
CHAPTER 15 

Polynomial approximation and water waves 

John D.  Fenton* 

A different approach to the solution of water wave problems is con- 
sidered. Instead of using an approximate wave theory combined with 
highly accurate global spatial approximation methods, as for example in 
many applications of linear wave theory, a method is developed which 
uses local polynomial approximation combined with the full nonlinear 
equations. The method is applied to the problem of inferring wave pro- 
perties from the record of a pressure transducer, and is found to be 
capable of high accuracy for waves which are not too short, even for 
large amplitude waves. The general approach of polynomial approxima- 
tion is well suited to problems of a rather more general nature, espe- 
cially where the geometry is at all complicated. It may prove useful 
in other areas, such as the nonlinear interaction of long waves, shoal- 
ing of waves, and in three dimensional problems, such as nonlinear wave 
refraction and diffraction. 

1. Introduction 

Conventional linear wave theory, for example, uses a physical approxi- 
mation which is of a low order of accuracy, neglecting terms which have 
a magnitude of the order of the square of the wave steepness. In most 
applications of this theory, however, a global spatial approximation 
method is used. Often the wave field is approximated by a full spec- 
tral representation (Fourier series), so that the spatial approximation 
is of very high accuracy, and is valid throughout the region of 
interest. This not only leads to an apparent large discrepancy between 
the accuracy by which the physical system is modelled and the numerical 
accuracy used in that model, but also severe limitations as to the 
boundary geometries which can be considered. In fact, anything other 
than a flat bed is usually very difficult to treat. 

Long wave theory uses approximations based on the limitation that 
the motion have a large horizontal length scale relative to the water 
depth, so that the variation of velocities etc. with elevation in the 
fluid is relatively small. In this case there is a greater degree of 
harmony between the level of physical and numerical approximation. 
However, to higher orders of approximation, shallow water (long wave) 
theory quickly becomes unmanageable as the equations become compli- 
cated, and almost invariably higher derivatives occur at each level of 
approximation. For example, the Boussinesq equations and their rela- 
tions involve third derivatives at first order, and so on.  This 
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compares with the the full nonlinear equations, where there are no 
derivatives higher than the first in the boundary conditions. Another 
feature of long wave theory, as in methods which use wave steepness 
expansions (Stokes' methods), is that the presence of anything other 
than a flat bed quickly complicates the method and equations. 

This paper is an initial attempt to turn in the direction of con- 
ventional numerical methods for the simulation of nonlinear waves, so 

that the level of physical and numerical approximation is consistent, 
and that as far as possible routine computational techniques can be 
used. In particular, local polynomial approximation methods are to be 
used, which are of a finite order of accuracy, but which are much 
simpler to use, especially in their incorporation into the full non- 
linear boundary conditions. They have a further major advantage, in 
that they can be used to satisfy other boundary conditions locally, so 
that irregular boundaries can be treated, including problems of wave 
interactions with solid boundaries of a possibly abrupt nature, or of a 
gentle nature such as an irregularly varying bottom. 

In this paper, it is attempted to explore where methods of local 
polynomial approximation might be used, by considering one problem 
only, that of analyzing the data obtained by a pressure transducer, and 
inferring other wave properties from that data, for example the surface 
elevation, the fluid velocity components at other points in the fluid, 
and possibly spectra of these and other gross quantities associated 
with the waves. 

The information obtained by a pressure transducer is p(tn), the 
pressure at a finite number of instants t , n = 1, 2 N.  From 
these pressure readings it is simple to calculate the mean and to infer 
the mean depth. This can then be used as a length scale for non- 
dimensionalisation. Throughout the rest of this paper, all quantities 
are to be taken as having been non-dimensionalised with respect to the 
mean depth d, gravitational acceleration g, and/or fluid density P. 
(For example, pressure p is "p/pgd" in dimensional terms, horizontal 
velocity u is actually "u/\j(.ga;", and so on.) The conventional approach 
based on linear wave theory would be to take the signal p(t ), obtain 
its discrete Fourier transform P ., for j = 0, ±1 ±1^/2,  use linear 
wave theory to find the corresponding harmonic components, for example 
U. and V., of the fluid velocity, and then to obtain the actual veloci- 
ties u(xiy,t) and v(x,y,t), in the horizontal and vertical coordinate 
directions x and y respectively. A limiting feature of linear theory 
is that all components of the waves are travelling at the speed 
corresponding to that phase as given by linear theory, and that there 
are no nonlinear interactions at all. Particularly in near-shore 
regions, with the observed tendency of long waves to travel as (non- 
linear) waves of translation, where the individual components are bound 
to the main wave and travel with its speed, this is an unnecessarily 
limiting assumption. 

