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SUMMARY A wethod is developed for generating numerical schewes for the solution of hydraulic equatious,
and is applied to the one~dimensional equations for unsteady open-channel flow. Examples included are for
the water-depth and velocity formulation, and the stage and discharge formulation with off-stream storapge.
The schemes seem to offer a number of advantages over existing methods, and are sluply implemented. They
are explicit, unconditionally stable, of specified accuracy (exact for linear equations, and first-order in
the basic uonlinear form, but higher order schemes can be developed). A novel feature is that the time-
steppiug schemes are ludependent of the method of interpolation aloug the channel, foxr which any method can
be used, leading to the ability to treal irregular channels and the propagation of bores.

1. INTRODUCTION '

The problem of the wnumerical solution of the one-
dimensional equations for unsteady open channel
flow has generated a massive literature during the
last 20 years, reflecting the ilmportance of the
problem aad, perhaps, the lack of any single out-
standing method. Space permits only a cursory dis—
cussion here; reviews and critiques of the methods
used have been givea by Liggett & Cunge (1975),
Zoppou (1979), and by Zoppou & 0”Neill (1981).

For many years the wethod of characteristics
has been used to demoustrvate the nature of solu—
tioas to the equations, to obtain solutions in
some simple cases, to infer the boundary condi-
tions which must be supplied, and in more recent
years to solve the equations numerically. While it
has performed admirably diun the first three areas,
it has been less successful as a nuwmerical tool;
“.v. the method is fundamental and appealing to
mathematicians ... however there remain difficul-
ties which lhave prevented 1its wide wuse for
unsteady f[low in channels" (Liggett & Cucnge). 1In
an effort to overcowme some of the disadvantages of
characteristics, several grid-orientated charac—

teriscic methods have been developed, where the
Characteristic equations are solved at each stage
to provide information at regularly-spaced values
of space and time.

Turning to finite difference schemes where
there 1is no attempt to build in the "travelling
wave" nature of the solutions, and where the dif-
ferential equations are approximated by finite
difference expressions, there are two main subdi-
visions =~  explicit aund iwmplicit. “Explicit
schemes are uneconowic, inflexible and inferior to
other available numerical wmodels” was the conclu=
sion of Zoppou & 07Nefll., If fwplicit schemes are
used, then unconditional stability can be obtained
and large tiwe steps used. lowever, there seem to
be a nuwber of disadvantages also attached to
iwplicit wethods. They are very complicated, and
also have a number of undesirable numerical pro-
percies.

Arter a readiong of the exteunsive literature
fn  the subject area one cannot fall to be
tmpressed by the plethora of wmethods, the complex-
ity ot their formulae, and their limited abili-
ties. It is the object of this work to develop a

wethod for the numerical solution of all foruwula—
tlons of the one-dimensional equations for
unsteady open-channel flow. The fawmily of schemes
which result are related to the grid-orientated
characteristic methods, however they have a number
of special features which leaves them with practi-
cally none of the disadvantages which conventional
wethods possess. The expressions given, after
some lengthy derivation, are siwmple, explicit,
unconditionally stable, of given accuracy (exact
for linear equations, otherwise of filrst order
only, but a second order fawlly of schemes will be
given in a later work), valid for sub- and super-
cricical flows, they describe the propagation and
intevaction of bores, and treat drregular chaunels
siwply. This latter feature derives from an
unusual feature of the wethod, that the time-
steppling formulae gilven are 1ndependent of the
wethod of spatial interpolation along the channel.
[n obtaining the results presented here, exponen=
tial wsplines were found to be an accurate and
reliable weans of Interpolation.

2. DEVELOPMENT OF METHOD FOR u=h FORMULATTION

consider the equations governing the propagation’
of loung disturbances, where the depth of water

hix,t) and the wean fluid velocity u(x,t) over the

channel are Lhe dependent variables and x and ¢

are respectively the distance along the chaonel

and time. The mass conservation equation is
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and the mowentum equation is
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where A(x,t(x,t)) 1s the area of cross-section of
the channel, A = GA/GXI_ is the rate of change of
A with x due ¥fo changcsi.hl the channel sectlou
ouly, B(x,h{(x,c)) is che width of the free sur-
face, g 1s pravitational acceleration, S (x) Is
the slope of the channel bottow, decreasing eleva—
cion with ¥ being taken as positive slope, S_.(x,t)
1s the friction slope, always posicive, for which
enpirical foruwulae are usuailly given, q(x,t) is
the volume 1intlow rate per unit length of channel,
and u, (x,r) 1s the x-cowponent of the velocity
with wkich that inflow euters the channel.



