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SUMMARY A '"''tbod l$ developed for generati.ng numerical LJchewea for the solution of hydraulic equatious, 
and is applied to ttie one-dimensional equations for u11steady open-channel flow. Exaniples lr1eludcd are for 
th" wate1~·-depth and velocity formulation, and the stage aud dlsdiarge formulatJou wlth off-·su·eam st.otag<>. 
l'he sdiemes seem to offer a number of advantages over eid,nJng methods, and are simply implemcmted. They 
are explicit, unconditionally stable, of specified acc.:oracy (t!xact for liuear equations, and first-order in 
tbe basic nonlinear form, but h:lgher order schemes can be developed). A novel .teature is that the Ume-· 
stepping schemes are 1nderendent of tbe method of interpolat:Jou along the c.:hannel, ior wliich any method can 
be used, leading to the•ability to treat irregular channels and the propagation of bores. 

1 • INTRODUCTION 

Tbe pr:obl.e<t1 of the uumeri.cal solution of the one­
dlmensi.onal equations for unsteady open channel 
flow has g-'nc;ratt:.d a uiddsive literature during the 
idst 20 years, reflecting the importance of the 
problem aild, perhaptl, the lack of any single out­
standing method. Spac<, pt,nnJts only " cursory d.is­
cussion here; revl.ews aud critJques of the Ulethods 
used hav.o ~een gi v<nl by LJgget t & Cunge ( 197 5), 
Zoppou (1979), and by Zoppou & O"Nelll (1981). 

For many yedrs the hlet:hod of charae teristlcs 
has been u8ed to demorrnt·~-t:etl7e" ,;;ture-~~·solu.:.":' 
t:lca1s to the. ~<..4u.t1.t::Lon.s 1 to obtain solutions in 

some simplt~ caties 1 to infec the boundary condi-· 
tions which must be supplied, and 1n more reeen.t 
years to solve the eqLtutlon,; numerically. While 1 t 
has per fonn,;d admirably in the first three areas, 
it bas been less ciUCcessful as a numerical tool; 

the 111et!iod ib fundamental and appea.l.ing to 
mathematicia.H:a hov1ever there remain difficul­
des which have i;reveni:ed its w.lde use for 
u.nol:t:r:tJy flow .i.1i; ~bauneIB" (Liggett & Cunge)~ In 
an effort to oven:mue some of trte dlsadvantages of 
characteristlc&i sev8ral gricJ-orientated charac­
teristic lllethoJs have' 1Jee·;;--·;i-;,velc1ped~wtiere-the 
;::iia:-ra-Z:terlst1c~ equations are solved at each stage 
to provlde infurmation at regularly-·spac.ed valnes 
of space and time. 

Turning to finite dt~.:f~.~~~~ &c.hemes where 
there !.s no attempt to build in the "travelling 
wave" natu.t1;.~ of the solutlont» a.n.d where the dif­
ferential equationH are dpprox~nated by finite 
differ2nc.e expre1~1:1i Ol1.'::i, tb2re are two main subcl:L­
vi&ious 2xpJ1.ci t alld i.niplic it. ""Explicit 
schemes arc uneconomic~ iuflBxibl~ and inferior to 
lJther U"Vai1able ru1mer::i.cal uwdelt>" was tl:ie con.clu·­
eioo of Zoppoo & O"Nelll. If Jmplicit Hchemes are 
used, tbt!n UllCOndJti.onal s:L:.tbi.lity can be obtained 
and large L:i1he steps used. Howevt.r) the.rt: seem to 
Le a nulli.i:i~r uI d1sadvdnLagen also attacht:d to 
Ju1pl:lcit methods. 'f!1<2y are very c:umpll<::ated, and 
t.dso have a aumb~r of undeslrabl~ numerical pro-· 
p~rt:Jes, 

