WAVE FORCES ON VERTICAL WALLS

John D. Fentonl

ABSTRACT

Formulae are given for the force exerted on vertical walls by the
reflection of water waves with an arbitrary angle of incidence.
The variation of the loads with all design variables show a number
of unusual features, including the fact that the maximum force per
unit length can be caused by obliquely-incident waves rather than
standing waves. It is important for design that the whole range
of possible wave conditions be considered. A method is developed
for the numerical solution of the problem, which unlike the theory
on which the above-mentioned formulae are bhased, solves the
stated problem exactly. Results from the approximate formulae are
compared with those from the numerical method, and are found to be
surprisingly accurate over a wide range of wave conditions.

INTRODUCTION

Despite the plethora of solutions for the problem of standing
waves, or the reflection of waves by walls, relatively little
attention has been given to the analytical determination of the
loads exerted by the waves on the walls, a marine problem of some
importance. Battjes (1982) used linear theory to obtain expres-
sions for the loading on long vertical-walled structures produced
by short-crested waves with an assumed distribution of incidence
angle. Kachoyan & McKee (1986) have developed a general method,
also based on linear theory, for calculating the forces exerted by
normally-incident waves on walls of steep but otherwise arbitrary
profile.

It would seem obvious that the largest forces on walls would
be caused by waves which approach the wall normally, with crests
parallel to the wall, setting up a standing wave system. However
Kuznetzov, in an unpublished work outlined by Silvester {1974},
reported the surprising phenomenon that forces due to obliguely-
incident waves can exceed considerably those due to normally-
incident waves. Higher-order solutions of the problem of the
reflection of periodic obliquely—-incident waves by a vertical wall
have been obtained in recent years. Hsu, Tsuchiya & Silvester
(1979 - subsequently referred to here as HT&S) obtained a solutien
to third order, via a Stokes-type of theory, in which spatial
variation in the two horizontal directions was represented by a
double Fourier series, the coefficients of the series being given
as expansions in a quantity related to the ratio of wave height to
length. HT&S presented third-order expansions for the velocity
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potential, the free surface elevation, and pressures within the
fluid. This procedure was extended by Roberts (1983), who used
computer manipulation of the series to obtaim sclutions to 27th
order. He presented some results for gross properties of the wave
system, such as frequency and energies, as well as for the free
surface. It was found that a phenomenon of resonant interactions
between the fundamental components and their harmonics led to com-
plications in the use of the perturbation expansions.

A different approach was adopted by Roberts & Schwartz
(1983). Instead of obtaining the coefficients in the Fourier
series by computer manipulation of perturbation expansions, they
obtained the coefficients numerically by solving the system of
nonlinear algebraic eguations which resulted by substituting the
Fourier series into the nonlinear boundary conditions at a finite
number of points.

Fenton (1985) examined HT&S's third order solution and
applied a numerical test to show that the solution was correct to
third order, with the exception of some higher order terms for the
fluid pressure. The sclution was then recast in terms of the wave
neight/length ratio itseif. The solution for the pressure was
obtained, and shown numerically to be correct to third order.
Then, the pressure was integrated to give third-order formulae for
the force and moment on a vertical wall, which could be used for
design purposes. The expressions so obtained showed several
unusual Features: the maximum force per unit length on the wall
was Found to be caused by obliquely-incident waves, rather than
standing waves, as found by Kuznetzov; the second-order contribu-
tion to the load may be larger than that at first order without
the solution being invalidated; the greatest net force is that
directed offshore under the wave troughs; and that the greatest
onshore force does not necessarily occur under wave crests. It
was shown that, despite the apparent convenience of explicit for-
mulae for wave loads, that the problem of determining the maximum
load for design purposes is one of finding that maximum in a space
of variables which includes the wave height, wave length or
period, angle of incidence, and the wall length relative to the
wave length.

is the main aim of this paper to test the expressions
obtained by Fenton, by using a numerical scluticn of the problem,
similar to that of Roberts & Schwartz, which makes no essential
analytical approximations other than truncation of the Fourier
series. A couple of innovations make the method more accurate and
less demanding of computer time than the previous one. From these
numerical solutions, expressions for the wave loads are obtained,
and these numerical results compared with the theoretical expres-
sions and with experimental results. The theoretical expressions
are shown to be accurate over a wide range of wave conditions.