The equations can be written in matrix form

28 . p 22y g, (2.3)

where u(x,t) is the vector of dependent variables,

F(x,t) a watrix, aud ¢ the vector contalning che

effects of geowmetric chaunges, inflow, bottom slope
and friction:
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where ¢, and q, are introduced here for the terms
shown. -

The usual problem ia cowmputational hydraulics
is, if w(x,t) 1Is konown, to find the solution at a
later time w(x,rtA), where A is a finite time
step. In the absence of boundary conditions, an
exact solution can be written as the infinite Tay-
lor series

2 2

w(x, tH) = w(x, L)+A Ux, L)+—-— 2 Sk, 0)t

(2.5)

The system of governing parctial differential equa~
tions (2.3) can be substituted for wa(x,t). For
time derivatives of higher degree, from (2.3) the
approximation is made that, for n3 2,

pl
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Substituting chese results into the Taylor series
(2.5) gives

2
w(x,tth) = (I = AF 5% + T(-—f) —5 + ...) w(x,t)

+ Ag(x,t) + O(A ), (2.7)
where 1 is the 2x2 identity matrix, and where the
Landau order sywbol 0(A ) has been,used to show
that neglected terus arce of order A due to the
approximation of (2.6). Equation (2.7) includes a
differential operator of infinite order. While it
might be thought strauge to include an 1§rinlty of
terms while neglecting terms of order A it has
been shown by Fenton (1962,1983) that thib scheme
solves an lwportant class of problems exactly, and
has numerical properties which are very mach nicer
than conventional finite difference methods.

To implement the scheme (2.7) it would be
necessary to perform an infinite series of watrix
wultiplications. This can be obviated 1f the
watrizx ¥ is dlagonalized by writing it as
B = CDC ~, where D is a diagonal matrix with ele-
aents XL and A., which are the eigenvalues of F,
and € “1s & "matrls whose coluwns are the
cuxtcapondjnh elgenvﬁftor& of F. Then, it can be
shown that ¥ = CD C ~, and (2.7) beconmes
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a(x,tth) = (I-ACHC “x=-t57CD"C "y + ceodu(x,t)
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With ¥ as defined in (2.4), the eigenvalues are
easlly shown to be

npo=ut \gaZs, a, = u - \gA/B. (2.9)
These terms now have an important physical signi-
ficance, for the speed of long waves 1s given by
QgA/B. Using the customary symbol ¢ for this

quantity, the elgenvalues are

Al =u+ ¢, and XZ =u - c,
the local speeds at which disturbaunces travel on

the flow, relative to a stationary observer.

With these elgenvalues, 1t is easily shown

that
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Substituting this expression for C into (2.8)

and using the fact that the only elements of D
n n

are silmply hl and kz, on the diagonal,
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+ Aq(x,t) + 0(a%).

Grouping the watrices, this can be written
a(x, i) =

g exp(~Axla/6x) ¢ exp(—Axl&/&xﬂ

g exp(=AN,0/0x) g exp(-An 6/6x)§
L 2 2 i

+ Aq(x,t) + O(Az),

in which the exponential expressions are used to
represent thelr power series expansions
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These 1ntinite serles of differential operators
are the operators of Taylor series, and can be
simply luterpreted as Shift Operators E(-Ak_ ) and
E(=AAh., ), such that 1if such a shift operator acts
on some function £(x), the value of f at a shifted
value of x is obtained: E("Axl) f(x) = f(x = Axl),
etc.

Substituting these results into (2.8) gives

gh+ cE+ )
w(, et ) = o —ep | wOGE) FAgGx, L) 0T,
4_5 = (2.11)

where E1 and E_ are defined by

E+ = E(“Akl) = E(-A(utc)),
and E_ = E(*Ahz) = E{-A{(u-c)).