Alter il rea1Hng of the e.xteu;;.ive llterat:ure 
111 ttte bt1hj~ct a~ed one cannot fail to be 
tmprebsed by the plt:thora of u1ethods i the comple..x­
J.ty <:•f th<0ll' fornmla", t1nd the:ir 11m:Lted ab.ili­
ties. It ib lt1e ubj(cCt of this work to develop a 

ui.,t.hod for the nrn~ericai solution of all torrnuh1-
t:l11ns of the one-diruens.ion<d. equa Lions £01· 

unsteady 0(1en-clta1'aH::.l t1ow~ The ±and ly- of sehcmes 
wld_c.h r2sul t ar*~ r·elated Lo tfa(.~ grid-ori.ttnt.at.ed 
i.::lwraeLt:!rtHtJc lllt!thuds 1 however they have a uw11be.r 
of special features which leaves them with practi­
cally none of the d.isadvantages whi.ch conventional 
methoJo poBSt!86. The expressionB g_l ven) af' te.r 
some lengthy dcr·ivatiori, cn·e slinple, explic:lt, 
uncondJ t.i.una1J.y a table, of gJven accuracy (exact 
for liucar equations, ocherwt~e of first order 
only, but a second order faUiily uf schemes will bt~ 

given i.n u .Later work), valid for sub-· and super-· 
cricica:I. flowh~ thdy descri.he tl1e p!·opagation and 
1 u tec.::H.\ ti.0n of boret:t, and treat ir:i:..·c~gu.lar .cLautH:d.B 

simply. This latter feature derives from aa 
uuuuual ftature of tk1e ~ethod, tttat the tiru~­

BteppiH!; fon.lllll.02 given are ind«pendent of the 
1uethod o.t BlJatia1 inte1"pnlation along tl1e channe.J~ 

In rtbt<.1-tning the resu1 t B pi-:-escutt:.d here 1 eKpuuen-· 

cJo..l ti pLI Heb we rt: fouud to be au .rtc.cura te and 
telli1ble ru~auB of lnt~rpulatlon~ 

2. DEVELOl'Ml\NT OF METHOD FOK u-h J:\l!lMULATTON 

t;o1nd der the equcl t ions governlng 
of lollg d.hiturbances, where the 
h(x,L) and the hiean flui.d velocity 

the propagatJ.011 
depth 0£ water 
u(x,t·) over the. 

c.harinel ut'G the dependent variables and x anJ 
are rt...o:spel:tively the d.isLan.ce along the channel 
and t.1.1Jte. .. The a1ass e:ontiervo.ti.on t:~y_untion is 

Ailu+.'l 
ll ox i\ 

and the. lli0Ji1l-!ntum equation iB 

(2,1) 

o (l __ ll_ + gS ·- gSf' + 'l(u, - u), (2.2) 
i) x 0 A J 

whet"c0 A(x,t.(x,t)) Hi the area of crOLJt;·-becU.on of 

t11c• l'.hanwd., A, ilA/oxlh J.s the rate of change of 
A wJth x due to chang~;s Ln the chanHel sectloi.l 
u1l.ly, ll(x,h(x,c)) [,; the width of 1.lie tree sur­

f~c:e,. g ib. grav:lLatlolla.I. ac.:elerat:J.ou, ·s(J(x) :1 .. n 
u1e: ti.Lope nt tht.~ cl1aunt.d. bottom) de.creasing elevu­
Uon LvlUt x being raken as positive slop.,, s,(x,t.) 
1.,; t:I"' f r.icLion blu;«e, always pos:iLl.ve, for twldch 
Elllplr.Leal foLmulat at·c usually g.i.ven> 4(x,L) .fa 
thl'. volufae .intluw r~ite pet" unlt lt::ngrh of channel, 
and uJ(x)c) :lb the x-cornponcnt of the veloc:ity 
w:i.th whJd1 that :inflow enters the clwm1e.l. 



Th12. equations can be written in matrix form 

b,. -Fil~+" bt- ~ OX -.. <2 • 3) 

where u(x,t) is tile vectoi: of dependent ViJriables, 
F(K,t) a 11>atrb., awl 'I! the vector containing the 
effects of geom.::tr:tc cl1auges> in.flow, bottom slope 
and friction: 

and 

<J 

A/n-1, 
li J 

(2.4) 

where q1 aHd q2 ;ire introduced here for the terms 
shown .. 

The usual problam io computational hydranlics 
is, 1f wt(x,t) is kno14n, t.o fJnd the solut:ion at a 
later ti.me .. (x, t+LI), where l1 is a finite time 
step. In tlrn absence of boundary condi t.:lons, an 
exact solut:i.on can be written as the infinite Tay­
lor s<,ries 

2 2 
u(x,t+il) ilu l\ o u 

... (x, t)+L\;-~(x, t)+2_T - 2-ex, t)+ ..• ( 2 • 5 ) 
u t. • 0 t. 