It

FORMULATION OF THE PROBLEM

Consider a layer of fluid bounded below by an impermeable bed and
on one side by a vertical wall.
wall,
coordinate is aleng the wall,

The coordinate origin is at the
such that it is at the mean level of the free surface; the x
the v coordinate is normal to the

¥

i

317

wall into the fluid, and the z coordinate is vertically upwarda.
The eguation of the sea floor is z = -d, where d is the mean
depth, and the eguation of the wall is y = 0. 1t is assumed that
the fiuid flow is incompressible and ‘irrotaticnal, such that a
velocity potential ¢ exists, where the velocity u is given by
u=7vs and that there is no flow through the flodor or the wall:

v + ¢yy + LI 0 throughout the fluid,

Qz = 0 on the bed,

¢y = (3)

where the subscripts denote partial differentiation. For the case
of the total reflection of a pericdic wave train obliguely-

ineident on the wall, such that all motion is periodic in time and
in both x and y directions, a solution for ¢ can be assumed

(13

z = ~-d, and (2)

0 on the wall, y = 0,

Mg = @0l gy
(g/k™) 00
b = cosh ui.k(z+d)
+ I I .. 81 i{mkx— j
1 gm0 ¢x3 n i(mkx-wt) cos jaky —pees “ijkd r(4)

in which the quantities used to non-dimensionalise where necessary
gre.the gravitational acceleration g, and the wave number of the
incident waves k = 2¢/L, where I, is the wave length. The ¢,. are
dhmngionlesa coefficients of the double Fourier series shown,
A # 5in 0 and n = cos ¢ where ¢_1is the angle of incidence (s = 0
for standing waves and ¢ = 90" for waves progressing steadily
parallel to the wall), w is the angular frequency of the motion,
@ ® 25 /T where T is the period, and the o,. are dimensionless
coefficients, 4
al, = 122 4 5202

1
It can easily be verified that (4)

and (3).

satisfies equations (1}, (2}

The remaining.equations to be satisfied are those on the free
surface: the dynamlc.and kinematic conditions such that the pres-
sure on the surface is zero and that fluid particles on the sur-

face z = n{x,y,t) remain on the surface. Respectively, the sur-
face equations are
bt an tm (62 482 42 =0 -
£ 7 by ey tey on z = q, (5)
and,
Mg ¥ oy ¥ dgng — 0, =0 on z = n, (6)

where the subscripts denote partial differentiation.

. : An expansion
for the surface elevation, similar to (4), is assumed:

Iy (x,y,t) =1 £ n.. cos i{mkx-ut) cos jnky
im0 =0 1 (7
in which the ny4 are dimensionless coefficients, and where p 0= ]
because the orggin is located at the mean level. In the é%okes

type of solution as used by HT&S, the coefficients 4., and n,. are
found as asymptotic expansions in a quantity relatedd to the'lave
steepness § = kHs/2 = xHS/L, the coefficients in the expansions
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being give_n functions of the dimensionless mean depth 4/L and the 3 sinh Y3kd 4 B..5inh 3kd

angle of incidence 6. HTES obtained the coefficients to third 3l E 33 : (9)

order in the wave height. From these solutions, they obtained

expressions for the pressure p{(x,y,z,t) at any point in the fluid. In these expressions, formulae for the coefficients ug, g; and v,
for i=1,2,3 are given by HT&S. In addition to (8) ané) {9)% Fenton