This is not as critical a problem as the fundamental ill- 
conditioning of the problem as posed, of inferring fluid motions 
governed by an elliptic equation (Laplace) from boundary data specified 
on one level only, that of the pressure transducer. This occurs if the 
probe is located far below the point at which the velocities are 
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required or it is desired to find the surface elevations i"l(tn), from 
the inferred spectrum Y of the free surface elevation. The transfer 
function connecting Y. arid P. is proportional to cosh k(j)/cosh k(j)y , 
where k is the wavemimber given by the linear dispersion relation for 
the jth harmonic of the signal. For higher frequency components the 
transfer function varies like exp(k(j)(y-y_)), and using the short wave 
approximation for the linear dispersion relation, this varies as 
exp(j (o (y-y )), where 10 is 2n divided by the total time of the record. 
It is clear that the transfer function grows remarkably quickly with j, 
corresponding to higher frequency components. Even for smooth records 
with spectra P« which decay quite quickly in j, this exponential growth 
of the transfeT function with j completely destroys any accuracy for 
harmonic components shorter than the water depth. The method is really 
only suited to long waves in shallow water. Unfortunately it is for 
these conditions that linear wave theory is not particularly appropri- 
ate, as the waves are likely to be nonlinear and to be long, giving 
rise to the presence of higher harmonics with their attendant ability 
to destroy the meaningful part of the signal. 

Proceeding in the other direction does not present the same set of 
problems, as noted above. For example, if the surface elevation is 
recorded, to give the Ya, and it is desired to calculate velocities 
deeper in the fluid, then the transfer function works so as to dramati- 
cally reduce the U. relative to the Y. for higher frequency components, 
and the process is well-conditioned. For example, Vis (1980) and Daem- 
rich, Eggert & Kohlhase (1980) used this approach, and found that for 
waves which were not high the linear theory gave good results for the 
fluid velocities. 

Use of the spectral method outlined above does have some further 
practical problems. To implement the method it is usually necessary to 
resort to a number of techniques of data analysis, which degrade the 
information provided by the original signal. These techniques include 
trend removal, multiplying by a "window" to remove spurious components 
due to end discontinuities, filtering and so on. 

The method used in this paper, based on local low-degree polyno- 
mial approximation does not overcome the fundamental ill-conditioning 
of the problem, but in water of finite depth the approach is much less 
susceptible to the problems described above. The application of local 
approximation for this problem was originated by Nielsen (1986), who 
used an approach based on local interpolation by trigonometric func- 
tions combined with linear theory. 

2. Theory 

Throughout this work it is assumed that the waves are travelling over 
an impermeable bed which is locally flat with coordinate origin on that 
bed, that all motion is two-dimensional, and that the fluid is 
incompressible and the fluid motion irrotational such that a complex 
velocity potential w exists, « = • + 1 t, where <!> is velocity potential 
and \p is stream function, which is an analytic function of the complex 
coordinate z = x + i y. The coordinate origin is taken to be on the 
bed, beneath the pressure probe.  As the entire discussion is based on 
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local approximation we can Introduce a local time t, which is zero at 
tn, the instant at which the pressure reading is taken. The velocity 
components (u,v) are given by u - i v = dw/dz. The approximation is 
made here that the motion locally is propagating without change in the 
x direction with a speed c, which is as yet unknown. Hence, variation 
with x and t can be combined in the form x - ct. Locally, this is a 
reasonable assumption, as the time scale of distortion of the wave as 
dispersion and nonlinearity take effect is considerably larger than the 
local time over which the theory is required to be valid. 