The sysLeill of governing partial diffet·ential equa­
tions (2,3) can be uubst1tuted for .. (x,t). For 
time derivatives of higher degree, from (2.3) the 
approximation :!.s made that, for n > 2, 

on a "u --~: (-F)n 
()tn ()xn (2.6) 

Substituting the<>e results into the Taylor series 
(2 .. 5) gives 

"'(x,t+ll) ~ ( I ··- l\f n(x,t) 

·t- b"ll(x, L) (2.7) 

where l ls tLe 2<1 ident}tY matrix, and where the 
L<rndau or det syllibol (J (l\ ) has been2 used to show 
that neglect1;d teruis are of order L1 , due to the 
approximation af (2.6). Equation (2.7) includes a 
differential operator of infinite order. While it 
r.ulght be tlwnght strauge to Include an il)finity of 
terms wh:Lle uegl<::cting terms of order LI··, it: has 
l>12en shown by Fenton (19t12,1983) that this scheme 
aolves an important class of problems exactly, and 
has numerical proper t.ies wldch are very much nieer 
than conventional finite difference methods. 

To 1niplement the scheme (2. 7) it would be 
uecessary to perfGCTLl an infinite se.rie.s of matrix 
multiplications. Thie can be obviated if the 
matri.x --t' Is diagonal:lzed by writing it a,; 
F = CDC , wh"n' D i& a diagonal matrix with ele-­
mentB A 1 and )l ,.1 wh:lcb are the etgenvalues of .F', 
and C :lri a ~ rnatr:lx whose columns are the 
correspondinii elg~nv~ctors of f. Tl1en 1 it can bB 
ahown that F ~ CD 1\:- 1 , and (2.7) becomes 

u(x,t+ll) 

>IJr.h F '"' defined ln (2.4), the eigenvalue:; are 
e<rntly shown c:o be 

Al .. u t ~gAJil, ''2 = u .. \fi\TB. (2.9) 

'1't1e.B2 terms nm.J h.ave alt important physical sign:i­
ilca1l~e > for tl1e speed of long waves is given by 

~gA/B. Uti:lng the customary symb()l c for this 

4uantity; the eigenvalues are 

!. 1 ~ u + c, and !. 2 ; u ·- c, 

the local speeds at which disturbances travel on 
tlie flow, relative to a stationary observer. 

that. 

r CJ 
,-

c -i c Jb 
c wi.Lh c-1 ~ 

/_g -cl rg - ' (2.10) 
! ' 

Substituting thls expreirn1on for c~ 1 Into (2.8)n 
and using t¥i" fact11 that the only <,lements of Jl 
are simply Al and ). 2 , on the dlagonal, 

u(x,t+L1) ( fg e ·1 rg,\ l '~ ·-1 
-cl.121 

(\ 
c - L\ 

lgt.2 i~ -cl ox 
-i I- ~ 

f 2 cAi l £. gt. 1 2 
·I-

A 
+ ... ) llt("' t) 

2 ! I[!}. 2 -cA. 2 J 0 I ., 21 
i- '· -i 

+ A 'I ( x , t ) + 0 (L\ 2 ) • 

GroupJng th" uuti.-ic:e;;, tlds can be written 

2 
+ L\ q ( x, t) + 0 (LI ) , 

in wblch the e.x.puneutial expt~es::)ions &re used to 
rt:prc.Gent t'ta=.ir pfYwer series expansit.HHJ 

( , .. 1, ) 1 " ~ ;· + 1 , 2, L '2 1., 2 
~xp -{l"li) uX ~ -,,""lu ox 2T'" A 1rl uX - •• ,, 

The,;" i.ntlnlte serJes of differential operators 
are the operators of Taylor serJ li!S, and can be 
ulm1jly interpreted aa Sldft Operators E(--llf. 1 ) and 
E(-·Llt. 2), anch that if such a shift operator acts 
on some function f{x), the value off ac a •hifced 
value of x is obtained: E(--llA. 1 ) f(x) = f(x - LIA. 1 ), 
etc .. 

Snhsticnting these reeulte inc0 (2.8) gives 

CF . ··11 ·+ 
-ell I 

·:_j 
u(x,t) + /\q(x.,t) + O(l\ 2 ), 

(2 .11) 

Where E_t~ and E_ are defined by 

Et-

an<l E 

E(-Lt. l) ll(-Ll(u+c)), 

lo: (-At. 2 ) ~ E (-LI ( u-· c) ) . 

