t, t +∆) one step explicit
schemes discussed above. For example, by writing the Taylor expansion (11) for t − ∆ and sub-
tracting that from (11) the ”leap-frog:’ expression is obtained, in which the error terms are third
order:

θ(x, t+∆) = θ(x, t−∆)− 2∆u θx(x, t) + 0(∆
3). (13)

If the θx(x, t) is approximated by a centred-difference expression, (13) is stable provided u∆/δ 6
1. Geometrical demonstration of stability for such a scheme is rather more complicated than for the
two time level schemes, and will not be presented here. schemes, which involve the solution of a
number of equations at each step, are generally stable. However stable they are, they still make use
of lower order spatial approximation and numerical differentiation, and have much in common with
the methods already described.
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5. Spectral methods

All finite difference methods are based on local approximation. In this section the application of
global approximation by spectral methods will be discussed, Fourier series the simplest example.
The methods described are pseudospectral, in that most operations are performed in physical rather
than spectral space. will be shown that conventional spectral methods have few advantages over
finite difference methods.

Consider a finite computational region −L/2 6 x 6 L/2 divided into N equal intervals, and the
solution θ(x, t) represented by the point values θm(t) = θ(mL/N, t), for m = −N /2, ..., N/2.
Because of the implied periodicity in the use of Fourier series, θ−N/2 = θN/2. The N values can be
transformed by the (inverse) discrete Fourier transform

Θj(t) = D−1(θm(t); j) =
1

N

N/2X00

m=−N/2

θm(t) exp(−i2πmj/N) (14)

for j = −N/2, . . . ,+N/2. The summation overm has a factor of 1/2multiplying the contribution
at ±N/2 . This ’trapezoidal’ summation is denoted by Σ”. The inverse transformation can be
obtained in relatively few operations using standard fast transform techniques and exploiting the
fact that the θm are real only, so that the number of operations is of order N/2 log2 (N/2) if N is
equal to some power of two.

The coefficients Θj(t)can be transformed using the discrete Fourier transform to recover the point
values (see [1, §6.37], which has notational differences):

θm(t) = D(Θj(t);m) =

N/2X00

j=−N/2

Θj(t) exp(+i2πmj/N) (15)

for m = −N/2 to +N/2, the summation in j also being over these values. The interpolating
Fourier series which takes the values θm(t) at the points x = mL/N is simply

θ(x, t) =

N/2X00

j=−N/2

Θj(t) exp(+ijkx), (16)

where k = 2π/L.

Simple considerations based on the result that coefficients Θj of infinite Fourier series vary like
j−(n+1),where the function θ(x, t) has a discontinuity in the nth derivative, suggest that the trun-
cated Fourier series (16) has errors of the order of ((N/2) + 1)−(n+1) or roughly δn, where δ =
L/N . For sufficiently-continuous functions the approximation is very accurate. However, for func-
tions which are discontinuous themselves or in their lower-order derivatives, the spatial approxima-
tion accuracy is comparable with that of polynomial approximation only.

Now consider the first order solution scheme (12):

θ(x, t+∆) = θ − u∆θx +O
¡
∆2
¢
.

If θ(x, t) is approximated by the Fourier series, then substituting (16) gives

θ(x, t+∆) =
X00

j

Θj(t) (1− ijk∆u (x, t)) exp(+ijkx),

and at the node point xm = mL/N , with um = u(xm, t) , the value of θm at the next time step is
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predicted to be

θm(t+∆) =
X00

j

Θj(t) (1− ijk∆um) exp(+i2πmj/N) +O
¡
∆2
¢
. (17)

The results of applying this scheme are shown for the sharp-crested wave in Figure 6. The scheme
(17) predicts that the solution value after a time step ∆ will be that obtained by extrapolating back
along the tangent at the grid point a horizontal displacement −∆u. However accurate the value of
θx obtained from the interpolating function, the results are catastrophic, for the method is unstable
in precisely the same way as finite difference approximations to the derivative.

That the method is unstable is easily shown by the von Neumann method using the present spectral
approach. If um in (17) i s a constant, u, then the scheme can be written in spectral formΘj(t+∆) =
Θj(t)(1−ijk∆u) for each j, and it is obvious that the magnitude of the factor on the right is greater
than unity: the Fourier coefficients grow exponentially with time and the method is unstable. All
the extra trouble of developing a global method has gained nothing.

Figure 6. Instability of first-order scheme with spectral method. Despite the initial accurate interpolation by
the Fourier series through the solid circles, the use of a first-order scheme extrapolates backwards along the
local tangents shown dashed, giving the solution shown by the open circles, which will subsequently diverge
even more wildly.

