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Abstract

The expressions for elliptic integrals, elliptic functions and theta functions given in standard ref-
erence books are slowly convergent as the parameter m approaches unity, and in the limit do not
converge. In this paper we use Jacobi’s imaginary transformation to obtain alternative expressions
which converge most rapidly in the limit as m→ 1. With the freedom to use the traditional formu-
lae for m 6 1/2, and those obtained here for m > 1/2, extraordinarily rapidly-convergent methods
may be used for all values of m; no more than three terms of any series need be used to ensure
eight-figure accuracy.

1. Introduction

The Jacobian elliptic functions sn(u|m), cn(u|m),dn(u|m), etc., where u is the argument and m the
parameter, and the complete elliptic integrals K(m) and E(m) can be calculated in a number of ways.
Methods include the use of power series, Fourier series, Landen transformations, and theta functions,
for which various methods exist including the use of infinite series and products. Most of these are
presented in the chapters by L. M. Milne-Thomson in [1]. These methods are not useful for all values
of argument and parameter. For example, the power series are useful only for small arguments, and the
Fourier series are not convergent if the parameter approaches unity. The Landen transformations are
rapidly convergent, but are non-trivial to apply. If theta functions are used, the series and products for
these are the most convenient of all for small values of the parameter. However, they too do not converge
if the parameter approaches unity.

It is known that Jacobi’s imaginary transformation may be simply applied to recast the expressions for
theta functions so that they are most rapidly convergent in the limit as the parameter tends to unity.
However, explicit presentations of these recast series seem not to have been given, except by Eagle [2,
Section 3.53] who considered non-standard functions. The existence of these alternative expressions
seems to be almost unknown.

In this paper, alternative series and products for theta functions are obtained using the imaginary trans-
formation. These results are then used to give alternative expressions for the elliptic functions which also
converge most rapidly in the limit where previously-presented expressions do not converge. Finally, al-
ternative methods for the calculation of complete elliptic integrals are developed. These are shown to be
the simple complement of well-known methods but, remarkably, seem to be unknown.

2. Theta functions

Theta functions are entire functions of the argument z,which also depend on a parameter m which is
usually in the range 0 6 m 6 1. The zeros of the theta functions form an infinite rectangular lattice
on the z plane, while the functions themselves have a real period, and an imaginary pseudo-period
which will be described below. There are several different definitions of the theta functions; initially the
definition used here will be that used by Whittaker and Watson [4]. Subsequently these will be related



to other definitions of the theta functions.

Consider the four functions defined by the Fourier series:

θ1(z, q) = 2
∞X
n=0

(−1)n q(n+1/2)2 sin (2 (n+ 1/2) z) , (1.1)

θ2(z, q) = 2
∞X
n=0

q(n+1/2)
2

cos (2 (n+ 1/2) z) , (1.2)

θ3(z, q) = 1 + 2
∞X
n=1

qn
2

cos (2nz) , (1.3)

θ4(z, q) = 1 + 2
∞X
n=1

(−1)n qn2 cos (2nz) , (1.4)

where q is the nome q = q(m) = exp(−πK 0/K), in which K = K(m) is the complete elliptic integral
of the first kind and where K 0 = K(1−m).The theta functions can also be obtained by infinite products,
as given by [4, Section 21.3]:

θ1(z, q) = 2Gq1/4 sin z
∞Y
n=1

¡
1− 2q2n cos 2z + q4n

¢
, (2.1)

θ2(z, q) = 2Gq1/4 cos z
∞Y
n=1

¡
1 + 2q2n cos 2z + q4n

¢
, (2.2)

θ3(z, q) = G
∞Y
n=1

¡
1 + 2q2n−1 cos 2z + q4n−2

¢
, (2.3)

θ4(z, q) = G
∞Y
n=1

¡
1− 2q2n−1 cos 2z + q4n−2

¢
, (2.4)

where G is the infinite product

G =
∞Q
n=1

¡
1− q2n

¢
From these it can be simply verified that the zeros of the functions form an infinite rectangular lattice as
shown on Figure 1, the interval between zeros being π horizontally and πτ vertically, where τ = iK 0/K
such that q = exp (iπτ). The theta functions defined in (1) and (2) are singly-periodic with real periods.

