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Abstract

The expressions for elliptic integrals, elliptic functions and theta functions given in standard ref-
erence books are slowly convergent as the parameter m approaches unity, and in the limit do not
converge. In this paper we use Jacobi’s imaginary transformation to obtain alternative expressions
which converge most rapidly in the limit asm — 1. With the freedom to use the traditional formu-
lae for m < 1/2, and those obtained here for m > 1/2, extraordinarily rapidly-convergent methods
may be used for al values of m; no more than three terms of any series need be used to ensure
eight-figure accuracy.

1. Introduction

The Jacobian éliptic functions sn(u|m), cn(u|m), dn(u|m), etc., where u is the argument and m the
parameter, and the complete elliptic integrals K (m) and E(m) can be calculated in a number of ways.
Methods include the use of power series, Fourier series, Landen transformations, and theta functions,
for which various methods exist including the use of infinite series and products. Most of these are
presented in the chapters by L. M. Milne-Thomson in [1]. These methods are not useful for all values
of argument and parameter. For example, the power series are useful only for small arguments, and the
Fourier series are not convergent if the parameter approaches unity. The Landen transformations are
rapidly convergent, but are non-trivial to apply. If theta functions are used, the series and products for
these are the most convenient of al for small values of the parameter. However, they too do not converge
if the parameter approaches unity.

It is known that Jacobi’s imaginary transformation may be ssimply applied to recast the expressions for
theta functions so that they are most rapidly convergent in the limit as the parameter tends to unity.
However, explicit presentations of these recast series seem not to have been given, except by Eagle [2,
Section 3.53] who considered non-standard functions. The existence of these alternative expressions
seems to be almost unknown.

In this paper, alternative series and products for theta functions are obtained using the imaginary trans-
formation. These results are then used to give alternative expressionsfor the dliptic functionswhich also
converge most rapidly in the limit where previously-presented expressions do not converge. Finaly, al-
ternative methods for the calculation of complete elliptic integrals are developed. These are shown to be
the simple complement of well-known methods but, remarkably, seem to be unknown.

2. Thetafunctions

Theta functions are entire functions of the argument z,which also depend on a parameter m which is
usualy intherange 0 < m < 1. The zeros of the theta functions form an infinite rectangular lattice
on the z plane, while the functions themselves have a real period, and an imaginary pseudo-period
which will be described below. There are several different definitions of the theta functions; initially the
definition used here will be that used by Whittaker and Watson [4]. Subsequently these will be related



to other definitions of the theta functions.

Consider the four functions defined by the Fourier series:

1(z,q9) = ZZ )" g t/2)° sin (2(n+1/2) z), (1.1
02(z,q) = 22:q(”+1/2)2 cos(2(n+1/2)z), (1.2
n=0
O3(z,q) = 1 +2iq”2 cos (2nz) (1.3)
n=1
04(z,q) = 1+2Z ¢ cos (2nz), (1.9

where g isthe nome ¢ = ¢(m) = exp(—7K'/K), inwhich K = K(m) isthe complete eliptic integral
of thefirst kind and where K’ = K (1 —m).The thetafunctions can also be obtained by infinite products,
as given by [4, Section 21.3]:

01(z,q) = 2Gq"* sin z H (1 —2¢%" cos 2z + q4") ) (2.1
n=1
O2(z,q) = 2Gq"* cos 2 H (1 + 2¢%" cos 2z + q4") ) (2.2
n=1
oo
03 ( = H +2¢%" L cos 2z + q4"_2) , (2.3
n=1
o0
04( H ¢ Leos 2z + q4”_2) , (2.9

—

where G isthe infinite product
G — H (1 . q2n)
n=1
From these it can be simply verified that the zeros of the functions form an infinite rectangular lattice as

shown on Figure 1, theinterval between zeros being 7 horizontally and 77 verticaly, wherer = i K’/ K
such that ¢ = exp (in7). The thetafunctions defined in (1) and (2) are singly-periodic with rea periods.
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Figure 1. Figure 1. Part of complex plane, showing lattice of zeros. These zeros are those of the theta functions
01, 02, 05 and 6, if each function has the origin marked 1, 2, 3 and 4 respectively.

It can be shown that #; and 6, have period 27, while #3 and 64 have period 7. By increasing z in (1) by



77 it can be shown that the following pseudo-periodic relations hold:

91(Z + T, Q) = _q—le—in 91(27 Q)7 (31)
O2(z+77,q) = q e P 0s(2,q), (32
O3(z+77,q) = q e 03(2,9), (33
Os(z+77,q) = —q e P 04(2,9). (34)
An important property is that
db,

for which arather lengthy proof is given in [4, Section 21.41].