The shift operators now have an Ilmportant and
unexpected physical significance: to calculate the
solution at x at time L+A one uses information
from time level t x = x = A(ute) and
x_ = x = A(u-c), the puintb ?}um which distur-
bauces would originate, travelling at wvelocities
u(x,t)re(x,c) and a(x,t)~c(x,t) respectively, such



that they would arrive at the point x at time t+A.
Although no menrion has been made of characteris—
tics in the present derivation, it seewms that it
implicitly acknowledges the characteristic~based
form of the solution. After substituction for C
inte (2.11), and multiplying the watrlces, the
resulting individual component equations become

b{x,tih ) = _--(h +h ) + _L,S.i‘___EZ_(u -u )+Aql(x L)H)(A ),
and (2.12)
1, \ 2
) = Hu )t b
u(x, t+h ) ~2—(u+_ u_) 52 (x t)_(hﬂ‘ h‘_)+Aq2(x,t)H)(A ),
in which t = h(x ,t), and wuw = u(x ,t), where

X=X - A{u(z,t) © -

c(x,t)).

kquations (2.12) are the fundamental scheme
of this work. Fuuccion values at (x,t+A) are
obrained frow values at (x ,t), values which must
be interpolated frowm knowhn poliut values at time
level t. As  such, the eguations provide an
unusual method of sclution. There is no attempt to
approximate derivatives, they form an
interpolation—-only scheme for advancing the solu-
tion 1in tiuwe, while their approximation of the
governing equations is iwplicit rather than expli~
cit. The actual process of interpolation can be
carried out by any weans, and in this formulation
there 1s total freedom so to do. There has been no
low-order approximation using finite differences.
The approximation 1is entirely 1in the time-
stepping.

The method is wost closely related to grid-
orientated characteristic scheues. If straight
line approximations to characteristics were to be
used, they would yield schemes such as this. The
important difference is, however, that the present
approach can be used for systems where no con-
venient characteristic formuelation exists. Such a
case will be explored dn Section 4.

3. INCLUSION OF BOUNUARY CONDITIONS

The basic scheme (2.12) wmakes no provision for the
specification of boundary conditions. In the
vicinity of a bouundary, in general either x  or x_
(or possibly both at an upstreaw bupercllti‘.al
boundary) will fall outside the domain of the
reach of viver or canal, and the above interpola-
tion scheme can no longer be used. Here, the
method is modified so that it automatlcally clas-
sifies the type of boundary and incorporates all
of the necessary boundary conditlons there.

1f (2.11) is pre-multiplied by C~1, the fol-
lowing two equations are cobtained (choosing + or -
in each case):

ghix,t+A) + c¢{x,t) u(x,t+r)

= gh & o(x,t) u

o -} o [ 2
+ A(gql + c’qz)(x,t) + A7) (3.1)

The presence of common coefficlents (g and c(x,t))
in each of the lines of this equation further sug-
gests Che underlying characteristic nature of the
present method, although not in the precise sense
of the word: here the quantilties
gh(x, Dt e(x,t)ulX,T) are constant (to flrst order
in A, except for wodificarions due to the forcing
terms q, and ¢,) on stralght lines corrvesponding
to Lhe sets of polocs (X,T) joinlng (x,t+A) aud
(x, ,&), with gradienis di/dT = a(xw,c)relx,t).
Hete, these  lines  will be termed  quasi-
characteristics, and the two combinations of h and
4 termed qt iLlVd[‘Jdﬂl‘,b-

, t) (xo LDt ke, )

Figure 1: Use of quasi-characteristic
foruwulation neay a boundary.

Figure | shows a typlical boundary encounter (for
subcritical flow near the left end of & veach,
= xu), wvhere the quasi~characteristics
corresponding to x are labelled P respectively.
’lm, point (x_,t) occurs within the reach, however
,b) is outnide, and P intersects x = x  al
«r/\ . A general formula canm be given, that 9f a
([Udb.‘l.""(,hd,fd(.Eerib‘ti(: crosses a boundary x, (= x ,
or * for the right hand boundary), then o

N (3.2)

Lt 1s possible to show that (3.1) can be rewritten
for (x tH\ ) instead of (xﬁ',r) Lo give

ph(a,ttA) + olx,t) u(x,t+p)
= ;g,h(xb,t:f’[\v1 ) & oe(x,t) u(xb,t-i—A+)
4 o, “
+ (A - At)(EqL + Cq2)(x,t) + 0(a) . (3.3)

This expression 1s valld for both left and right
boundaries and for x, and/or x_ lying outside
those boundaries. If “i)uth are outside a parvicua-
lar boundary, that correspouds to inwavds-directed
supercritical flow (Ju] > |el), and values of. h
and u must be provided at the boundary x, for all
values of t, either in the form of a “supplied
function or Interpolating between supplied point
values. 'Then, the right side of (3.3) can be
evaluated for both 4+ and -, giving two equatiouns
which can be solved for both h and u at (x,t+A).