Figure 1. Figure 1. Part of complex plane, showing lattice of zeros. These zeros are those of the theta functions
θ1, θ2, θ3 and θ4 if each function has the origin marked 1, 2, 3 and 4 respectively.

It can be shown that θ1 and θ2 have period 2π, while θ3 and θ4 have period π. By increasing z in (1) by

2



πτ it can be shown that the following pseudo-periodic relations hold:

θ1(z + πτ, q) = −q−1e−i2z θ1(z, q), (3.1)
θ2(z + πτ, q) = q−1e−i2z θ2(z, q), (3.2)
θ3(z + πτ, q) = q−1e−i2z θ3(z, q), (3.3)
θ4(z + πτ, q) = −q−1e−i2z θ4(z, q). (3.4)

An important property is that

dθ1
dz
(0, q) = θ2(0, q) θ3(0, q) θ4(0, q) (4)

for which a rather lengthy proof is given in [4, Section 21.41].

3. Jacobi’s imaginary transformation

The transformation is suggested by the rectangular array of zeros as shown in Figure 1, for dividing
z by τ (= iK 0/K) is equivalent to a rotation of −π/2 and a scaling of |τ |−1, so that the zeros of
a theta function of argument z/τ would have a real interval of π, and an imaginary interval of π/τ .
This factor 1/τ is equal to −iK/K 0 and so the nome corresponding to an imaginary interval of π/τ is
q1 = exp(−iπ/τ) = exp(−πK/K 0) – see footnote1 – which is precisely the complementary nome,
q1(m) = q(1 −m). From this outline it seems that two theta functions, one of argument z and nome
q,and the other of argument z/τ and nome q1, have the same simple zeros and may be related to each
other. That they are related and the form of this relationship can be established following the procedure
of [4, Section 21.51], for the case of θ3, as follows.

It can be simply verified that the zeros of θ3(z, q) and θ3(z/τ, q1) are simple zeros at z = (k + 1
2)π +

(n + 1
2)πτ where k and n are integers. The ratio of these two functions, denoted by f(z), is an entire

function with no zeros, hence the ratio

f(z + πτ)

f(z)
=

θ3(z/τ + π, q1)

θ3(z + πτ, q)
Á
θ3(z/τ, q1)

θ3(z, q)

is also an entire function with no zeros. Rearranging, and using the fact that θ3(z+π, q) = θ3(z, q) and
the pseudo-periodic relation (3.3), this gives

f(z + πτ)/f(z) = qei2z = exp i(2z + πτ) (5)

The quantity on the right can be expressed as exp i((z + πτ)2/πτ)/ exp i(z2/πτ),and if g(z) is intro-
duced such that

g(z) = f(z) exp(z2/iπτ),

then (5) gives g(z + πτ) = g(z), so that g(z)has an imaginary period of πτ . Similarly it can be shown
that g(z + π) = g(z), so that it also has a real period, of π. Thus, g(z) is a doubly-periodic, entire
function. As θ3 is bounded near the origin it can be shown that g(z) is bounded near the origin. As it
is doubly-periodic, it is bounded everywhere, and hence by Liouville’s theorem, it is a constant, g (for a
particular value of m). Hence

θ3(z, q) = g−1 exp(z2/iπτ) θ3(z/τ, q1), (6.3)

and it may similarly be shown that

θ1(z, q) = ig−1 exp(z2/iπτ) θ1(z/τ, q1), (6.1)
θ2(z, q) = g−1 exp(z2/iπτ) θ4(z/τ, q1), and (6.2)
θ4(z, q) = g−1 exp(z2/iπτ) θ2(z/τ, q1). (6.4)

1 April 2012: Jan Jeske has pointed out that the original q1 = exp(iπ/τ) has an incorrect sign in the exponent, corrected above.
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To determine g, (6.1) may be differentiated, and substituting z = 0 gives

θ01(0, q) = ig−1τ−1θ01(0, q1)

but use of (4) and (6) gives g−2 = iτ−1, g = ±(K/K 0)1/2, and considering (6.3) at z = 0 it is clear that
the positive sign should be taken.