3. Jacobi’s imaginary transformation

The transformation is suggested by the rectangular array of zeros as shown in Figure 1, for dividing
z by 7 (= iK'/K) is equivalent to a rotation of —7/2 and a scaling of |7| ', so that the zeros of
a theta function of argument z /7 would have area interval of 7, and an imaginary interval of = /.
Thisfactor 1/7 isequal to —i K /K’ and so the nome corresponding to an imaginary interval of 7/7 is
q1 = exp(—in/7) = exp(—7K/K') — see footnote! — which is precisely the complementary nome,
q1(m) = q(1 —m). From this outline it seems that two theta functions, one of argument = and nome
q,and the other of argument z /7 and nome ¢;, have the same simple zeros and may be related to each
other. That they are related and the form of this relationship can be established following the procedure
of [4, Section 21.51], for the case of 3, asfollows.

It can be simply verified that the zeros of 05(z, q) and 05(z/7,q1) aresimple zeros at z = (k + )7 +
(n + 3)mT where k and n are integers. The ratio of these two functions, denoted by f(z), is an entire
function with no zeros, hence the ratio
fatmr)  OsGz/r+maq) 03(2/7,q1)
f(2) 03(z + 77, q) 03(2,q)

isalso an entire function with no zeros. Rearranging, and using the fact that 03(z + 7, ¢) = 03(z, ¢) and
the pseudo-periodic relation (3.3), this gives

fz+77)/f(2) = g’ = expi(2z + ) ()

The quantity on the right can be expressed asexp i((z + 77)2/77)/ expi(2?/n7),and if g(z) isintro-
duced such that

9(2) = f(z) exp(2? /inT),

then (5) gives g(z + n7) = g(z), so that g(z)has an imaginary period of 77. Similarly it can be shown
that g(z + ) = g(z), so that it also has areal period, of 7. Thus, g(z) is a doubly-periodic, entire
function. As 63 is bounded near the origin it can be shown that ¢(z) is bounded near the origin. Asit
is doubly-periodic, it is bounded everywhere, and hence by Liouville’s theorem, it is a constant, g (for a
particular value of m). Hence

03(2,q) = g~ exp(2” finT) 03(2/T, q1), (6.3)
and it may similarly be shown that
01(z,q) = ig texp(22/inT)01(2/7,q1), (6.1)
O2(2,9) = g ‘exp(s®/inT)ba(z/T,q1),  and (6.2)
04(z,q) = g texp(22/inT)0a2(2/7,q1). (6.4)

1 April 2012: Jan Jeske has pointed out that the original ¢ = exp(im/7) hasanincorrect sign in the exponent, corrected above.
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To determine g, (6.1) may be differentiated, and substituting z = 0 gives
01(0,q) = ig~ ' 101(0, q1)

but use of (4) and (6) givesg—2 = it~ !, g = =(K/K’)"/?, and considering (6.3) at z = 0 it is clear that
the positive sign should be taken.

The results as given by (6) are very useful, for values of the theta functions may be obtained from the
transformed theta functions, which use the complementary nome ¢;. As¢ — 1, and the original series
(1) become slowly convergent, then ¢; — 0, and the expressions on the right side of (6) are very rapidly
convergent. Now, these alternative explicit expressions for the theta functions will be given.

4. Alternative series and products

Substituting the series (1) into the right side of (6) gives

K\ Y2 2K\ & " (n 2 2zK
01(2,q) = 2 <E> exp <_W) S (=1)7g{"* sinh ((m%) K,) (7.2)

n=0
K\ Y2 22K < 22K
02(z,q) = <F> exp <_7TK’> <1+2 nz_:l(—l) gy cosh <n 7 )) (7.2)
K\ Y2 2K I, 22K
03(z,q) = <F> exp <_7TK’> <1+2 ;ql cosh <n 7 > (7.3
K\? 2K\ & (nt1/2)? 2:K
04(z,q) = 2 <F> exp <_7TK/) qu +1/2)° L sh <(n+%) 7 ) (7.4)
n=0

Whereasthe nome appeared in the original series (1) as¢™", the complementary nome ¢; appearsin these
seriesas ¢, If m < 1/2, the series (1) should be used, whereas if m > 1/2, the series (7) are more
rapidly convergent. Provided this boundary of m = 1/2 isobserved, the fortunate and powerful resultis
obtained that the expansion parameter used need never be greater than ¢(1/2) = e=™ = 0.04321, which
is raised to at least power n? in the nth term. These must be among the most rapidly convergent of all
series aswell asthe simplest, for the coefficientsin both (1) and (7) are either +1 or —1 in every case.