If the second-order scheme (11) is used, then for constant u the predicted value of θ(x, t + ∆)
is simply that obtained by backwards interpolation on a parabola which has the required first and
second derivatives at θ(x, t), given by the Fourier approximation. For the case of the two points
at the centre of the sides in Figure 6, the local. curvature of the approximation is zero, and the
predicted values ofθ(x, t+∆) would be precisely those as shown in the figure, suggesting that the
method is unstable. This instability is easily shown, by considering the Fourier coefficients of the
scheme (11), which gives

Θj(t+∆)

Θj(t)
= 1− ijk∆u+ 1

2
(ijk∆u)2 ,

the right side has a magnitude greater than unity, and the method is unconditionally unstable, unlike
the Lax-Wendroff method of finite-difference approximation to (11).

If, instead of the two time level approach, a leapfrog method is used, then the scheme (13) becomes,
in spectral space:

Θj(t+∆) = Θj(t−∆)− i2jk∆uΘj(t) +O
¡
∆3
¢
.

By supposing that the ratio of Θj between any two successive time levels is a constant, r, the
quadratic equation is obtained:

r2 + 2r(ijku∆)− 1 = 0,
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with solutions

r = −ijku∆±
¡
1− (, jku∆)2

¢1/2
.

Provided |jku∆| 6 1, |r| = 1 and the scheme is stable. As the maximum value of j is N/2,
and k = 2π/L, this criterion becomes u∆/δ 6 1/π for stability, which is more demanding
than that found for finite difference leapfrog methods, however the scheme is at least conditionally
stable. In view of the better stability properties of the leapfrog scheme (13) for both finite-difference
and spectral methods, it does seem that it is a rather more natural way of dealing with hyperbolic
equations and is clearly much to be preferred over two time level (Euler) schemes such as (11).

Finally a comment can be made on the computational cost of using Fourier methods. While fast
Fourier transforms can be used the coefficients Θj at each step, if the velocity u is a function of x,
the um are not constant, and the N -term series must be evaluated directly at each of the N points,
giving a effort of O (N2) compared with the O (N) of finite difference methods.

6. Convective methods

Consider the scheme (10):

θ(x, t+∆) = θ(x− u (x, t)∆, t) +O
¡
∆2
¢
.

This is exact if u is constant, but otherwise has the low-order error term shown. However, it involves
no numerical differentiation; rather, it is only necessary to interpolate to evaluate the right side.
That this is consistent with the differential equation (1) in the limit ∆ → 0 can easily be shown
by writing each side as a Taylor expansion about (x, t) and then taking the limit. Stability of
the scheme can be studied for the case of constant u, and examining one component of (10) in
spectral space. The Fourier coefficient at the next step Θj(t + ∆) is given by Θj(t + ∆) =
Θj(t) exp (−ijk∆u) for any j, This further demonstrates the nature of the scheme – the coefficients
are unchanged in magnitude but are changed in phase by an amount jk∆u, precisely the amount
by which the component exp(−ijkx) should change in time ∆: the scheme is unconditionally
stable. It is interesting that the first and second order spectral schemes in §5 are simply low order
approximations to this:

exp(−ijkx) = 1− ijk∆u+ 1
2
(ijk∆u)2 − . . . ,

but whose magnitudes at each level of truncation are greater than unity, unlike the left side, and the
methods are unstable.

As the convective scheme is stable, and it is consistent with the differential equation, then conver-
gence of numerical solutions to the exact solution in the limit as ∆ → 0 is indicated [4, §3.4].
Instead of having to consider a number of different ways of approximating derivatives, attention can
now be fixed on means of interpolating values of θ, given values at a finite number of grid points.

Piecewise-polynomial approximation
In §4 it was shown that approximation of the Taylor expansion (11) by low-order polynomials had
disadvantages. If the polynomials are used purely for interpolation, some of these problems do not
occur. For instance, instead of extrapolating back a distance of ∆ along a local tangent, it is now
a matter of locating the interval in which x − u(x, t)∆ falls, between xm and xm+1 say, and then
obtaining the local approximation. Linear interpolation would give, for example,

θ (x− u∆, t) ≈ θ (xm, t) +
(x− u∆− xm)

xm+1 − xm
(θ (xm+1, t)− θ (xm, t))

It is not necessary to have a constant grid spacing. While the method is unconditionally stable for
constant u , the linear approximation may not be very accurate. For the problem of a sharp-crested
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wave shown in Figure 5, application of this method for a time step of ∆ = (n+ 1/2)δ/u, for any
integer n, would give the results in Figure 5(a) after three such steps - the method has the same
amount of diffusion per time step as the forwards-time backwards-space finite difference method.