A principle of local polynomial approximation is adopted, such 
that in the vicinity of the pressure probe, throughout the depth of 
fluid, the complex velocity potential w(x,y,t) and the free surface 
n(x,t) are given by polynomials of degree M: 

M  a,       ,+1 
w(x,y,t) = <|>(x-ct,y) + i <Kx-ct,y) = £ -£f (z-ct)J  ,   (2>1) 

where z = x + iy, and 

n(x,t) - £  b (x-ct)j. 
j-o 3 (2 ; 

Expansion (2.1) satisfies the governing equation for irrotational flow 
of an incompressible fluid (Laplace's equation) identically throughout 
the flow. The bottom boundary condition v(x,0,t) = 0 is satisfied if 
the coefficients a< are real only, as the bj are. It remains to 
satisfy the boundary conditions on the free surface, that the pressure 
is constant and that particles remain on the surface. Here we use the 
approximation again that motion is steady in a coordinate system 
(x-ct,y). 

The steady kinematic equation that the value of <|i is constant on 
the surface y = n is 

,|)(x-ct,n(x-ct)) = -Q, (2.3) 

where Q is a constant.  The steady Bernoulli equation is 

R4|d(5nr)|2s + T1' <2-4> 
where R is a constant, and the subscript s denotes the surface y = n. 

Also, in the frame in which motion is steady Bernoulli's equation 
can be written for the point (0,yp), where the pressure probe is 
located. The pressure around that point can be expressed as a Taylor 
series in x-ct: 

2 1 I  dw 
p(x,yp,t) = R - j  i^^Z^y 

7„  YP (2.5.1) 
M        i = ^ Pj(x-ct) . (2>5>2) 

The coefficients p. can be found from the pressure readings p(t ). 
Details of this will be presented further below. 
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Substitution of the series (2.1) and (2.2) into equations (2.3), 
(2.4) and (2.5) gives polynomials in x-ct. These polynomials must be 
valid locally for all values of x-ct, hence the coefficients of each 
power of x-ct must agree across the equation.  This gives a system of 
nonlinear equations in the unknown coefficients &Q,   a^, a? and 
b , b , b„, ... . The equations are in terms of the coefficients p., 
p. , p„, ..., which are assumed to have been calculated from the pres- 
sure readings. 

It is feasible to produce the equations by hand calculation for 
M = 2. However for larger values of M the amount of calculation 
becomes prohibitive. The symbolic algebra manipulation package MACSYMA 
was used on the computer in the School of Mathematics at the University 
of New South Wales to produce solutions for M = 2 and M = 4. MACSYMA 
has the facility of producing executable code, and the output could be 
used to evaluate the full set of equations. 

3. Equations 

The equations can be written in the form 

and 

K,   * K~  = K   = K,   =   •••   =  0,       D,   - D    - D„  =• D.   =   ...   = 0, 
1234 '1234 ' 

P0=P1=P2=P3=P4=  •••=°' (3,1) 

where the quantities K, D and P come from the kinematic equation (2.3), 
the dynamic equation (2.4) and the pressure equation (2.5) respec- 
tively. The subscripts 0, 1, 2 etc. refer to the power of x-ct of 
which this  term is  coefficient. 

For a quadratic level  of   approximation,   M = 2,   the  quantities  are 
defined by: 

Kl=-b0bia2 + a0bl + Vl' 

K2 = _b0a2b2 + a0b2 " b0bl2a2 + b0a2 + alV 

Dl  = 2b0bla2 " 2a0b0bla2 + b0ala2 + Vlbl + \ + a0V 

D2  = 2b3a
2b2 - 2a0bQa2b2 + bQa2b2 + b    + 3b2b2a2 + b2a2 - aQb2a2 

+ 2Vlbla2 + a0a2 + alV2 + V2> 

P0 " a2yp"/2 " a0a2y
P 

+ aVp/2 ~  b0a2/2 + a0b0a2 "  bH/2 

+ P0 - i>0 + yp» 
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Pl " V2yp+pl + a0V 

P2 = a2yp + P2 + V2 
+ ai/2- (3'2) 

This system of equations is overdetermined, in that it contains seven 
nontrivial equations in the six unknowns ao, bo, a.\,  b^, a2 and i>2- 

For the case M = 4, where quartic variation is allowed, a system 
of 13 equations in 10 unknowns results. The system is similarly over- 
determined. In this case, the equations are rather longer and space 
does not permit their inclusion here. 