The shift operators now have an import;:n1t a.nd 
unexpec:ted pllysi.c.ol signLflcanc.e:: to calculate the 

af,lution at x at time t+il, one uses J.nformatton 
from time level t at x+ = x - il(crt·c) and 
"-- ~ x -- Ll(u-c), the points from wh:lch d.l.sttir­
bauc.cs would originate) travelli.ng at ·veloCities 
u(1',t)+c(>l 1 t) and u(x,t)-c(x,t) respectively,, such 



Lhal they would arrive at the point x at tlme t+LI. 
Although no lliencion hab been lliade of characterls­
tlcu ln the: present der·ivation, it seems that it 
implicitly acknowledges the characteristic-based 
ft,rm of the solution. After substitution for C 
into (2.11), and multip1yJ.ng the lllat:rices, the 
reaultlns individual component equations become 

h(x,nLI) -2
1-(h++ti ) + c(:::_,__iJ_(u -u )+llq. (x t)+-O(t:. 2 ) 

2g + - 1 , ' 
und (2.12) 

u(x, t+f,) = ;;-{2
1 u++u_) + __ ____g ____ .,--(h -h )+Liq (x t)+o(LI 2 ) 

2c(x,t) + - 2 ' ' 

in which h1_ h(l', , t), and ut 
x x - Ll(u(x,t) :f c(x,t)). 

t 

Eq nations (2 .12) are the iuudameutal scheme 
of i:bis work. func:riou valu8s at (x, t+I\) are 
obtained from valut.:.s al (xt· ,t), values wh.ich must 
bto~ interpolated frolil knowi\ poJnt va.lue8 at t.ime 
level t ~ As such) r:he equa t Jons pro vi.de an 
unustial method of ooJution. There is uo atterupt to 
approximate derivatives, they form an 
interpolation-only scheme for advancing the solu­
tiott in tiu1e, while tl1eir approximation oI the 
governing equatJons is i1rrplicit rather than "xpli.­
cit. The actual process of interpolation cau b-= 
carc.ied out by any means, and Jn thi~ formulation 
tbe:re 1. s total freedom so to do~ There has be.en no 
low-order approximation using finite differences. 
The approximation is entirely in the time­
stepping. 

The method i,; most c1osc:ly related to grid·­
ortentated characteristic schemes. If straight 
line approximations to characteristics were to be 
used, they would yield bChemes such ae this. The 
important rhfference .is, lwwever, that the present 
appn1acl1 can be used for systemti where no con­
ve11ient character:l.sctc formulatlon ex:lsts. Such a 
e.aae will be eicplored 1r1 Section 4. 

3. LNCLUS lON Of llOUNlJARY CONDITIONS 

Th.:, basic scheme (2.12) makes no provision for the 
Hpedfication of boundary conditions. In the 
vte.inity \)f a boundary 1 111 general either l\'+ or x_ 
(or possibly both at an npstream ;;upercritical 
boundary) 1,1111 f<tll ournide the domain of tbe 
reaeh of 1:-iv-er or eaua.l, and the above interpola­
tion seheme: can no long.er be used.. Here., the 
method Js modified so that Jt automatically clas­
s.if.ies the type of hound<,ry and incorporateo all 
of tlte necessary boundary conditions there. 

If (2.11) ls pre-muJtipli.ed by C-l, the fol­

lowing two equations ar~ obtained (choosing + or -
in each case): 

gh(x,t+t.) t c(x,t) u(:x,t+I\) 

(3.1) 

Tlie rr1~etience of common coefficients (g and c(x,t)) 
in each of the lines of tide '"quatlon further sug­
ge1.>ts the underlying charactertst:J.c nature of the 
present lllethod, although not in the precise sense 
of the word: here the quantities 
gh(X,T):tc(x,t)u(X,T) are corwtant (u, f.init order 
l.n A, except for. moJificat1on£, due to the forc1ng 
ten~ q1 dnd q 2 ) uu straight lines corresponding 
C(1 Lhe tl(;~t» of point,; (X ,T) jolnlng (x, t+A) aud 

,L), wi.th gradlenlb JX/d'f ~ u(x,t):tc(x,t). 

lines will be term<;d 1::'.!::~:J:-
aud the two combinations of h and 

t-

r 

I I -P+ 
l / 
I// 

K 

i 
I 

\ 
\ p 

' 
\ 

i \ I L __ __,__ ____ __j _____ __ 

(x0 , t) (x0 ._, t) (x, t) (x_, t) 

