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On the Application of Steady Wave Theories

J.D. FENTON

Senior Lecturer, School of Mathematics, University of New South Wales

SUMMARY Some recent developments and new results for the theories of steadily progressing waves and their
application to marine problems are discussed. It is shown that most applications of Stokes and cnoidal
theories have been incorrect at first order, and if neither the wave speed nor the current nor the mass flux
is known, no theory higher than first order should be used. A new Stokes theory is presented, which 1is
rather simpler to apply than previous theories. An existing cnoidal theory is modified to allow for the
effects of current, and a number of recent simple formulae are presented for calculating the necessary
elliptic functions and integrals. Finally, a recent Fourier approximation numerical method is discussed.

1 INTRODUCTION

The usual approximation made to solve the problem
of waves propagating without rapid changes is that
each wave 1s one of an infinitely long periodic
wave train which propagates without change of
shape, 1in water of constant depth. For seas in
which there is a dominant wave period, such as
swell, and where reflection and diffraction are
not important, this should be quite a good approx-
imation to the actual unsteady problem. Evidence
suggests that individual waves appear to be rather
stable, and the effects of nonlinear interactions
are rather weak.

The problem of a steadily-progressing wave
train has received considerable attention over the
years. Of the wvarious theories and numerical
methods, there are three which stand out as being
rational approximations, whose accuracy can be
precisely quantified, which can be extended to
higher orders, and whose applicability has been
extensively tested. These are Stokes theory,
cnoidal theory, and the numerical methods widely
known as "stream-function" methods, but which are
more appropriately known as Fourier approximation
methods. Recent developments and new results in
each of these areas will be described in this
paper, showing how the application of each has
become somewhat simpler in recent years. Before
this is done, however, a feature will be discussed
which has Dbeen commonly neglected by all wave
theories, with the result that the application of
most has been incorrect at first order.

2. DOPPLER SHIFTING OF THE WAVE PERIOD
2.1 Wave speed and period

Contrary to the implicit assumptions of many
theories, no wave theory can predict the actual
wave speed, for in most marine situations there is
a finite current. The wave speed relative to an
observer depends on the value of the current at
that point; the waves travel faster with the
current than against it. Thus, for waves of a
given length, the apparent period measured by the
observer (time interval between arrival of crests,
say) depends on the current, or in familiar phy-
sics terms, the apparent period 1is Doppler-
shlfted. Without explicit allowance for the
current it is not consistent to use the wave

period in the calculation of a solution. Any solu-
tion thus obtained would be somewhat in error at
first order, and it would be a waste of time to
use any theory higher than that.

Most wave theories give formulae for either
or both of two types of mean fluld speed in the
water. Consider a frame of reference (X,Y), with X
in the direction of propagation of the waves an” Y
vertically upwards, with the origin on the bed.
The waves travel in the X direction at speed ¢
relative to this frame. Consider also a frame of
reference (x,y) moving with the waves at speed c,
such that X = x+ ct, Y =y, where t is time. In
the (x,y) frame all fluid motion is steady, and
consists of a flow in the negative x direction
underneath the stationary wave profile. The mean
fluid speed for a constant_value of y over one
wavelength ) is demoted by u. If c¢_ is the meas-
ured time-mean horizontal fluid veélocity at a
point in the arbitrary (X,Y) frame through which
the waves are passing (the Eulerian mean,
hereinafter referred to as the current underneath
the waves), then

o= - o (2.1)

Stokes” first definition of wave speed is the
speed relative to a frame in which the current is
zero, that is, in which =0, giving ¢ = u. 1In
most presentations of wave theory it has been the
quantity u which has been referred to as the "wave
speed”.

The second type of mean fluid speed is the
depth-integrated mean velocity of the fluid under
the waves. If Q is the volume flow rate per unit
span underneath the waves in the (x,y) frame, the
depth-averaged mean fluid velocity is -Q/d, where
d is the mean depth. This velocity is negative
because it is In the negative x direction. In the
arbitrary (X,Y) frame, the depth—averaged mean
fluid speed Cgs the "Stokes drift velocity™ or the
"mass~transport velocity” is given by

eg = c - Q/d. (2.2)
If there 1s no mass transport, c¢, =0, then
Stokes” second definition of the wave speed, that
relative to a frame in which there 1s no mass
transport, gives ¢ = Q/d.