gave similar expressions for the net moment per unit length of
FORMULAE FOR WAVE FORCES E #all due to the waves, Here, attention will be limited to the
force only.
The expressions obtained by HT&S were converted by Fenton (1985)

inte expansions in terms of the dimensionless wave height These formulae for the loads exhibit several phenomena, some
itself, and the expressions for pressure at y=0 were Lintegrated of which are quite unexpected, which are all due to one particular
with respect te z from -d to n to give formulae for the Force and term in the second order contribution to the pressure, where for
moment about the base of the wall per unit length along the wall. small angles of incidence, the pressure at second order decays
The expressions obtained for P,, the net force per, unit length due very slowly with depth in the f£luid, unlike the first order terms.

to the waves (total force/unit length = P, + pgd®/2, s the Eluid g This can mean that, integrated over the depth, the second order
density) are: contributions to the force can become as large or greater than
Pi{x,t} 2 those'at f;irst order, The fact t:hat the troublesome term is of
— = GE‘llcOS(mkx—mt) + & {FZO + FzchSZ(mkx—mt)) + negative sign has some interesting consequences: the g_rea'test

pad onshore forces due to the waves are not due to normally-incident

1 63(F waves, but obliguely-incident waves, that the net forces which are

2 3108 {mkx-wt} + Fjjcos3(mkx-wt)), (8) % greatest in magnitude are those under the wave troughs, directed
effshore. Another consequence is that the force as a Ffunction of
time has such a large secondary component that it may not have a
local maximum at the crest, which is instead a local minimum, but
at points on either side of the crest, The existence of all these

! where the fourth and higher order terms have been neglected, and
f where the coefficients are given by:

(kd)zE‘ll = m(zl = tanh kd, phenomena is demonstrated in Pigure 1, showing for given water
depth and wave height and length, how the Eorces at the wave
2 1 2 1 9 2 trough, crest and intermediate maximum if any, vary with the angle
(kd) Fog =% % mogl(—kd(l-a-n } o+ 3(1+m“)sinh 2kd), % of incidence and how they compare with each other in magnitude.
2. _1 2, 12 . ’
{kd) r22 =3 + muﬁl(kﬁ(l'ﬂ'ﬂ ) NE;I sinh 2kd4) + é Crast
; "3 ., T h
waB,sinh 2kd + sinh 2mkd, 4 Eapes | m—-=—=- roug
0”2 ! Force — . Intermediate max.
2
{kd) e 3 _ .2 2 0.005
oy E‘31 T% * 9y m0b4 + 3,(-3n" + (1+3m")cosh 2kd) + -::?‘___,_-——-—
2 1 2.5inh 3kd
2 + -z 2o mms
52( cosh 2kd n 3(l+m )sinh wa )+ o L -
2 :
B3i2cosh 2mkd + _.’Zz_m_( {(1-2m )sinh 2mkd _ m cosh Zmkd)l +
am?-1 wl -0.005 | N
: o e - ———_————
sinh led ==
g, — . -
13 T ’ g L
(kd)2 1 2_2 0 15 30
wy  ©33 T g weg ¥ eylimionTcosh 2kd) + Angle of incidanca (degrees)
2 12 sinh 3kd e
2 2kd - 1 - S Bimn JXC
32( cosh d 1 m o+ 30 Sinh kd )+
2m _ 2, sinh 2mkd : Figure 1. Variation of the force per unit length with angle of
83l2cosh 2mkd + 4_5—_1{3“1 cosh 2mkd-(1+2m”%) S0 2RE0) ) 4 4 incidence for each of three parts of the wave, (i) for the crest
® Yo x = mkx-wt = 0, (ii) for the trough y = n», and {iii) for the

intermediate maximum. Values of the Eorce plotted are Pi(yx}/pgd”.
The whole diagram is for the case HS/L = 0,05, L/d = 1.
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In the original paper by Fenton
expressions (8) and (9) reasonable agreement with
experimental results over of wave conditions. How-
it was emphasized that the expresstons might be inaccurat:
i i That high waves should not b
be expected, as it is a theor;
i height, which woul
The breakdown in the
other limit, that of long waves, is not immediately obvious, but
was justified mathemat ically by the auther. In the limit of lon
waves, the effective expansion Parameter becomes, not the nomina’
H_ /L but H_L“/d”, and for long waves as L/d becomes large, this
cannot remain small. In view of these possible limitations' to the

(1%85) it was shown that

tial analytical approximation, and
theory with the results so obtained.