4. Solution of equations 

The problem is, for each of the N values of the p(tn), take several 
adjacent values, find the local approximating polynomial by finding the 
p. for j = 0, ..., M, and solve the equations to give the a.,b. for 
j->= 0, ..., M. This enables a complete local solution for the •velocity 
field to be obtained, from the a., and the free surface variation from 
the b . J 

The solution procedure is as follows. 

Step Is Initially, assume that the disturbances everywhere travel at 
the speed of linear long waves c = 1 (c = \|g x mean depth in physical 
terms). 

Step 2: For successive iterations until the process converges, repeat 
Steps 3 to 6. (In the calculations described in Section 5, 3 iterations 
were sufficient for four-figure accuracy). 

Step 3: For each of the times tn, n from 1 to N, perform Steps 4 and 5. 

Step h_ Calculation of p for j = 0, ..., M: Consider equation (2.5.2) 
written for the point at which the pressure probe is located, x = 0, 

y = yc: 
M 

P(0,yp,t) = ^ Pj(-ct)
J. (4#1) 

To find the coefficients in this series it would be possible to use 
simple finite difference methods based on the M+l pressure readings 
p(0,yp,tm) in the vicinity of tn, for m = -N/2, .. , 0 , .. , +N/2. 
(Here an ambiguous but convenient notation t has been used for 
discrete values of the local time such that t. • 0, whereas t will 
continue to be used to refer to instants at which pressure readings 
have been taken. This use of local time is important in the simplifi- 
cations which lead to equations (4.2.1) and (4.2.2).) As it is intended 
that the,method be used in practice, where there are likely to be irre- 
gularities in the input data, such interpolation of the pressure record 
is a rather dangerous procedure, as interpolating polynomials fitted to 
experimental points exhibit wild fluctuations. A better procedure would 
be to use a least-squares procedure using K points, where K is rather 
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greater than M+l. It can be shown (see standard numerical analysis 
textbooks) that the least squares procedure leads to the matrix equa- 
tion 

K 

Et 

St 

St -pxc 

Mtm) 

In this expression all the summations are over K values of m. If 
approximation by a quartic is used, this matrix equation involves five 
equations in five unknowns, and the solution is complicated. A useful 
simplification can be made, however. Here and throughout the rest of 
this work it will be assumed that the points are obtained at equal 
intervals of time A, K is chosen to be an odd number, and points are 
distributed symmetrically about the point of calculation, such that m 
varies from m = -(K-l)/2 to m = +(K-l)/2. Then all the sums over odd 
powers of tm become zero, and the system can be written as two separate 
systems, one of third-order and the other second-order. With a little 
re-arrangement they can be written: 

K Em2 Em4 

Em Sm Em 

v 4 v 6 v o Lm ^m "m 

P2c A 

4.4 

Mt,) 

Sm^pCt ) 

Em p(t ) (4.2.1) 

and 

.2  r 4 Lm  km 

Em  Em 

-P1cA 

-p3c A _ 

Em p(t ) r m 

Em p(t ) 
m. (4.2.2) 

If quadratic approximation M = 2 is used, then the last row and column 
of the matrices are simply deleted. 

The coefficients in the square matrices are simply sums over the 
powers of the integers, from m = -(K-l)/2 to m = +(K-l)/2, and analyti- 
cal expressions can be found for them. however the numerical values 
are easier to obtain by simple summation than by these complicated for- 
mulae, particularly as once the level of approximation M and the number 
of points K in the least squares fit are decided, the coefficients are 
simple integer constants for all points of all pressure records. In 
any case, it is easy to write down the inverses of the matrix equations 
presented here. That is a standard mathematical task, and will not be 
done here. Of course, they too are constant, once M and K are adopted. 

Although the use of interpolation rather than least  squares 
approximation is not recommended, for that case, where the number of 
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points is such that K - M + 1, all the matrix formulae presented above 
are still valid, and one is free to use either interpolation or a 
least-squares fit simply by choosing the value of K. 

Having found the coefficients p.i, the equations can now be solved. 
However, the above formulae are in terms of the speed c with which the 
local disturbance is travelling. It is not known a priori, and has to 
be found iteratively, as described in Step 6. 