In general, neither of Stokes” first or
second definitions is necessarily the wave speed;
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the waves can travel at any speed. In any particu-
lar marine situation, the overall physical problem
will impose a certain value of ¢p Or cg on the
wave field, thus determining the wave speé%.

2.2 The first step in applications

In most applications where a wave theory is to be
used, the design parameters which are specified
are the mean water depth d, the crest-to—trough
wave height H, and the wave period T. As described
above, this is a Doppler-shifted period, and to
apply any theory properly it is necessary to know
in addition the wave speed ¢ or the current CE or
the mass transport speed Cgr

Each wave theory gives formulae for u and for
Q as functions of depth, wave height and of
wavelength, which is usually unknown initially.
Using (2.1) for example, and with the identity
A= cT, a nonlinear transcendental equation is
obtained:

e -%+:(H,d,x) = 0. (2.3)

If H, d, 1 and ¢, are known, this nonlinear tran-
scendental equatf%n can be solved numerically for
the wavelength, as the first step in the applica-
tion of any theory. If, on the other hand, c_ is
known, then an equation similar to (2.3) can be
obtained and solved for the wavelength. Once } is
known, the rest of the theory can be applied.
Clearly, if neither c_ nor c¢_, is known, then there
is no way that either equation can be solved. As a
sensible approximation, however, it would be rea-
sonable to set =0, or e, =0, as has been
implicitly done by most theories. If c_ (or cs)
is small compared with ¢, the computed value of X
would be accordingly accurate, however in this
case there would be no justification in using any
theory higher than first order. More importantly,
however, the calculated unsteady water velocities,
often used for design purposes, would have errors
of the magnitude of the current. Tt is clearly
important to know and to use the current or the
mass transport velocity in applications.

3 STOKES~ THEORY
3.1 Introduction

Stokes assumed that all variation in the x direc-
tion can be represented by Fourier series, and
that the coefficients in these series can be writ-
ten as perturbation expansions in terms of a
parameter which increases with wave height.
Explicit fifth-order expressions for practical
application have been given by De (1955), Chap-
pelear (1961) and Skjelbreia & Hendrickson (1961).
Each of these is for the special case c, = 0, and
so application of each has been inaccurate at
first order if the current was not zero. In addi-
tion it has been shown by Fenton (1983) that the
theories of De and Skjelbreia & Hendrickson con-
tain errors at fifth order. These theories are
presented in terms of length scales which are unk-
nown initially, so the first step of any applica-
tion requires the numerical solution of two or
three simultaneous transcendental equations, which
has been found to be difficult. Use of the actual
wave height H and the actual depth d in the theory
would necessitate the solution of a single equa-
tion only, as described in Section 2. This has
been done by Tsuchiya & Yamaguchi (1972), who
obtained a fourth-order solution for the special
case cg = 0.

Fenton (1983) has developed a fifth-order
Stokes theory which requires solution of a single

equation for the initial step, and which makes
explicit allowance for the specification of a
value of either ¢, or c¢.. It was shown that if
neither is known Eﬁen application of the theory is
incorrect at first order, following the arguments
of Rienecker & Fenton (1981).

~ Also shown, following Ursell, was that
whereas the nominal expansion parameter in Stokes”
theory is proportional to H/A, in shallow Eatﬁr
the effective expansion parameter becomes HA"/d”,
so that for long waves ()/d large) this parameter
becomes large, and higher-order terms become
large. Stokes” theory should not be applied to
waves which are longer than ten times the water
depth which, nevertheless, is a fairly generous
limitation. For waves longer than that, cnoidal
theory should be used.

3.2 Presentation and application of theory

The following is a presentation of the theory as
given by Fenton (1983). All expressions are given
as functions of the dimensionless depth kd, and
the dimensionless wave height kH/2, where k = 27/)
is the wavenumber. Each equation is given in
Appendix A, and the formulae for the dimensionless
coefficients used in those equations are given in
Appendix B.