Un the other hand, if one of X, or X_ (that
one denoted by x ) is outside the boundarv, then
the local flow 1d subcritic al, and ouly one of h
ot u at {(x K LJUHA ) ds Lo be bpeclfied. The other is
obtained frow (”3 4%, which is (3.1) written for
the other quasi-characteristic uuatmltinga from
(x‘b’mﬂs)’ I‘_H, shown dotted in Figure 1:

shi( e -5 ¢ ( tH
BU(xb,L Aﬁ) 5 C(xb,t) u(xb, AS)

= gh(x} ,b) =d c(xb,t) U(Xb_ _s,t)

“8

o -y v - 2
fAt\bql s qu)(xb!t) + 0(a") , (3.4)

quantities on the right side belng obtained by
interpolation at the same time level t (at (x ,t)
on Flgure 1). Now (3.3) can be used, with (’3.1}
for the other P__ characterlstic to give two equa-
tions to be solved for h and u at (x,c+A ).



The somewhat fussy nature of this boundary
treatment is reminiscent of characteristic and
explicit finice difference schewes, but in the
present formulation 1t can be programmed racher
concisely. In fact, all cowputational points,
whether on or near the boundary, or interior
points (when both equations of (3.1) are used),
can be treated by the methods of chis section,
replaciog the schewe (2.12).

4. METHOD FOR (=2 FORMULATION WITH OFF-STREAM
STORAGE

Instead of the velocity u and local depth h as
dependent variables, it is often more convenient
to work with the discharge Q and the stage z. The
eyudtions are as given by Liggett & Cunge (1975)
and slightly more generally by Zoppou (1979).
Liggett (1968) has considered the effects of water
overflowing the main banks, so that off-stream
storage 1s provided, in which there is no flow in
the streamwise direction. This provides some prob-
lems for the method of characteristics, in that
invariants do not exist. However, in applications
where there are effects due to slope, friction and
inflow, they are not real invariants anyway, and
the existence of off-stream storage does not seem
to be such a problem. Here, the method developed
above 1s wodified to allow for off-stream storage.
It will be seen that the essence of the method is
anchanged.

As presented by Liggett, the only modifica=-
tion to the equations 1s the replacement of B by
B in the storage Lerm. The mass conservation
e&uation becomas

e = e o s . 4
ot Bs Ox% BS (4.1)

Taking the wmomentuw equation {2.2), substituting
Q/4 for u, and where necessary subscituting (4.1)
gives

i
0Q _ _ _WBez Q. B 3Q
pr = (Bh - TR - R0 B bx
2 :
a0 o o Q.8
+ A5 + .
&zAa BAS aluy + GG 1) (4.2)

The notatlon of section 2 can be used. Let

z 9 q/Bs
a=| and ¢= =]
q’ ! Q{A - gas. + q(u. + 3 -1y
2 BAS, Toaluy Ty B

then the coefficient watrix ¥ is

0 LB,

Fo= 3 9 ,
gA ~ GTB/AT (1 + B/BS)Q/A (4.3)

Lo chis case, the eigenvalues of ¥ are

Z .
1 B4 Ly, B2 pA
Ve EILE 1Y TR YT
5 \ A 3 ;
In Section 2, when there was mno off-gtream

storage, B =B , this gave A = ut ﬂéA/B, which
was defined te® be A = u 4 c. Those eigenvalues
had the fmporcant physical significance that they
were Che weloclities with which disturbances pro-
pagated relative to & stationary observer. All
such disturbances were carried along at a velocity
w with the flow, and it they propagated downstream
or upstream with speed ¢ Telativé to the flow,

then the velocities were utc and u~c respectively.