NUMERICAL SOLUTION BY FINITE FOURIER SERIES

The series {4) and (7) ean be substituted into the nonlinear boun-
dary conditions (5) (6}, and for a particular wave system,
solved numerically to give values of the Fourier coefficients. T¢
give a finite system, it is necessary to truncate the series in
(4) and (7) at some finite integer N, and then solve enough egua-
tions so that the coefficients as far as LI, and Ty ©an be found,

Roberts & Schwartsz {1983) used this procedure, and showed
that a number of symmetries exist, such that half the coefficient:s
are jdentically zero: 4,. = n;. =0 when i+j is odd. They then
satisfied (5) and (6} abl a nidber of points on a square grid,
within one of the basic symmetry triangles, and used a "pseudo-
Newtonian® iteration method to solve for the Fourier coefficients,

In the present work, the procedure of Roberts & Schwartz wag
used injtially, but because the equations so obtained were Often
l-conditioned, an alternative procedure was devised which was
flore robust numerically. Instead of obtaining equations by satig-
Eying (5} and {(6) at a finite number of points, thus using a col-
location method, the discrete sine and/or cosine transformat ions
4 rectangular grid were obtained and
kequired to be zero, which Jave a system of equations which were
guch more robust. This idea is due to Bryant, who adopted the
%pfoach in a seguence of papers (see, for example, Bryant
233,
Ojgg N

8 5 Further details of the method adopted are rather lengthy, and
v?’llg not be presented here. The results of the numerical solution
.:Z;pe(r) for a particular wave, numerical values of the coefficients
qgi.wand n,. and g.
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3 1 2 2,2
‘DE(errzrt) = =gz - 'é"% -7 ('?x + ¢Y ¢z)r

. i.—
where p is the fluid density. The _dy.namlc surEace= i:(:)ou(;::ia:y: c:v.ndlf
tion was obtained from this condition, where p ihed atove. then
the Fourier coefficients have beeg f?gns,dasaggsgge o ensure found

i 4} and (7} can be substituted, a ound
::eaﬁerggfnt{. On the wall, where vy = 0, the mte_gra]il. thhthgugs?:i-
sure l;rmm z -3 to =z n gives the force per unit length.
tuting and performing the integration gives:

P {%,t)
.,*,,,',‘,_. = = 2kn)? = egg (kn + kd)
pgd
N N R
1/2 t os iy Q{=;.)
+ w(gk r o ¢ X i
w (gk] i=1 j=0COSh @ ;d i
L. 439 %19 .
- 3 in=0 320 1=0 J=gCosh aijd cosh agg

- +
[mziI cos iy cos Iy (Q(“ij+“IJ) + Q(aij mm))))I
aiquJ sin iy sin Iy (Q(uij'h:lIJ) - Q(uij"'uIJ ’

In the case o = 0, Q(a} takes

in which Qf{a) sinh a(d+n) / a.
the limiting value d+n.