Equation (A.l1) is that for the mean fluid
speed along a line of constant elevation, u. Using
this, and 2 = ct gives (A.2), corresponding to
(2.3), a nonlinear equation to be solved for the
wavenumber k. If ¢, is known, then (A.2) can be
solved, or if c, is known, the expression for Q
(A.3) can be uséd to give equation (A.4), to be
solved for k. An initial estimate for k can be
obtained by considering the (identical) 1linearized
versions of (A.2) and (A.4), for ¢, or c., small,
where ¢ means that either c_ or c_, can be substi-
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From this initial estimate, the usual techniques
for solving nonlinear equations can be used, such
as trial and error, bisection, or the secant
method. Then, the values of u from (A.l), Q from
(A.3), and the wave speed ¢ can be calculated from
(A.5); the rest of the theory can then be used.

Expression (A.6) gives the velocity poten-
tial, from which the velocity components are
obtained: U = 34/8X and V = 3%/3Y. The elevation
of the free surface above the bed, n(X,t) is given
by (A.7), and the pressure at any point, p(X,Y,t)
is given by (A.8), where p is the fluid density,
and where the value of the Bernoulli constant R is
given by (A.9). In deep water the expressions
(A.6-8) become (A.6*-8%) as shown, in which Y, is
the elevation above the mean water level, and the
free surface is at Y, = n,.

In Fenton (1983), the fifth—order results are com—
pared with experimental results and with high-
order theory, and found to be accurate over a wide
range of wave heights, provided the wave length is
less than about ten times the water depth. Previ-
ous use of the incorrect condition ¢, = 0 instead
of ¢, =0 in comparison with closé% wave tank
experimental results was found to give errors of
20-40% for the fluid velocities.

4 CNOIDAL THEORY

4.1 Introduction



The cnoidal approximation to the steady water wave
problem follows from a shallow water approxima-
tion, in which it is assumed that the waves are
much longer than the water is deep. A first-order
solution shows that the surface elevation is pro-
portional to e¢n, where en(zlm) 1s a Jacobian
elliptic function of argument z and modulus m and
gives the name to the theory. This solution shows
the long flat troughs and narrow crests, charac-
teristic of waves in shallow water. In the limit
as m*l, the solution correspons to the infinitely
long solitary wave.

An explicit fifth-order theory has been given
by Fenton (1979) which, like most of the Stokes
theories described above, makes the implicit
assumption that ¢, = 0. In Section 4.2 it will be
shown how Fenton”s theory can be modified so as to
be able to handle the more general cases where e
or cg may have a specified non-zero value.

It should be noted that cnoidal theory breaks
down in deep water in a manner complementary to
that of Stokes theery in shallow water. Fenton
(1979) showed that whereas the nominal expansion
parameter is H/d, the ratio of wave height to
water depth, the effective parameter i1is H/md,
where m is the parameter of the elliptic functions
used. It can be simply showed that as deeper
water, is considered, this quantity wvaries 1like
(d/X)", so that the theory is clearly invalid for
d/ ) large.

4.2 Application of the theory

The theory described here 1is that of Fenton
(1979), subsequently referred to as I. Most of the
expressions given in I can be used directly and
will not be reproduced here. The main purpose of
this section is to extend the theory so that it
can be applied to more general situatioms. This
will be done here explicitly to second order.

As m is unknown initially, the first step in
application 1s to solve for it, as outlined by
equation (2.3), in a similar way to which (A.2 or
4) must be solved for the wavenumber k. In Appen-
dix A of I, an expansion for the wavelength A/d
was given in terms of H/d, the parameter m, and
the complete elliptic integrals of the first and
second kind, K(m) and E(m) respectively. This
expansion may he usaf;firectly, but to obtain the
expansion for u/(gd) it is necessary to use the
results given in Tables A3 and B6 of I. Performing
the necessary series manipulations and using the
expression A = c¢T gives equation (C.l) shown in
Appendix C here, where e(m) is the ratio
E(m)/K(m). If the current Cos depth d, wave period
17, and wave height H are known, this may be solved
for the parameter m. As an initial estimate, it
is possible to show that m is approximately given
by

2
I 1- 16 exp[-CEH/2),
4d
for long waves, which shows how m approaches 1 for
that case.

If Cq is known, then a similar expression may
be developed from (2.2) and Table B3 of I, and is
given as (C.2) in Appendix C. Having solved for
m, the value of the trough depth h may be found
from Table A3 of I, which to second order gives
(C.3) here. The rest of the results given in
Appendix B of I can now be directly used. Having
found m correct to second order here, it would be
rational only to use second order expressions from
that Appendix of course.