L _______ x 

figure l: Use of quasi-characterietic 
£ormu1atlon near a boundary. 

l':lgL!re 1 ol1owe a typical boundary encounter (for 
snbcr:! t:Jcal fl.ow near the left end of '1 «each, 
x ...,. x. ) j where. the quast-character:t::>tJco 
corre~pondlng to x. are labelled P re:Bpe.e:tively. 

t" + 
The point ( x , t) occurs wJthin the-- reaclt, however 
(x,_,t) Je outside, and ['+ Intersects lC - Xu :it 

I: ~- /\ • A gener·aJ formula can be given, that :Lf a 
+ quasl-characteri;;tic crosses a boundary x1 (= x 0 , 

or :x for the right hand boundary), cben ' 
n x ·-~ x 

t1 ± = 6 -(li-±--cY(~:-0- c 3 • 2 i 

lt: Js possLble to show that (3.1) can be rewr:1-tten 
for (ic 1,, t+fl:!) Jnstead of (x1 , t) to give 

gh(x,t-h\) :t c(x,t) u(x,t+fl) 

gh(xb' t+t",) ± c(x,t) u(xb, t+LI+) 
-- - 2 

+ (II - A:!)(gq1 t cq2 )(x,t) + O(A ) (3.3) 

This "xpressl.olt :l.s vali.d for both left and rlght: 
boundnd.es and !'or x aud/or x lying outside 
t:hOf;<, bouudarl.es. If toth are outs:ld.<; a pat"tieu­
lar bom.1dary, l h.at currespouds to :i.nwar<l::.1·~-dlrec ted 
1rnpen:Lltical flow CluJ > JcJ), and values of h 
and u muse be providdd at the boundary icb for all 
values of t, eJ. ther 1n the form of a supplied 
funct1on or l.nterpolat:lng bt:tween suppl:1-<0d poJnt 
values. Then, the r:lght al.de of (3.3) can be 
evaluated tor both + and -, gJving two equations 
whicl1 can be solved for both h and u at (x, t+t,). 

On Lhe other hand, :lf one of x+ or x_ (that 
one denoted by ii:) is outside the boundary, tben 
the l0t:al ilo;1 Is" subcr:!.Lical, and only one of ti 
or u at (x,1:-1-fl) i.s t.o he specified. The other i.s 
oht<d.ncod £µ""' ('!i.4), which is (3.1) wdtten for 
the otbec qDasi~ct-1.aracteristic emanating trom 
(:xb, t+1'\H), P_ti, shown dotti.:-.d in Fi.gure l: 

gl1(xb,t+1\,) -;; e(xb,t) u(xb,t+L\ 6 ) 

gh(xb _ 6 ,t) -e c(xb,t) n(xb _ 8 ,t) 

+ ll(g•: -s cq ) + 0(11 2 ) , 
l 2 (xb,t) (3.4) 

qu<tnt1t.Ie" on the rlght tilde bej_ng obtain<'d by 
Jnterpulatlon at the eama tL"e level t (at (K ,t) 
on FJgm:t: 1). Now (J.J) can be used, witb f3.l) 
for tl.1<: otbter l-'_ 8 ckiracter-lsLtc to give r.wo equa­
tlono t.o 1..e oo.lved tor ti and n at (x,t+/\). 



The son:ewhat flrnay nature of this boundary 
L:r:eatment: is renli.n . .iscent o.i character.istfc and 
t.0xplic:lt flni.ce difference Hchemes, but in the 
p.fesent tor:u:rnlat.ion it can be p.rogranuued rather 
concisely. In fact, all computational poh1ts, 
ivl!et.her on or near the boundary l Dr 1.nt.e·riur 
points (when both equations of (3.l) an" used), 
cuit be treated by tbt-. methods of tlds section, 
replacing the sc:heIJJb (2.12). 

11, ME:'i'l!OD FOK Q-z HlRMULA'l'lON \IITH OFF-·STl<J.:AM 
STORAGE 

I11atead ot the velocity u and local depth h as 
dependent variable:;, i. t is o.f ten more convenient 
to work with the discharge Q and the stage z. The 
equdtions are as given by LiggetL & Cunge (1975) 
and slightly more generally by Zoppou (1979). 
Liggett (1968) haa considered the effects of water 
uverf.lowing t:he main banks, so that off-stream 
storage i.s provided, in whl.ch there is no flow in 
the streaIDw.l.se direction., This µrovides tiome prob­
lems for the method of characteristics, in that 
invariants do not exist. However, in appli.cations 
~~re there are effects due to slope, friction and 
inf low, they are not rea,l invariants anyway, and 
th"' exi.scence of off-stream storage does not seem 
to be such a problem. !fore, the mett;od developed 
above is modified to allow for off-stream storage. 
It wLLl be seen tbat the essence of the method is 
unchanged. 