A more accurate method of piecewise polynomial approximation is by Cubic Splines, where third
degree polynomials are used which have continuous derivatives at node points. A complete set of
FORTRAN subprograms is given in [2, §6.7] in which some of the theory of cubic spline inter-
polation given. It can be shown that the error of a cubic spline interpolant over an interval [a, b]
is bounded by 5

¯̄̄
θ(4) (ξ)

¯̄̄
δ4/384, where ξ is in [a, b] and δ is the maximum step length. Impor-

tantly, the computational effort is proportional to N , the number of computational points, even if
u is a function of x. This compares favourably with spectral methods, O(N2) for a non-constant
convective velocity.

The model problem of the sharp-crested wave was solved using the convective scheme (10) with
cubic splines as interpolating functions. Results are shown in Figure 5(e) for u∆/δ = 1/2, the
case in Figures 5(a) and (c) for finite difference methods. Some numerical diffusion has occurred,
because of the finite accuracy of the spline interpolation, however, there is no phase error, and the
solution is much more accurate than the other methods. In Figure 5(f) the results are shown for
u∆/δ = 1.5, when the finite difference methods were unstable. The results are even more accurate
than in Figure 5(e) because fewer time steps have been taken, with smaller total diffusion. This
problem, however, is a very easy one for the convective method to solve, as the scheme is exact, the
only approximation being in the spatial representation. A more demanding quasilinear problem is
that solved analytically in §2:

∂θ

∂t
e+ θ

∂θ

∂x
= 0, θ(x, 0) = − tanhx,

in which the profile of θ becomes vertical and then multi-valued after t = 1.

A computational region (−4, 4) was divided into 20 equal intervals, and various methods imple-
mented. After 10 steps of ∆ = 0.1, by which time the analytical solution develops a vertical tangent
at x = 0, the results are as shown in Figures 7 and 8.

Figure 7. Solution to quasilinear equation at the instant the profile develops a vertical tangent. The steepest
curve is the exact solution, that close to it is the solution from the convective method with cubic splines and
clustered grid points, while the line passing through the solid circles was obtained from equispaced points
shown.

Figure 7 shows that the convective method (10) with cubic splines developed oscillations remi-
niscent of Gibbs’ phenomenon in Fourier approximation, because the gradient, as shown by the
analytical solution, became very steep, and the point spacing was too coarse to describe the region
of high curvature. The numerical solution is, however, oscillating about the analytical solution as if
it were attempting to describe it in a minimum least-squares error sense. With a trivial modification
to the computer program, a variable grid spacing was used, points being distributed according to
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a cubic power law. Results are very close to the analytical solution on Figure 7. It seems that the
freedom to use variable mesh spacing might be a useful feature of this method.

Figure 8. Comparison of different methods after 10 steps of interval 0.1 for equispaced grid points: Line –
exact solution;¤ – conventional Lax-Wendroff; ◦ – Lax-Wendroff with cubic splines; • – convective method
with cubic splines.

In Figure 8 the results of three schemes for equispaced points are compared over part of the solution
region. It can be seen that the convective method is the most accurate, even though it has lower order
error terms! It seems that the absence of numerical differentiation contributes more to accuracy than
does the inclusion of higher-order terms, where derivatives become large. In view of the success
of the cubic spline/convection method, the author could not resist the temptation to use the Taylor
expansion correct to second order, but where the derivatives were obtained from a cubic spline fit
to the grid points. This was still not as accurate as the pure convection method however, providing
further support for the view that numerical differentiation should be avoided. The least accurate
scheme of the three tested was the nominally more-accurate conventional Lax-Wendroff method,
however, it did perform satisfactorily until the solution became very steep.

Higher-order convective schemes
Consider the two time level convective scheme with the error terms shown as an infinite power
series, and where the coefficients an are unknown:

θ(x, t+∆) = θ(x− u (x, t)∆, t) +
∞X
n=2

an∆
n. (18)

A hierarchy of higher-order schemes can be generated, theoretically without limit, by writing (18)
for different integer multiples of ∆ and eliminating the an to a certain order. Thus, for example, the
leapfrog convective scheme is obtained:

θ(x, t+∆) = θ(x, t−∆) + θ(x− u∆, t)− θ(x+ u∆, t) +O
¡
∆3
¢
, (19)

where u = u(x, t). The scheme is accurate to second order. If the terminology

θn (j) = θ (x+ j∆u (x, t) , t+ n∆)

is adopted, the scheme (10) becomes

θ1(0) = θ0(−1) +O
¡
∆2
¢

and (19) becomes

θ1(0) = θ−1(0) + θ0(−1)− θ0(1) +O
¡
∆3
¢
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It is easily shown that time level expression, with errors of fifth order is

θ2(0) = θ−2(0) + θ0(−2)− θ0(2) + 8 [θ1(0)− θ−1(0) + θ0(1)− θ0(−1)] +O(∆5). (20)

Such schemes cost little more in computing resources, as the interpolation need only be done at
one time level (t) per step in each method. Most effort is incurred in setting up the coefficients
for the spline approximation, which must be done whatever the order of the method The number
of subsequent interpolations (that is, polynomial evaluations) for each grid point in each scheme is
proportional to the order of accuracy. For example, the fourth-order scheme involves four evalua-
tions at each point, θ0(−2), 00(−1), 00(1) and 00(2). At other time levels, only the data at x is
required, the number of time levels to be stored being equal to the order of accuracy of the scheme.
For example, the scheme (20) involves the four node values θ−2(0), θ−1(0), θ1(0), and although
not shown explicitly θ0(0) must be stored to enable the splines to be fitted.