The results as given by (6) are very useful, for values of the theta functions may be obtained from the
transformed theta functions, which use the complementary nome q1. As q → 1, and the original series
(1) become slowly convergent, then q1 → 0, and the expressions on the right side of (6) are very rapidly
convergent. Now, these alternative explicit expressions for the theta functions will be given.

4. Alternative series and products

Substituting the series (1) into the right side of (6) gives

θ1(z, q) = 2

µ
K

K 0

¶1/2
exp

µ
−z

2K

πK 0

¶ ∞X
n=0

(−1)nq(n+1/2)21 sinh

µ¡
n+ 1

2

¢ 2zK
K 0

¶
(7.1)

θ2(z, q) =

µ
K

K 0

¶1/2
exp

µ
−z

2K

πK 0

¶Ã
1 + 2

∞X
n=1

(−1)nqn21 cosh
µ
n
2zK

K 0

¶!
(7.2)

θ3(z, q) =

µ
K

K 0

¶1/2
exp

µ
−z

2K

πK 0

¶Ã
1 + 2

∞X
n=1

qn
2

1 cosh

µ
n
2zK

K 0

¶!
(7.3)

θ4(z, q) = 2

µ
K

K 0

¶1/2
exp

µ
−z

2K

πK 0

¶ ∞X
n=0

q
(n+1/2)2

1 cosh

µ¡
n+ 1

2

¢ 2zK
K 0

¶
(7.4)

Whereas the nome appeared in the original series (1) as qn2 , the complementary nome q1 appears in these
series as qn21 . If m < 1/2, the series (1) should be used, whereas if m > 1/2, the series (7) are more
rapidly convergent. Provided this boundary of m = 1/2 is observed, the fortunate and powerful result is
obtained that the expansion parameter used need never be greater than q(1/2) = e−π = 0.04321, which
is raised to at least power n2 in the nth term. These must be among the most rapidly convergent of all
series as well as the simplest, for the coefficients in both (1) and (7) are either +1 or −1 in every case.

It is perhaps surprising that functions which are periodic in the real part of z should be described by
rapidly-convergent series of functions which are so clearly non-periodic as the hyperbolic functions.
However, this is not much more remarkable than the fact that the series x−x3/3!+x5/5! approximates
a periodic function. In the use of the hyperbolic series (7) for arguments with a large real part, the
hyperbolic functions may become large, rendering convergence slow. This is avoided if it is recognized
that the functions θ1 and θ2 have a real period of 2π, while θ3 and θ4 have a real period of π.Hence

θj(z, q) = θ (z(mod 2π), q) for j = 1, 2, 3, 4,

so that the actual value of <(z) used in (7) can always be made to lie in the range (−π, π). Thus the
greatest magnitude of<(z) used in the calculations is π. For sufficiently large z the hyperbolic functions
in (7) all vary like exp(2nzK/K 0), which on substituting the largest value z = π, becomes q−2n1 , and
the individual terms in (7.2), for example, vary like qn

2−2n
1 . As q1 need never be greater than 0.04321

this converges very quickly in n so that three terms are an excellent approximation2!

If the Fourier series (1) are used when z has a large imaginary part, then similar problems may occur.
In this case the pseudo-periodic relations (3) can be used so that the series calculations need never be
performed with an imaginary part of zgreater than πτ in magnitude, that is:

θj(z + ir2K 0/K, q) =
¡
q−2e−i4z

¢r
θj(z, q) for j = 1, 2, 3, 4,

2 The text here has been changed slightly from the original, which was not quite clear.
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where r is any integer. Analysis similar to that for the hyperbolic series shows that successive terms vary
like 1, q, q4, q9, ...,so that three usually suffice.

Although the infinite-product expressions are not so rapidly-convergent as the series, the results of the
imaginary transformation are here presented for completeness. Substituting the imaginary transforms
(6) into the products (2) gives

θ1(z, q) = 2 q
1/4
1

µ
K

K 0

¶1/2
G1 exp

µ
−z

2K

πK 0

¶
sinh

µ
zK

K 0

¶
×

∞Y
n=1

µ
1− 2q2n1 cosh

µ
2zK

K 0

¶
+ q4n1

¶
, (8.1)