It is perhaps surprising that functions which are periodic in the real part of z should be described by
rapidly-convergent series of functions which are so clearly non-periodic as the hyperbolic functions.
However, thisis not much more remarkable than the fact that the series 2 — 23 /3! + 25 /5! approximates
a periodic function. In the use of the hyperbolic series (7) for arguments with a large real part, the
hyperbolic functions may become large, rendering convergence slow. Thisis avoided if it is recognized
that the functions 6, and 6, have area period of 27, while 63 and 6, have areal period of w.Hence

0;(z,q) = 0 (2(mod 27), q) forj=1,2,3,4,

o that the actual value of R(z) used in (7) can aways be made to lie in the range (—, 7). Thus the
greatest magnitude of (=) used in the calculationsis . For sufficiently large = the hyperbolic functions
in (7) al vary like exp(2nzK/K"), which on substituting the largest value z = 7, becomes ¢; >, and
the individual termsin (7.2), for example, vary like q12*2”. As ¢1 need never be greater than 0.04321
this converges very quickly in n so that three terms are an excellent approximation?!

If the Fourier series (1) are used when z has a large imaginary part, then similar problems may occur.
In this case the pseudo-periodic relations (3) can be used so that the series calculations need never be
performed with an imaginary part of zgreater than 7 in magnitude, that is:

0;(z+ir2K'/K,q) = (q*2e*i4z)r (2, q) forj=1,2,3,4,

2 The text here has been changed dlightly from the original, which was not quite clear.
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wherer isany integer. Analysissimilar to that for the hyperbolic series showsthat successive termsvary
like 1, ¢, ¢%, ¢°, ...,s0 that three usually suffice.

Although the infinite-product expressions are not so rapidly-convergent as the series, the results of the
imaginary transformation are here presented for completeness. Substituting the imaginary transforms
(6) into the products (2) gives

K\'? 2K\ . (2K
01(z,q) = 2q%/4 <F> G1exp <_7rK’>Smh<F>

~ 22K
X H <1 — 243 cosh< 7 ) —l—qf") , (8.2)

n=

K\ /2 2K
02(z,9) = <F G1exp <—m>

st 22K "

% H <1 2q2n+1 Cosh( [Z{/ ) —|—q§(2 +1)) : (8.2
n=0
K\ 2 22K
i 22K

X H <1 + 2(]2’““rl cosh < IZ(, > + qf@n“)) , (8.3

K\ 2 2K 2K
04(2,q) = qu/zl <?> G exp (— 7rK’> cosh <F>
22K
X H <1 + 2¢™ cosh ( 0 ) + qf”) (8.4)

where G1 = []2, (1 — ¢?™). Inthe products (2) and (8) it can be seen that the nomes appear raised
to the power 2n, whereas in the series (1) and (7) they are raised to the power n2. Clearly the series
converge more quickly, and are to be preferred in most applications.

5. Neville’s theta functions

The theta function notation used by Neville (see [3] and [4, Section 16.36]) is of greater conveniencein
calculating elliptic functions, as will be seen in 86 below. These four theta functions are 6, 6., 8, and
6,,, which aresmply 64, 0, 65 and 0,4 respectively except that they are expressed ashavingu = 2Kz /7
as argument (with spacings of zeros 2K and :2K"), dependence on the parameter is not shown explicitly,
and they are scaled so that in the case of 6, the derivative at zero is unity, while the other three have a
function value of unity at zero. Thus,

K 00(za) oy - 02(200) 03(2,9) 04(2,9)
m 01(0,q)" ° 02(0,q)’ 03(0,9) 04(0,9)"

It should be noted that the expression given in [1, Section 16.36.6] for 6 is incorrect, the factor of =
in the denominator having been omitted. Now, use can be made of (4) and the formulae given in [1,

Os(u) = Oq(u) = and 0,,(u) =



Section 16.38] to give the relationships between the two sets of functions:

0uw) = () m 2w 01 ), (9.1)

Oelu) = <%)1/2m‘1/202<z,q>, (92)
xl/2

Gd(u) = W%(%Q)v (9-3)

On(u) = (%)I/melﬂﬂ(z,q) (9.4)

where m; = 1 — m. For agiven value of m, the quantitiesm,, K, K’, ¢ and ¢; may be calculated from
expressions obtained in Section 7, then with z = 7u /2K, either of the series (1) or (7) may be used to
calculate the 6 (u) etc., depending on whether m < 1.