Multi-time level schemes do require some starting, however, the five time level scheme (20) requir-
ing initial values at four time levels. This can conveniently be done by using lower order schemes
with smaller time steps.

Fourier approximation
If θ(x, t) is represented by a Fourier series (16), where the coefficients Θj(t) are obtained from the
point values θm(t) by (14), then the convective scheme gives, for the point values θm(t+∆):

θm(t+∆) =
X00

j

Θj(t) exp (−ijk∆um) exp(i2πmj/N) +O
¡
∆2
¢
. (21)

It is clear that the effect of the convective velocity is simply to change the phase of the Fourier
coefficients.

It was shown in §5 that for functions which are discontinuous or which have discontinuous low-order

Figure 9. Interpolation near a discontinuity by: - - - finite Fourier series, – cubic splines.

derivatives, that Fourier approximation may be little better than low-order polynomial methods. To
examine this for the case of a discontinuous function, a simple step discontinuity was approximated
by a 20-term Fourier series and cubic splines. The results are shown in Figure 9. At the jump,
the two methods agree closely, however, it is clear that the oscillations of the Gibbs phenomenon
in the Fourier series are larger than in the spline approximation and they persist for much further
away from the discontinuity. While such discontinuities may not exist in the interior, the possibly-
artificial periodicity imposed by the Fourier approximation may impose discontinuities the ends,
such as would be the case in the example shown in Figure 7, where θ(−4+, t) = 1 and θ(4−, t) =
−1, however, a Fourier scheme of period 8 would introduce θ(−4−, t) = −1 and θ(4+, t) = 1,
giving jumps at each end. To eliminate such discontinuities it would be necessary to use some
form of polynomial subtraction or artificial extension of the computational interval and the possible
matching of a mirror image of θ(x, t). This would not be necessary if, for example, a Chebyshev
spectral scheme were used.

As mentioned in §5, for problems of non-constant a another serious disadvantage exists, that the
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series (21) have to be evaluated with a computational effort proportional to N2 , rather than the N
of piecewise polynomials. To conclude, it does seem that the Fourier approximation has little to
recommend it for general quasilinear hyperbolic problems.

7. Some other applications of convective schemes

In this section some applications to rather more general problems are briefly discussed.

Three space dimensions
Consider the quasilinear convective equation in three dimensions:

∂θ

∂t
+ u·∇θ = 0,

where the velocity field u is a vector of position and time. The following scheme is immediately
obvious, following from (10):

θ(r, t+∆) = θ(r− u∆, t) +O
¡
∆2
¢
,

where r is the position vector. All the higher-order schemes for the timestepping are immediately
applicable. By expressing θ as a triple Fourier series in x, y and z and taking the case u = constant
it is trivially shown that the scheme is stable, and by writing a Taylor series expansion about (r, t)
for the left and the right sides it can be shown that the scheme converges to the differential equation
in the limit ∆ → 0. The scheme is independent of the co-ordinates used, and in its vector form
could be written in terms of any orthogonal co-ordinate system.

In three dimensions the problem of interpolation becomes considerably more complex. Greater
reliance may have to be placed on piecewise polynomial methods. Such methods may be quite
problem-specific.

Long waves in canals
It can be shown that the equations governing the motion of long waves in rectangular canals are
capable of being expressed in characteristic form:µ

∂

∂t
+ (u+ c)

∂

∂x

¶
(u+ 2c) = 0, andµ

∂

∂t
+ (u− c)

∂

∂x

¶
(u− 2c) = 0,

where u(x, t) is the horizontal fluid velocity, and

c(x, t) = (gravitational acceleration× local depth)1/2

is a measure of the local depth. The convective scheme follows immediately:

u(x, t+∆) + 2c(x, t+∆) = u(x− (u+ c)∆, t) + 2c(x− (u+ c)∆, t) +O
¡
∆2
¢
, and

u(x, t+∆)− 2c(x, t+∆) = u(x− (u− c)∆, t)− 2c(x− (u− c)∆, t) +O
¡
∆2
¢
.

The right sides of these equations can be evaluated by some interpolation method, and the pair of
equations solved to give explicit expressions for u(x, t +∆) and c(x, t,+∆). All the high-order
timestepping schemes may be implemented from these expressions.
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