θ2(z, q) =

µ
K

K 0

¶1/2
G1 exp

µ
−z

2K

πK 0

¶
×

∞Y
n=0

µ
1− 2q2n+11 cosh

µ
2zK

K 0

¶
+ q

2(2n+1)
1

¶
, (8.2)

θ3(z, q) =

µ
K

K 0

¶1/2
G1 exp

µ
−z

2K

πK 0

¶
×

∞Y
n=0

µ
1 + 2q2n+11 cosh

µ
2zK

K 0

¶
+ q

2(2n+1)
1

¶
, (8.3)

θ4(z, q) = 2 q
1/4
1

µ
K

K 0

¶1/2
G1 exp

µ
−z

2K

πK 0

¶
cosh

µ
zK

K 0

¶
×

∞Y
n=1

µ
1 + 2q2n1 cosh

µ
2zK

K 0

¶
+ q4n1

¶
(8.4)

where G1 =
Q∞

n=1

¡
1− q2n1

¢
. In the products (2) and (8) it can be seen that the nomes appear raised

to the power 2n, whereas in the series (1) and (7) they are raised to the power n2. Clearly the series
converge more quickly, and are to be preferred in most applications.

5. Neville’s theta functions

The theta function notation used by Neville (see [3] and [4, Section 16.36]) is of greater convenience in
calculating elliptic functions, as will be seen in §6 below. These four theta functions are θs, θc, θd and
θn, which are simply θ1, θ2, θ3 and θ4 respectively except that they are expressed as having u = 2Kz/π
as argument (with spacings of zeros 2K and i2K 0), dependence on the parameter is not shown explicitly,
and they are scaled so that in the case of θs the derivative at zero is unity, while the other three have a
function value of unity at zero. Thus,

θs(u) =
2K

π

θ1(z, q)

θ01(0, q)
, θc(u) =

θ2(z, q)

θ2(0, q)
, θd(u) =

θ3(z, q)

θ3(0, q)
and θn(u) =

θ4(z, q)

θ4(0, q)
.

It should be noted that the expression given in [1, Section 16.36.6] for θs is incorrect, the factor of π
in the denominator having been omitted. Now, use can be made of (4) and the formulae given in [1,
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Section 16.38] to give the relationships between the two sets of functions:

θs(u) =
³ π

2K

´1/2
m−1/2m−1/21 θ1(z, q), (9.1)

θc(u) =
³ π

2K

´1/2
m−1/2 θ2(z, q), (9.2)

θd(u) =
π1/2

(2K)1/2
θ3(z, q), (9.3)

θn(u) =
³ π

2K

´1/2
m
−1/2
1 θ4(z, q) (9.4)

where m1 = 1−m. For a given value of m, the quantities m1, K, K 0, q and q1 may be calculated from
expressions obtained in Section 7, then with z = πu/2K, either of the series (1) or (7) may be used to
calculate the θs(u) etc., depending on whether m ≶ 1.

6. Jacobian elliptic functions

These are doubly-periodic meromorphic functions, each of which may be defined as the ratio of any two
of the theta functions θs, θc, θd and θn, so that each elliptic function has the zeros of the theta function
in the numerator and poles corresponding to the zeros of that in the denominator. The Jacobian elliptic
function ab u may be defined as

abu = ab(u|m) = θa(u)

θb(u)
,

where a and b may be any two of the letters s, c, d and n and where dependence on the parameter is
shown by m itself. The most commonly-encountered functions of the twelve possible are snu, cnu and
dnu, and it is possible to obtain any of the other nine from ratios of these. To obtain explicit formulae
for calculating them, the formulae (9) may be used:

snu =
1

m1/4

θ1(z, q)

θ4(z, q)
,

cnu =
m
1/4
1

m1/4

θ2(z, q)

θ4(z, q)
,

dnu = m
1/4
1

θ3(z, q)

θ4(z, q)
.

The series for these theta functions (1) or (7) may be substituted to give the following explicit formulae
for the elliptic functions, where the infinite series have been replaced by the first three terms.

If m < 1/2, use z = πu/ (2K) and

snu = 2
³ q

m

´1/4 sin z − q2sin 3z+q6 sin 5z − . . .

1− 2q cos 2z + 2q4 cos 4z − . . .
(10.1)

cnu = 2
³m1 q

m

´1/4 cos z + q2cos 3z+q6 cos 5z + . . .