Step _5 Solve for the aj, bj, j = 0, ..., M, using Method 5a or 5b 
below: This is the most complicated part of the solution process. To 
obtain the "best" solution of an overdetermined system of equations 
(which can never be satisfied identically because there are insuffi- 
cient free variables), one procedure is to find the solution which 
minimises the sum of the squares of the errors. This "least-squares" 
procedure for the system of nonlinear equations is mentioned in Step 5b 
below. For the calculations described in this paper, it was found that 
a very simple method gave excellent results. This is described below. 

5a. Direct iteration solution of the equations 

In this case, sufficient of the equations were discarded, one in the 
case of M = 2, and three for M = 4, to give the same number of unknowns 
as equations, N say. Newton's method could be used for this system of 
nonlinear equations, and is known to converge quickly. However, it 
involves the calculation of a matrix, whose elements are the derivative 
of every equation with respect to every variable, plus the numerical 
solution of that matrix equation at each iteration. Fortunately, how- 
ever, a much simpler method was found to work for the nonlinear system 
in this work, which gave results which were within 1% of those using 
the full overdetermined set of equations. 

The solution procedure is the nonlinear equivalent of Gauss-Seidel 
iteration, whereby each equation is written for one unknown, whose 
influence dominates that equation, and the set of equations evaluated 
repeatedly until a solution is obtained. As the next value of each 
variable is calculated, its new value is subsequent equations. In the 
calculations it was found that the procedure worked well, both for 
M = 2 and M = 4. 

Examining the £p" equations in (3.2) it can be seen that, for 
example, P = a ay + p + a a = 0 can be re-arranged to give the 
equation a. = a1 - P^/a.. With initial estimates of the coefficients, 
the right side can Tie evaluated, and substituted for a.. . Other equa- 
tions can be similarly rewritten. The scheme which was used in the 
present work was to recalculate each of the a. from the pressure equa- 
tions and each of the b. from the dynamic equations, for j from 1 to M. 
In practice it was found that the order in which this was done was not 
important, but it is recommended that the procedure work from M to 1, 
so that the coefficients which are smaller in magnitude are iterated 
first.  The P~ equation was rewritten in terms of bg. 

If the kinematic equations are examined, it is not so obvious that 
any one term dominates, and it was felt that if any equations were to 
be deleted it should be these. The procedure adopted was, that if 
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locally the linear contributions were greatest, then K-, = 0 should be 
used. At such a point, if it were a point of inflection in the pres- 
sure record, p would be zero, as would all the a„ and b„ so that 
K. = 0 would be satisfied identically. Similarly near a crest or' 
trough, the quantities with subscript 1 would be close to zero, and it 
would be better to use K~ = 0. The criterion adopted was simply 
whether |p | or |p | was greater. 

Rewriting the kinematic equations as above would give the scheme 
for K. for example, a_ = a- - K. /b. . In practice, this was found to 
give an iteration scheme which was occasionally unstable. Luckily, a 
simple remedy was found to give very reliable scheme. This was to mul- 
tiply the previous expression by a„ and to take the square root to give 

n ao(ao - vv or a
0 

= -\K(ao • w- 
whether |p | or |p | respectively was greater. The value of a- is 
negative, and of a similar magnitude to c. 

To commence iteration it is desirable to have some estimate of the 
solution. The following were found to work well in practice: 

bo = po " p
2V ao = "\|V and aj = bj = V   for j = l M- 

These are exact for no wave motion. In subsequent passes of the itera- 
tion terminating in Step 6, the results from the previous pass were 
used. 

The iteration scheme can be summarised: 

For successive iterations until solution converges 

{ 
For j=M to 1 in steps of -1 

t P. 

if (|Pl| > |P2|)   »0 --^CQ - yy 

Else aQ - -^0(a0 - K^) 

bo - b0 + P0 

In practice it was found that convergence of this scheme was sure and 
rapid. Four Iterations were enough to have the solution converge to 
four significant figures. 

5b. Newtonian iteration for overdetermined systems 

A more complicated but theoretically-sounder method than that 

described in Step 5a is to obtain that solution which minimises the 
errors of the complete set of equations, rather than identically satis- 
fying some of those equations. The method is much more complicated and 



202 COASTAL ENGINEERING - 1986 

takes more computational time. It was Implemented by the author, but 
was found to give results which were little different from those 
obtained from the method of Step 5a. Comparisons are not presented 
here.  It is recommended that the simpler method be used in practice. 