4.3 Calculation of elliptic functions and integrals

For the waves where cnoldal theory 1s preferable
to Stokes theory, m 1is very close to l. Unfor-
tunately in this limit the expressions for ellip-
tic funetions and elliptic integrals given in
standard reference books are slowly convergent.
The difficulty of calculating these quantities has
been something of a disincentive to the +se of
cnoidal theory. Recently, however, Fenton &
Gardiner—Garden (1982) have presented a number of
formulae for elliptic functions and integrals
which are most rapidly convergent in the long wave
limit m*l. Some of these converge so rapidly that
it is necessary to take only one term of the
series.

Below are given formulae for the elliptic
integrals K(m) and E(m), and the functions
en(z|m), sn(zlm), and dn(z|m), which are used in
the theory described above. The formulae given
here are most accurate in the long wave limit m*l,
but are generally accurate to five significant
figures for m > 1/2. (For the case m < 1/2, when
the cnoidal theory should be applied with great
care, reference can be made to Fenton & Gardiner-
Garden (1982) for the usual complementary formulae
which work best when m is small.) Taking only the
leading terms of various expressions gives the
approximate result for K(m):

2 1n 2(1 +
a+ mlﬂi)z 1-
which 1is a remarkably simple result which seems
not to have been given elsewhere. To a similar
accuracy, the complementary elliptic integral of
the first kind, K" (m) = K(1-m) is given by

2w

K7 (m) Z m.

The ratio e(m)=E(m)/K(m) is given by

ml;’&)
mlﬂi

K(m) =

2

q
E() .2m , w7 .2 -1 1
RKm) ~ 3 T T It (l_q'i)zl-

1
where q, (m) is the complementary nome
q; = exp(=mK/K”). Finally, the elliptic functions
are given by the following:

“1/4 sinh w = q% sinh 3w
sn(Z[m) ~m ) ]
cosh w + q7 cosh 3w

m 1 - 2q, cosh 2w
en(z|m) = %(—-1—)1!4 E 5 %
™y cosh w + q cosh 3w
and
m 1 + 2q, cosh 2w
an(zlm) = 2 :

94 cosh w + qi cosh 3w

in each of which w = nz/2K".

5 FOURIER APPROXIMATION METHOD

A limitation to the use of both the Stokes and
cnoidal theories is that they are not accurate for
all waves. Neither of the fifth-order theories
described above 1s accurate for high waves. To
describe them properly it 1s necessary to take
very high-order expansions and to use
convergence-enhancement procedures, necessitating
the use of extensive computation. A more fundamen—
tal limitation is that neither 1s accurate for all
water depths: the Stokes theory 1s most accurate
for waves in deeper water and breaks down in shal-
low water; while the cnoidal theory which ecan

describe long waves 1s not applicable to deep
water.



6 CONCLUSIONS
The basic form of the Stokes solution 1is a

Fourier series, and ‘s0 a reasonable step would be, The three main approaches to the steady wave prob-

instead of assuming perturbation expansions for lem have been discussed, and some new results have

the coefficients in the series, to £find them been presented. It has been emphasized that insuf-

numerically for a particular wave by solving the ficient recognition has been given to the fact

full nonlinear equations. This approach would be that the wave speed (and hence the wave period)

expected to break down in the limit of very 10“8 depends on the current on which the wave is trav-

waves, when the Fourier spectrum of ¢°eff1¢ient3 elling. Results presented include (i) A Stokes

would be broad-banded and many terms would have to theory which uses the actual wave height in the

be taken. Also, as the highest waves are expansion parameter, which makes practical appli-

approached, the crest becomes more and more sharp, cation rather simpler. It 1is noted that some

and the coefficients would also decrease rather existing theories are wrong, (ii) An existing

more slowly. Despite these limitations, it would cnoidal theory is modified to allow for the more

be expected to be very much more accurate than general case when the waves travel on a current.

either of the perturbation approaches. Some formulae are presented so that the elliptic

functions and integrals may be more simply calcu-

This is the essence of the methods of Chap— lated for cnoidal waves, (iii) A recent Fourier

pelear (1961), Dean (1965) - known as the stream approximation method has been briefly discussed.

function method, and of Rienecker & Fenton (1981).
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APPENDIX A: Equations for Stokes theory.