1− 2q cos 2z + 2q4 cos 4z − . . .
, and (10.2)

dnu = m
1/4
1

1 + 2q cos 2z + 2q4 cos 4z + . . .

1− 2q cos 2z + 2q4 cos 4z − . . .
. (10.3)
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If m > 1/2, use w = πu/ (2K 0) and

snu = m−1/4
sinhw − q21sinh 3w+q

6
1 sinh 5w − . . .

coshw + q21 cosh 3w + q61 cosh 5w + . . .
(11.1)

cnu =
1

2

µ
m1

mq1

¶1/4 1− 2q1 cosh 2w + 2q41 cosh 4w − . . .

coshw + q21 cosh 3w + q61 cosh 5w + . . .
, and (11.2)

dnu =
1

2

µ
m1

q1

¶1/4 1 + 2q1 cosh 2w + 2q
4
1 cosh 4w + . . .

coshw + q21 cosh 3w + q61 cosh 5w + . . .
. (11.3)

As each of these functions has a real period of 4K and an imaginary period of i4K 0, no matter how large
the value of u, it is a simple matter to bring the value of u to be used in calculations to have a maximum
real magnitude of 2K and imaginary magnitude of i2K 0.If this is done, the series in the numerators
and denominators are all rapidly convergent and for eight-figure accuracy may be truncated at the terms
shown. The largest neglected terms are proportional to q6 or q61 , which is never greater than 6 × 10−9,
provided the limitations in m are observed. If greater accuracy is required, the series can easily be
extended by inspection, where the general term of q0, q2, q6, . . .˚ is qn(n+1), and of q0, q1, q4, . . .is qn2 .

From the expressions (10) and (11) the limiting values of the elliptic functions as m approaches 0 or 1
can simply be obtained. Using [1, Section 17.3.28]:

lim
m→0

³ q

m

´
= lim

m→1

µ
q1
m1

¶
=
1

16
and

lim
m→0 (K) = lim

m→1
¡
K 0¢ = π

2
,

gives: as m → 0, sn u → sin u, cnu → cosu, and dnu → 1, and as m → 1, sn u → tanh u,
cnu→ sechu, and dnu→ sechu.

7. The inversion problem: calculating elliptic integrals

In many applications it is the parameter m which is known initially whereas to apply the series given in
this work the elliptic integrals K, K 0 and the nome q must be known. The calculation of these quantities
is one of the classical problems in the field of elliptic functions – the inversion problem. There has never
been a simple and explicit method for solving this over all values of m, despite the Landen transforms,
and a useful series for small m presented originally by Weierstrass [4, Section 21.8]. Unfortunately this
series is not convergent in the limit m → 1, which may explain its absence from [1], perhaps the most
widely-used collection of results in this field.

Here, the alternative series developed in the present work will be used in an approach complementing
that of Weierstrass so that Kcan be calculated over all values of m with rapidly-convergent series.
A technique is used which is similar to that of Weierstrass, but using the complementary functions
(q1instead of q, and so on). From [4, Section 21.8]:

m1/4 =
θ2(0, q)

θ3(0, q)
,

and substituting the q1 expansions (7.2) and (7.3) gives

m1/4 =
1− 2q1 + 2q41 − . . .

1 + 2q1 + 2q41 + . . .
.

If q1 is known initially, this provides a convenient way of calculatingm. In practice, m is usually known,
and this becomes a transcendental equation for q1, which could be recast as a series for that quantity,
however a more rapidly convergent procedure is obtained by introducing ε1:

2ε1 =
1−m1/4

1 +m1/4
,
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where ε1 → 0 as m→ 1. Substituting for m1/4 gives

2ε1 =
θ3(0, q)− θ2(0, q)

θ3(0, q) + θ2(0, q)

= 2
q1 + q91 + q251 + . . .

1 + 2q41 + 2q
16
1 + . . .