Step b_ Recalculate the speed c: Having processed all the points 
n = 1, ..., N, excluding those at the beginning and end of the pressure 
record which cannot be treated by scheme (4.2), it is now possible to 
estimate the speed of propagation of the disturbances. Locally, there 
is no information provided by the act of measuring the pressures, and 
it is necessary to make rather ad hoc assumptions. 

From equation (2.1), it can be easily shown that the horizontal 
fluid velocity in2 the fjjame of the moving disturbance, at x = 0 and 
t =» 0 is a. - a„y + a.y , hence the fluid velocity in the frame of 
reference or a stationary observer is 

u(0,y,tn) = c + aQ - a2y
2 + a4y

4. (4.3) 

This provides us with a means of calculating the speed of propagation 
c, for if the mean current (fluid velocity) at a point of elevation y 
is known, denoted by u, this is the mean of u over all the tn, 
n = 1, ..., N. (In the absence of any knowledge of "a, a value of zero 
would be a reasonable approximation.) Substituting into equation (4.3) 
we have 

c = u - aQ + a2 y - a^ y , (4.4) 

where the a. denotes the mean of the a. averaged over all the n. 
Clearly the Tresult shows that the value of c obtained depends upon the 
value of y at which the expression is evaluated. However, as the a, 
and a, express fluctuations of velocity about a mean, in general their 
means will be small and one would expect the deduced value of c to show 
little variation with y. 

In most cases it might be rather more realistic to use the depth- 
integrated value of the current, denoted by U. By integrating (4.3) 
from 0 to bg, the surface elevation at time tn, and taking the ensemble 
mean over all the n, then 

   a? ~7  a4 4 
c = « -ao + irbo-xbo <4-5> 

With the new value of c as obtained in this step, return to Step 2, 
unless the process has converged. If it has converged, then 

Step 1_ Solution: The most useful results are the surface elevations, 
represented by the bg, and the fluid velocity, given by 

u - c + a + a (x-ct) + a ((x-ct) - y ) + a ((x-ct) - 3(x-ct)y ) 
4        224 

+ a4((x-ctr - 6(x-ct) y + y4), 

and 
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2a (x-ct)y 
3 

a4(4(x-ct) y 

aiy 
2    3 

a3(3(x-ct) y - y ) 

4(x-ct)y3). 

If it were desired, now a Fourier transform of the surface profile 
could be taken, to obtain the spectral data. 

5. Results 

Comparisons were made with accurate numerical solutions of steadily- 
progressing waves in water of constant depth. Solutions were obtained 
using a Fourier approximation method (Rienecker & Fenton, 1981; Fenton, 
1987), giving values of pressure on the sea bed at equally-spaced 
intervals and the corresponding surface elevations. Using the pressure 
values the method of Section 4 above was applied. For both quadratic 
and quartic approximations 7 adjacent points were used to fit the poly- 
nomials at each point, that is, K = 7. 

The family of steady waves is a two-parameter one. To obtain an 
idea of the accuracy of the local polynomial approximation method, a 
traverse through this two-dimensional space was made, considering four 
waves. The height/depth increased from 0.25, 0.333, 0.5, to 0.667 
while the wavelength/depth simultaneously was 3, 5, 10 to 15. It would 
be expected that the polynomial method would work best for long waves, 
while for shorter waves the variation with y tends to exponential and 
it would not be appropriate. 

1.2 

y 

0.8 

i 

  Actual surface 

  Nielsen 4^' - M-2. Present 

  Spectral A V - X' - M-4. theory 

1 

Xs 
TimQ 

Figure 1. Actual and calculated free surface of a steady wave 
of height 1/4 of the depth and a length 3 times the depth. 

Results are shown in Figures 1 to 4. On each figure the free surface 
obtained from the numerical solutions is shown as a solid line. There 
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Figure 2. Actual and calculated free surface of a steady wave 
of height 1/3 of the depth and length 5 times the depth. 

are two curves plotted on each half of the wave, plotted according to 
four methods of inferring the free surface from the pressure results. 
The actual pressure record is not shown. On the left half of the wave 
Is shown two sets of results from linear theory. The long dashed line 
shows the results of applying linear wave theory using the full spec- 
tral representation. The resulting Fourier series was truncated at the 
last term where the successive contributions were still decreasing. 
After that point the results would be meaningless. The short dashed 
line shows results obtained from the simple empirical approximation of 
Nielsen (1986), able to be presented in a single formula. On the right 
half of the wave are shown results from the present theory, for the 
quadratic (M = 2) and quartic (M = 4) approximations. 