Ao presented by Liggett, the only modific~a­

tion to tl;e equations i.s the replacement of B by 
b. in the stc,rage t;erm. The mass conservation 
1~Q.uation becomes 

_:t:_ 2Sl. + _':L 
B ox B 

s s 

Talciug the mowenturn equation (2.2), substituting 
Q/A for u, and where necessary substituting (4.1) 

g.lves 

~­at 
') 

+· SC:A - gASt. + q(ui + 
A2 x l)) • (11.2) 

Tt1e no ta ti on of ;;ec: tiou 2 can be used. Let 

Lhen the coeffic1eat matrix ¥ is 

A ~ _21 ( l + !l.)!J. ,. 
ll A . 

8 

(4.3) 

Tn Sect.Ion "· > there wab no off-stream 

utocHg<e, JJ ~ ~"' titis 1y;,ve A ~ u i \fg-,\/i!, which 
WHt. d~~f Lne<l to be A. """ u :I: c.. Tbose c.dgenvalues 
had the imporcaur. physical tdgnificanc.e that they 

1·1e1·e the velocltieB with whi.ch disturbances pro­
pagated relativ~ to a stationary observer. All 
ducb disturbaoc.es were curried aloog at a velocity 
u wltb the fluw 1 atnl it they 1,rop<igated downstream 
G[ npstreau1 witn ,;peed c relat1.ve to the flow, 

tben the vel<lCities were u+c and u-c respectively. 

In the pcesent case where thert ls off-stream 
,;turage, such that il 1' H, :lt is reasonable t.o 
infer. that: t:lw s<i.me physic~l s:lgniflcance attaches 
to tl1c crn1q,uneots of "quation (4.4). Thus, Lt 
Beemb that tht effect. of the flow and off---otream 
Bt0rdg~ 1.w ttidt <llBLurba11Ceb are sw~pt along with 
a vt~locJ Ly dt1e to tht:. stream flow, deH.igriated here 
by U, trnch tl1a t 

and the 
this a»e. 

Vt0locities of 
tc, where c 1.o 

disturbances 
given by 

relative to 

2 l g2 
e - -·(l 

L1 A2 

Thus (4.4) becomes simply 

), - U I: c, 

and the couvention is adopted 

li.~ + ll 
s 

and A 2 = U - c. 

In view of Lhe above disc~ssion, there seems to be 

nottiing saci"obanc~ __ atJ.out reserving the . symbol c: 
tor tbe qu.~nl:.ity gATi> as ltas been done in pre.vJ-· 
OLIS work:i; from ( •• 4) it ts more reasonabl.e to ose 
c as defined in (4.6). 

_1 After some man:l.puladon, the aiatrices C and 
C can b" obtaJncd, and equation (2.11) used to 
give the t:lme-stepping scheme: 

z(x, t+LI) 1 [ (1 - l_l_) z + (1 + ll-) z_] 
2 c (x,t) ·+ _1 . c (x,t) 
+ (2c(x,c) B8 (x,t)) · [Q+ - Q_l 
+ LI 'l l + 0 (LI 2 ) , 

and (/>. 7) 

.1:.1 (1 + ll-) Q + (1 - ~)-) c J 
2 · . c2 ( x, t t + c ( x, t:) C 
+ (B (c - U )/2c) [z - z J 

s . (x, t) + -
+ llq2 + 0(11 2 ) 

Q(x,t.J-1'.) 

where subscripts (x,t) show that the whole term is 
evaluated at that point. 

( t is clear this scheme i.s, except for dlf­
te cent eoeJ:fielent,; of the quantities to be 1ntei:­
po1 ated, very tnuch the same as that given in equa­
lions (2.U) for the u~·h formulation. The met:hod 
fl!:esent<cd in each of these two secU.ona 2 and L,, 
seems co ~e of wide generality. 