, (12)

where the series in the numerator and denominator converge even more rapidly than those presented in
Section 4. It is easily shown that this is equivalent to

2ε1 =
θ4(0, q

4
1)

θ3(0, q41)
,

where the dependence on the parameter is in this case actually q41 . The object is, however, to obtain q1
as a function of ε1 and so (12) can be used to give

q1 = ε1 + 2ε
5
1 + 15ε

9
1 + 150ε

13
1 +O

¡
ε171
¢
. (13)

An identical series exists for q as a function of 2ε =
³
1−m

1/4
1

´
/
³
1 +m

1/4
1

´
, given in [4, Section

21.8], which is most suitable for m 6 1/2. Thus, as m1 need never be taken greater than 1/2, ε1
is always less than 0.04321, and for give-figure accuracy, only one term in (13) need he taken! It is
interesting that this is the first series in this work where the coefficients are unable to be written down
after inspection of the first few.

Having calculated q1,K
0 is obtained using the result given in [1, Section 16.38.6]:

K 0 =
π

2
θ23(0) =

π

2

¡
1 + 2q1 + 2q

4
1 + 2q

9
1 + . . .

¢2
(14)

and K obtained from the definition of q1:

K =
K 0

π
ln
1

q1
. (15)

Each of the results (13), (14) and (15) is simply the complementary form of those given by Weierstrass
(see [4, Section 21.8]) but with m, ε1, q1, K 0and K replacing m1, ε, q, K and K 0 respectively. While
this seems obvious in retrospect, it has not been shown or pointed out explicitly. For example in [4,
Section 21.8] it is stated that the Weierstrass form can be used even for moderately large m, but without
mentioning that it is useless as m → 1 and without mentioning the existence of a complementary form
better suited for m > 1/2. For m < 1/2 it is clearly advantageous to use the original Weierstrass form.

It is often necessary to calculate the complete elliptic integral of the second kind, E(m), or its com-
plement E0 = E(1 −m). An explicit method capable of high accuracy which uses quantities already
calculated above is as follows. In [1, Section 17.3.23] a formula is presented:

E

K
=
2−m

3
+ 2

³ π
K

´2⎛⎝ 1

24
−

∞X
j=1

q2j

(1− q2j)2

⎞⎠ , (16)

which is clearly useless if m → 1, q → 1. However, in Section 17.3.13 of the same book, Legendre’s
relation is presented:

EK 0 +E0K −KK 0 =
π

2
(17)

If m < 1/2, then E can be found from (16) and subsequently E0 from (17). Otherwise, q1 and K 0 can
be used in (16) to give E0,and (17) used to obtain E.
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Appendix A. Check calculations – do not print this

This is to check the results for a borderline case

m = 0.5

m1 = 1−m

ε1 =
1

2

1−m1/4

1 +m1/4

ε =
1

2

1−m
1/4
1

1 +m
1/4
1

ε1 = 4.321 4× 10−2
ε = 4.321 4× 10−2
q = ε+ 2ε5 + 15ε9 + 150ε13

q1 = ε1 + 2ε
5
1 + 15ε

9
1 + 150ε

13
1

K1 =
π

2

¡
1 + 2q1 + 2q

4
1 + 2q

9
1

¢2
K =

K1

π
ln
1

q1

u = 2

If m 6 1/2, use z = πu/ (2K)

snu = 2
¡ q
m

¢1/4 sin z−q2sin 3z+q6 sin 5z
1−2q cos 2z+2q4 cos 4z = 0.994 662 33

cnu = 2
¡m1 q

m

¢1/4 cos z+q2cos 3z+q6 cos 5z
1−2q cos 2z+2q4 cos 4z = −0.103 183 62

dnu = m
1/4
1

1+2q cos 2z+2q4 cos 4z
1−2q cos 2z+2q4 cos 4z = 0.710 861 05

If m > 1/2, use w = πu/ (2K1)

snu = m−1/4 sinhw−q
2
1sinh 3w+q

6
1 sinh 5w

coshw+q21 cosh 3w+q
6
1 cosh 5w

= 0.994 662 33

cnu = 1
2

³
m1

mq1

´1/4 1−2q1 cosh 2w+2q41 cosh 4w
coshw+q21 cosh 3w+q

6
1 cosh 5w

= −0.103 183 61

dnu = 1
2

³
m1

q1

´1/4 1+2q1 cosh 2w+2q41 cosh 4w
coshw+q21 cosh 3w+q

6
1 cosh 5w

= 0.710 861 04

Wonderful. But I found two errors in the typing!
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