In the present case where there is off-stream
storage, such that B# B , it is reasonable to
infer that the same physical significance attaches
to the components of equation (4.4). Thus, It
seems that the effect of the flow and off-stream
sltorage is that discurbances are swept along with
a velocity due vto the stream flow, designated here
by U, such that :

1 B.O
B | ~'. ...... 8 . .
U=z BS)A’ (4.5)
and the wvelocities of disturbances relative to
this are rc, where ¢ is given by

7
2 1qQ” B .2 2A
F=rL - 7 £5

4 A2 Bs : (4.6)
Thus (4.4) becomes simply
Ao=U+t c,
and the convention 1s adopted
hy = U 4 ¢y and A, = U0 - c.

1 2 , .
In view of the above discussion, there seems to be
nothing sacrosancl about reserving the symbol ¢
for the guantity EX7§ a8 has been done in previ-
ous works; frow (4.4) It is move reasonable to use

¢ as defined fo (4.6).

~ After some manipulation, the matrices C and
C can be obtained, and equation (2.11) used to
give the time-stepping schenme:

, HAy = ki - U ; - U
w(K,0HA) 2[(1 c)(x,t) z, + Ei 4 c)(x,t) z_]

+ (2e(x,r) B (x,0)) © [Q, - Q_]
Zs -+ -
+ Aql +0@7) ,
and (4.7)

Qs t) = SO D G O A
PPN AN NP fo
+ (B (e l)l )/zc)(x,t) [z, = =]
+hg, + 007,

where subscripts (x,t) show that the whole term is
evaluated at that point.

It is clear this scheme is, except for dif-
ferent coefficients of the quantities to be inter-
polated, very much the same as that given in equa-
tions (2.12) for the u-h formulation. The method
presented in each of these two sections 2 and 4,
seems to be of wide generality. .

5. RESULTS

Somwme results are presented here for the case of a
rectangular canal with a wvertical wall at the
right end, and a prescribed velocity as a function
of time at the left. Forty cowputational polnts
were used. Results for all cases show the water
surface elevation at any instanc by a single line,
those above this corresponding to later times.

Figures 2 and 3 are for the weakly non-linear
case, where a single ("cosine bell"™) wave is
Input, after which the velocity on the left boun~
dary remains zero. In this case the wave Is small
(1720 of the water depth) such that the situatlon
ts almost livear, and oune would expect to see the
wave being reflected back and forth with little
change. In all figures the scheme (2.12) was used;
in Figure 2 interpolation between grid points was
stralght~line. It can be seen that the wmethod
describes the propagatfon and reflection of the
waves reasonably well, but with a rather lavge
amount of numerical damping and diffusion of the
wave (1t las become lower and wider), due to the
low accuracy of linear approximation (see Fenton



Figure 2: Propagation and reflection of a single
wave, using 1ine9r interpolation.

(1982) for a physical explanacion). , It 1s, how=
ever, this level of approximation which 1is used
widely throughout cowputational hydraulics; this
wight be the cause for some concern.

Figure 3: Propagation and reflection of a single
wave, using exponential spline interpolation,
in the pear—cubic spline limit.

Figure 3 shows the same problem, but where
exponential spline approximation (Tornow, 1Y82)
has been used, with a relatively high level of
approximation. There ls some numerical dawping (in
this case and the previcus one, this is primarily
due to the rapid varlation due to the reflection
at the walls), however the performance of the
scheme is substantially better than with linear
interpolation.

The dawping assoclated with linear dnterpola-
tion can be an advantage where bores occur, as
shown in Figore 4, wheve the 1lnflow velocity at
the left 15 indtially the same as above, but hav-
ing reached the wmaxlwam value, 1t remains con-
stant. The amplitude now is half the depth, and as
expected nonlinear steepening produces a bore
(which, ideally, should be a vertical line). This

Propagation and reflection of a bore,
using linear interpolation.

Figoure 4:

is then reflected from the right wall. The linear
interpolation describes this situation quite
sautisfactorily, as did exponmentlal spline interpo-—
lation in  the relatively stlff approxlmation
limit, although nor shown here. In the cubice
spline limit, with the ability of the interpola-
tory function to oscilllate between data points,
finite oscillacions developed in the region of the
bore. However, In most applications, where varia-
tion 1s relatively swmooth, cubic splines would be
preferred. Throughout computations for this paper,
the author found exponential splines to be partic~
wlarly useful, wlth thelr ability to become cublce
splines 1in one parameter 1imit, and essentlally
plecevise~linear approximation in the ocher limit.
They may have an important future in computational
hydraulics.
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