5. RESULTS 

Some re~ulta are presented here for the case of a 
rectan~l1lar cu11al witl1 a vertical wall at the 
rlghl end, and a prescribed velocity as a funct:!.on 
of t:lrne at the leit. Foi:ty eo1llpulatJoual points 
were LIB<=d. l<esults for all cases show the water 
citn·f1.H~e e.1ev.H.Luu at auy if1stant by a oingle li.ne, 
tboue above this correepondiug to later times. 

}".f.gul:'t.!O 

c.ai:a::, where 
Juput..~ aft.el' 
d1:1ry remains 
(l /20 of tll.e 

2 and 3 are for the weakly non·-linear 
a single ("cosine b~ll") wave le 

wh:l.d1 Lhe veloc tty on the l.e.t't bouw· 
zero. ln t hJ.s case the wave 1 ll H1M11 

wat.er depth) such that the sl.tuat:l.on 
is almuut Liu ear~ and one. would f~.}[pe.c.t to see th~ 
ciavc; bU.ng r..,flected hack and forth with li.ttle 
ch>lllge. In alJ t:lgurea the scheme (2 .12) waa uo;t;cl; 
iu ~'igure 2 iuterpolatiou between grid points was 
str:a:lght--.!:tne .. It can be seer1 that the method 

describi;:; the propagat:l.on and re..flection of <:tie 
waves reasonably W(~.11, but wt th a ro ther large 
au1ount. ot numer.icaJ. damping and dif.fus1on of the 
<Jave (1t hao beeome lower and i;i.der), due to [he 
low accuracy uf Ii.neat' approximatlon ( ""'"' Fenton 



Figure 2: Propagation and reflection of a single 
wave., using line~r interpolation. 

(19tl2) for a physical explanar.fon) •• It i.s, how­
ever, thJs leve1 of approximatton which is u&ed 
,;idely tht·onghout coiuputational. hydraulics; this 
might be the c.aui::.e for some concern.~ 

Figure 3: Propagation and reflection of a single 
wave, m; J ng expont'11 ti al Hpli.ne in t<H'polation, 

ln ttle near-eubi<: splint! li.mit. 

figure 3 shows the same problem} but wt-Jere 
expon<:utial. sp.l .ine apprmtimation (Tornow, 1982) 
},as been uoeJ, with a relatively hJgh level of 
approx1mati.on. 'fhen::! Js some nume.rJe_al dawping (in 
th.i.a case and tlu" I'rtv:Lous one, thL~ is primarily 
du~ to Lhe rapid variatiou due co the reflection 
fat the walls), bowever t:he performance of the 
scheme lb sulrntantially better than with linear 
luterpo.Lat.l.on. 

Tht; dampiug a8soel.at<;d wlt.11 linear .i.ntt>rpola­
' -1 ou cao ht! an c.tJvan ta.ge wht::re bores occur) as 
:1!10wn in Flgur·e 4, wl1o:>re the itlflow veloc:I.ty at 
Urn left is J.r\Jtially th8 same\ as above, but hav·-
1ng n~ctc.lied Lh~ waxiu.-urn value> it re:mains con-~ 

st:ant. Tl<e amplitude now is h<ilf the depth, and as 
expected nonlinear steepening produces a bore 
(which, .lde<Jlly, sboulJ be a vertical line). This 

Figure 4 ~ Propagation and reflection. o.f a bore. 
using linear interpoJ.atlou. 

ls then reflected from the right wall. The linear 
JnLerpolati.oil detlcribes this situation qui.tu· 
sali.sfaccorily, a8 did exponential spline interpo­
Iatioa in the relatively atJff approxl.maLion 
ltn1i t:, al U1ough \101: shown here. In the cttbic 
apl.lne li.mtt, wl.th the abili.ty of the J.nterp0la­
t0I:y f unc. ti un to ose:i.llate between data po:i.n ts i 
finite oecillacianti developed in the region of the 
bore~ llowever, J.n most applications, wl1ere varia­
Lio11 iH relatively ~ruootl1~ cubic s~lines would be 
preft!rred. Tbroltghout computations for this vaper) 
the auLhor found exponential splines to be parttc~ 
ttlar.Ly u&eful, with their abJ.l:lty to be<0ome cubJ.c 
epliHe" 111 one parameter ll.ml.t, ancl essentially 
pJ..:i:ewlse-1.inear approxJ1uat.ioH 1.n the ol11er l..JmLt:. 
Tl~cy WdY !iave an importa11t future in coruµutatiunaJ. 
hydrauliics. 
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