6. Jacobian €lliptic functions

These are doubly-periodic meromorphic functions, each of which may be defined asthe ratio of any two
of the theta functions 4, 6., 8, and 4,,, so that each elliptic function has the zeros of the theta function
in the numerator and poles corresponding to the zeros of that in the denominator. The Jacobian elliptic
function ab « may be defined as

0o (u)

Op(u)’

where a and b may be any two of the letters s, ¢, d and n and where dependence on the parameter is
shown by m itself. The most commonly-encountered functions of the twelve possible are sn u, cn u and

dnu, and it is possible to obtain any of the other nine from ratios of these. To obtain explicit formulae
for calculating them, the formulae (9) may be used:

abu = a(ulm) =

S 1 01(z,q)
mb/4 04(z,q)’
m}/zl 02(z,q)
BT A
dnu = m1/4—93(Z’Q).
U 04(2,9)

The series for these theta functions (1) or (7) may be substituted to give the following explicit formulae
for the dliptic functions, where the infinite series have been replaced by the first three terms.

Ifm < 1/2,usez =7mu/(2K) and

g\1/4sinz — ¢%sin 32+¢%sin 5z — ...
- 2(—) 10.1
S m 1 —2qgcos2z + 2¢*cosdz — ... (10.0)
mq g\ 1/4 cos z + ¢?cos 3z+q¢% cos 5z + ...
- 2( ) . and 10.2
o m 1 —2qcos2z + 2q*cosdz — ... (10.2)
1+ 2gcos2z + 2qtcosdz + ...
dnu — m}/4 + 2qcos2z + 2q7 cosdz + (10.3)

1 —2gcos2z +2qicosdz — ...



If m >1/2,usew = mu/ (2K’) and

—1/4_Sinhw — g3sinh 3w+¢f sinh 5w — . ..
m

= 111
S cosh w + q% cosh 3w + q? coshbw + ... ( )
1 V41— 2¢) cosh 2w + 2¢% cosh 4w — . ..
nu = (M @1 CoSh 2w + 2q) Cosh 2w , ad  (112)
2 \maq coshw + g7 cosh 3w + ¢ coshdbw + . ..
d 1 /mq /4 + 2q1 cosh 2w + 2qil coshdw + ... (11.3)
nuy = - |[— . .
2\ ¢ coshw + ¢? cosh 3w + ¢% coshbw + . ...

As each of these functionshas areal period of 4K and an imaginary period of i4K’, no matter how large
the value of w, it isasimple matter to bring the value of « to be used in calculations to have a maximum
real magnitude of 2K and imaginary magnitude of i2K’.If this is done, the series in the numerators
and denominators are al rapidly convergent and for eight-figure accuracy may be truncated at the terms
shown. The largest neglected terms are proportional to ¢° or ¢¢, which is never greater than 6 x 1072,
provided the limitations in m are observed. |If greater accuracy is required, the series can easily be
extended by inspection, where the general term of ¢°, ¢2, ¢, ..." is¢"("*Y and of ¢°, ¢, ¢%, . . .isq™".

From the expressions (10) and (11) the limiting values of the élliptic functions as m approaches 0 or 1
can simply be obtained. Using [1, Section 17.3.28]:

lim (2> = lim a :i and
m—0 \m m—1 \ M1 16

lim (K) = lim (K') =2
Jin, () =l (K7)

m—1 2 ’

givess. asm — 0, snu — sin u, cnu — cosu, and dnu — 1, andasm — 1, sn v — tanh wu,
cnu — sech u, and dnu — sech w.

7. The inversion problem: calculating eliptic integrals

In many applicationsit is the parameter m which is known initially whereas to apply the series givenin
thiswork the dlliptic integrals K, K’ and the nome ¢ must be known. The calculation of these quantities
isone of the classical problemsin the field of elliptic functions— the inversion problem. There has never
been a simple and explicit method for solving this over all values of m, despite the Landen transforms,
and a useful seriesfor small m presented originally by Weierstrass [4, Section 21.8]. Unfortunately this
seriesis not convergent in the limit m — 1, which may explain its absence from [1], perhaps the most
widely-used collection of resultsin thisfield.

Here, the alternative series developed in the present work will be used in an approach complementing
that of Weierstrass so that K can be calculated over all values of m with rapidly-convergent series.
A technique is used which is similar to that of Weierstrass, but using the complementary functions
(qrinstead of ¢, and so on). From [4, Section 21.8]:

174 _ 9200,9)
03(07 Q)’

and substituting the ¢; expansions (7.2) and (7.3) gives

m

1+2q1+2¢f + ...

m

If ¢; isknowninitially, this provides aconvenient way of calculating m. In practice, m isusualy known,
and this becomes a transcendental equation for g1, which could be recast as a series for that quantity,
however a more rapidly convergent procedure is obtained by introducing 1:

1 — m1/4
T T



wheree; — 0 asm — 1. Substituting for m!/4 gives

03(07 Q) B 02(07 Q)

03(0,q) + 62(0,q)
a+al+é&+. ..
1+ 2q¢f +2¢%+ ...