The evaluation of this expression is a tme-cog:::;gginpris
cess, To enable the analytical integration to td>e Eegf b
derivation, it wyas necessary to convert the pro u% s N4 rerns!
each of order N° terms, into a guadruple SEFIES:LO ot rhe process
giving a corresponding increase in computationa dcb .a Sl ¢ petee
of finding the maximum force on the_ wall exertef Ythe NN
wave is a one-dimensional optimisation prgblem, or b inad only
of Py, as a function of x and t is a function of them M ined ont
in t’fle form x mkx - wt. In the present work,h a E:ge whaes e
adopted where an estimate of the va}ue of y , ¢ E pmula Hven by
et A dmaximpm,l wasea?:?:ia;r;iieggse faollzzed to £ind the

85 dnd a simple s ! ¢ .
i:iiggm(igrcé'according to the nu!nerlcal solutlon.t Cften Xm 0,
such that the maximum coincides with the wave crest.

COMPARISON WITH EXPERIMENT

Nagai (1969) reported the results of many experiments gnns:::d;:g
Qaves. They were performed over a wide range oflswavg Se t%e “Zotn
wave heights. The wavas varied in length from 1. E;lmi?iﬂly JEbrh
(effectively deep water) to 15 times the depth (eH e/(I:_. g A
low water). The range of wave heights was frolu;- /L 0. oy
0.182, some even breakingio For_cis ofntzgia:fng e L y,Zand
neasurin ressure at some 10 points, : C
gugtract?.ng the hydrostatic c'omponenii:.o ;I‘;m;e g;ﬁgi?tgggﬁ%ﬁw he
standing wave problem by Nagai is open o e beatn §h¥ch o
used were set up by generating a periodi rain. has
reflected by the wall, the pressures being obtaine r:_:_;gng

0
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waves between the fipst and the tenth.
attempt to set Up a periodic standing wave.

Figure 2 contains & comparison between the maximum Force
described above, the value giver
and the
If there is any standard
it is the results from the numerical method, whic
irrotational
exactly. ‘Phe
those of the
It can be seen that agreement generally is good
the experi-
the difficulty of performing such experi-

a perfectly
It can be seen that there is a con-
sistent trend in the results for the experimental values to devi-

This almost
certainly has a simple explanation, that in the experiments, only

and it was

Predicted by the numerical method
by equations (8) and (9) from the third-order theory,
experimental valyes Measured by Hagai,
for comparison,
has the capability of idealized
incompressible periodic standing wave problem almost
first figure compares the edperimental values with
numerical method.
considering the wide range
ments were performed,
ments, and the factk that the
periodic standing wave system.

of conditions over which

experiments were not on

ate from those obtained numerically for higher waves,

the height H of the incident wave train was measured,
asserted that the standing wave heights
As no other wvalyes for H
adopted as the basisg for®
This is probably incorrect
the experimenas

H, = 2H(l + a,H% +
approximation” H
increasingly
trend im the
between the

"were approximately 20T,
were provided, the value of 2H was
the numerical solutions in this work,
at third order, The actual u
would be given by an expressidn
«+e), where al
= 2H would be accurate for sgmall
inZccurate for larger waves,
top figure.
"exact®

like

waves, and
as suggested by the
Over all the points, however, agreement
numerical solution ang experiment is good.

The next figure, whose production was the main aim of this
work, compares the numerical results with the theoretical third-
order expressions {8) and (9), using Nagai's data set.
seen that the 122 points, i

from each other, fali very close to the line of agreement, over
the wide range of wave lengths and heights used in Nagali's experi-
nts. The close agreement, considering that the approximate

eory is only of thirpg order This is partie-
wlarly so, given that the breakdown of Stokes-type theories in
hallow water is well known, and would have been expected here as
11. Indeedq, points which deviagte noticeably from
e line of agreement are for long waves. Even though some of the
waves were of a length some 15 times the water depth, the theory
itill accurate to within some 1og,
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an explicit expression for the foree
Mn a third-order theory. That expression was found to be

accurate over a wide range of wave conditiong and to
ith experimental results, It could be used routinely

i®al purposes with some degree of confidence,
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Figure 2. Maximum force on a wall
gé{wt./cm.; the Experimental values are taken from Th
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of Nagai (1969}, the "Numerical va
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