:(klg)uz = co + (-:2‘4*-)2(:2 + (%)l’c4 * wney (A.1)
k\1/2 27 kH, 2 K4 .
@ o T P g G C) £ L G M) ek 2 8, (a.2)
a2 = ¢k + E%c,u +0,)) + ED e ua +0,) + oy 4.3
k.1/2 .2 ki, 2 Dylkd) kw4 Dy (kd) .
(E) cg zﬁm + Co(kd) + (—2--) [ szkd) +—£&-—-] + (T) [Cl‘(kd) "'Tl + ... o, (A.4)

c=ute "—1+C

o (A.5)
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®(X,Y,t) = (c—u)X + Co(gfk3)1"2 I (-l’(z—lll)i z cosh jkY sin jk(X-ct) + ... ,

i=1 =1 1 (A.6)
kn(x,6) = kd + (Beos k(x-ct) + (%?)2322cos 2k (X-ct)
+ (ﬁ)% ( cos k(X-ct) - cos 3k(X-et)) + (E)A(B cos 2k(X-ct) + B, ,cos 4k(X-ct))
27 31 s = B WMggsem 44
+ (E{-)S(-(B + B..) cos k(X-ct) + B.,cos 3k(X-ct) + B_.cos5k(X~ct)) + (A.7)
2 53 55 53 55 sy .
p(X,Y,t)/p = R = g¥ - -%—[(U-(.'.)2 + V2], Rk/g = %Cz + kd + (ﬁ)zg + (EH—)['E + ..., (A.8, A.9)
e o 2 2 2 4
3, 1/2 3, \1/2 1kH,2 , LkH 4, , kH, V%
(k7/g) "X, Y,,t) = cX(k'/g) kX [ 1+ 356G +5(5) 1 + (5)e sin k(X-ct)
kY, 2KkY,,
= %(%)Be sin k(X-ct) + %_(%E)de sin 2k(X-ct)
_ay kY, 3k,
+ (k—H)S(ﬁe sin k(X-ct) +ie sin 3k(X=-ct)) + ..., (A.6%)
2 24 12
kn,(X,t) = (kz—H) cos k(X-ct) + %(l;—ﬂ)zcos 2k (X-ct) +%(%)3(coa 3k(X~ct)-cos k(X-ct))
+-1§(%)4( cos 2k(X-ct) + cos 4k(X~-ct))
+ 1 kH.5 4 9 4§
W(T) (-422 cos k(X-ct) + 297 cos 3k(X-ct) + 125 cos 5k(X-ct)) + ..., (A.7%)
P.gl_ 1 kH,2 1 KHA 1o 32 o2
: 2 G~ K, + 3G + 25 ) - 5[(U=e)” + V7] (A.8%)

APPENDIX B: Formulae for dimensionless coefficients in Stokes theory in terms of hyperbolic functions of kd,
including S = sech 2Zkd.

= 35%/219)%), A, = (-4-205+105°-1357)/(8 sinh ka (1-5)°)

Ayy = (-257+115°)/(8 sinn K (1—313), Yo 2}23-1482—26é33—4i?4—1355)!(24(1-5)5)
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Ag, = (~1184+325+1323257+21712574209405 “+125545°-5005°~334157-6705%)/ (64 sinh ka (3+25) (4+3)(1-5)%)
Agy = (481;0582129833-2376541530235-}1736t§887)/(32 sinh kd (3+23)(1—S)i2
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= coth kd (I1+25)/(2(1-S)), 1333l = —3(1+35+387°+257)/(8(1-8)")

= coth kd (6-265-18252-2043 -2554+2685)/(6(3-!-23)(1-5)&)

42 2 3 _4._ 5 4
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B, = 5(300+15795+317652+29495 3411885 +6755 741326548275 /+130%) / (384 (3+25) (4+5) (1-5) ©)

C, = (tanh ka)yl/2, ¢, = (tanh k)2 24752y 14 (1-8) %)
414657y /(32(1-8)°)

¢, = (tanh k) 2 (4432511652 -40057-718
2_s553y/(8(1-5)%)
2 3

D, = -(coth ka)}/?/2, D, = (coth k)2 (425485
= tanh kd (8+125-15252-3085°-425%4778%)/(32(1-5)°)

Ay, = 1/sinh kd, A,,

By2
B

2

E, = tanh kd (2+25+55%)/ (4 (1-5)D), E,

APPENDIX C: Equations for first step of cnoidal theory.
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