261 =

7 (12)

where the series in the numerator and denominator converge even more rapidly than those presented in
Section 4. It is easily shown that thisis equivalent to
_ 04(07 Qil)

03 (07 qil) 7

where the dependence on the parameter is in this case actually ¢i. The object is, however, to obtain ¢;
asafunction of £; and so (12) can be used to give

281

q1 = &1 + 265 + 15¢) + 150613 + O (5%7) . (13)

An identical series exists for ¢ as afunction of 2¢ = (1 - m}/4> / (1 + m}/‘l), given in [4, Section

21.8], which is most suitable for m < 1/2. Thus, as m; need never be taken greater than 1/2, ¢;
is always less than 0.04321, and for give-figure accuracy, only one term in (13) need he taken! It is
interesting that thisis the first series in this work where the coefficients are unable to be written down
after inspection of the first few.

Having calculated ¢;, K’ is obtained using the result given in [1, Section 16.38.6]:

K = geg(o) :g(1+2q1+2q;‘+2q?+...)2 (14)
and K obtained from the definition of ¢;:
K 1
K=—In—. (15)
™ q1

Each of the results (13), (14) and (15) is simply the complementary form of those given by Weierstrass
(see [4, Section 21.8]) but with m, €1, ¢1, K'and K replacing m, €, ¢, K and K’ respectively. While
this seems obvious in retrospect, it has not been shown or pointed out explicitly. For example in [4,
Section 21.8] it is stated that the Weierstrass form can be used even for moderately large m, but without
mentioning that it is useless as m — 1 and without mentioning the existence of a complementary form
better suited for m > 1/2. For m < 1/2 itisclearly advantageous to use the original Weierstrass form.

It is often necessary to calculate the complete elliptic integral of the second kind, £(m), or its com-
plement £/ = E(1 — m). An explicit method capable of high accuracy which uses quantities already
calculated aboveisasfollows. In[1, Section 17.3.23] aformulais presented:

E 2—-m m\2 [ 1 > q¥
=2 =Y —— 1
K~ "3 (K) (24 ;(1q2j)2)7 (16)

which is clearly uselessif m — 1, ¢ — 1. However, in Section 17.3.13 of the same book, Legendre’s
relation is presented:

EK'+ E'K — KK’ :g (17)

If m < 1/2, then E can be found from (16) and subsequently £’ from (17). Otherwise, ¢; and K’ can
be used in (16) to give E’,and (17) used to obtain E.
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Appendix A. Check calculations — do not print this

Thisisto check the results for a borderline case

m = 0.5

m = 1—m
11—ml/*

1= 21 + mb/4

o l1-m/
21 4/t

ey = 4.3214x 1072
e = 4.3214x 1072
q = e+2¢°+15¢% +150e?

@ = &1+ 2]+ 15e] + 150613
s 2

Ki = 5 (1420 +24 +2q))
K, 1

K = “Im—
™ q1

u=2

If m <1/2,usez =mu/(2K)

1/4 sin z—g?sin 3z+q° sin 52
_ q sin z—¢?sin q _
snu = 2 (m) 1—2gcos2z+2q* cosdz ~— 0.994 662 33

1/4 +q2cos 324q° cos 5z
_ miq cos z+q q _
cnuy =2 ( m ) 1—2gcos2z+4+2q* cosdz 0.103 183 62

_1/4142qcos2z+2¢* cosdz
dnu =m, T—2qcos 2o+ 2qT cos k2 — 0.710861 05

Ifm>1/2,usew = mu/ (2K1)

—1/4 sinhw—g?sinh 3w+4¢f sinh 5w
cosh w+¢? cosh 3w+qf coshbw 0.994 662 33

snu =1m

1/4 4
_1(m 1-2q; cosh2w+2q; coshdw
nu =35 (mql) cosh w+¢3 cosh 3w+¢¢ coshbw — 0.103 18361

1/4 4
_1(my 14-2¢; cosh 2w+42q7 cosh4dw
dnu = 2 ( Q1 ) cosh w+¢7 cosh 3w+¢? coshbw 0.710861 04

Wonderful. But | found two errorsin the typing!
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