It can be seen that the use of linear wave theory and a full spec- 
tral representation gives poor results for the longer and higher waves. 
Nielsen's local approximation method, based on fitting of a tri- 
gonometric function to part of the pressure signal is capable of good 
accuracy near the crest and trough of the waves. In fact, the agreement 
at the crests is remarkably good, considering the approximations impli- 
cit in the method. At the wave crests, the method is usually more 
accurate than the polynomial approximation method. Over part of the 
wave, however, near the inflection points, the fitting of a sinusoid 
breaks down, and the method gives wildly divergent results or none at 
all. 

The results for the polynomial approximation method are shown on 
the right sides of the figures. For a relatively short wave (3 times 
the depth) the polynomial approximation is poor (Figure 1), as 
expected.  It would be necessary to include higher order approximation 
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Figure 3. Actual and calculated free surface of a steady wave 
of height 1/2 of the depth and length 10 times the depth. 

for waves this short. The situation changes quickly as longer waves are 
considered. For a wave which is only 5 times the water depth, Figure 2 
shows that the present method is capable of high accuracy, but that it 
is necessary to use quartic approximation. As longer waves are con- 
sidered, the quadratic approximation becomes more acceptable. Figure 3 
shows a wave 10 times as long as the depth with a height of 0.5 of the 
depth. It is clear that the quartic approximation is excellent, usually 
being obscured by the surface on the plot of this scale. Finally, Fig- 
ure 4 shows a very demanding case, of a wave which is 15 times the 
water depth in length, and a height of 2/3 of the depth. This is prob- 
ably close to breaking. Except at the very crest, the M = 4 results are 
excellent, with the M = 2 results slightly less so. Altogether it seems 
that the method proposed here, with quartic approximation, is capable 
of high accuracy for waves up to close to the breaking point, provided 
that they are no shorter than about 5 times the water depth. This range 
of accuracy is very much greater than that of conventional wave 
theories and suggests that the local polynomial method, based on no 
approximations other than the truncation at finite degree, is capable 
of accurate description of steady water waves. 

Peter Nielsen has kindly made available a set of his experimental 
results so that an indication of the robustness of the method in prac- 
tice might be had. Waves were generated in a laboratory flume, and at 
a station two wave gauges were used to measure the free surface eleva- 
tions and a pressure probe was located on the bottom. A comparison of 
the different methods and experimental results is given in Figure 5. 
The wave is high, about half the mean depth, and has the sharp crest 
and flat trough associated with long waves. It can be seen that 
Nielsen's local trigonometric approximation method works rather better 
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Figure 4. Actual and calculated free surface of a steady wave 
of height 2/3 of the depth and length 15 times the depth. 

than the M = 2 approximation of the polynomial theory near the crest of 
the wave. However, the M = A level of the theory seems to be very accu- 
rate indeed. Almost everywhere the double chain-dashed line is obscured 
by the two lines corresponding to the wave gauge results, even at the 
crest. In this case, however, as the experimental results showed the 
expected small irregularities, it was found necessary to use the 
least-squares method with 13 points. For any fewer points it was found 
that the irregular data was such that the method of solving the equa- 
tions did not converge. With 13 or more points, however, it was robust 
and accurate. 

6. Conclusions 

It has been shown that relatively low degrees of polynomial approxima- 
tion can describe waves accurately in water of finite depth. This has 
the potential of allowing solution of wave problems by polynomial 
means, which allows the use of the full nonlinear boundary conditions 
and which may allow the incorporation of other more-general geometries. 

For the problem considered here, the method has provided a tech- 
nique for obtaining free surface data from pressure data, which obvi- 
ates the need for Fourier transform programs and has important computa- 
tional advantages over traditional methods based on Fourier analysis. 

The examples presented here have not demonstrated the accuracy and 
robustness of the proposed method over a wide range of waves and under 
field conditions, however, they do suggest that the method could be 
used in a variety of applications. 
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Figure 5. Experimental and computational results for laboratory wave 
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