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SUMMARY The problem of inferring surface data from sub-surface pressure measurements is described. A new version
of local polynomial approximation is developed which is very much simpler, and is applied to several theoretical waves and
to some experimental results. The new method is found to be robust and accurate, particularly so for applications where the
pressure transducer is mounted higher in the water. It might have potential for the routine analysis of sub surface pressure

records.

1. INTRODUCTION

A pressure transducer measures the sub-surface pressure
denoted by p, at a finite number of instants t,, for
n=0,1,2, ... The problem is then that of obtaining other
wave properties from the pressure data, such as the
corresponding surface elevations, the velocities in the fluid,
and possibly spectra and frequency distributions of the
waves and other integral quantities associated with the
waves. It is surprising that so much can be inferred from a
sequence of readings obtained at a single point in the fluid.

Pressure transducers have some advantages over other
means of measuring wave properties. They can be located
in the fluid, beneath the surface, where they might be
mounted rather more securely, possibly without the need of
mooring cables; they are less susceptible to the attentions of
others such as fishermen; and they can be made of a rather
more simple and robust construction. However the use of
such pressure probes has an important disadvantage, which
is that the problem of inferring free surface behaviour and
velocities in the fluid from pressure records taken deep in
the fluid is an ill-posed problem. Fluid motion decays
exponentially down into the fluid or grows exponentially as
the surface is approached. The problem is ill-posed compu-
tationally because, any fluctuations in a pressure record,
from whatever source, are multiplied by exponentially large
quantities when motion nearer the surface is synthesised.
There has been a continuing controversy about the accuracy
of the traditional spectral method for inferring surface
quantities. Bishop and Donelan have given a summary of
aspects of the controversy, which generated some further
discussion (1).

The conventional spectral approach based on linear wave
theory is to take the pressure readings, discrete Fourier
transform them, use linear wave theory to find the
corresponding harmonic components of the free surface
elevation and velocities, and then obtain the actual veloci-
ties and surface elevations. The limiting assumption of
linear theory is that all components of the waves are travel-
ling at the speed corresponding to that phase as given by
linear theory, and that there are no nonlinear interactions
at all. Particularly in near-shore regions, with the observed
tendency of long waves to travel as nonlinear waves of

translation, where the individual components are bound to
the main wave and travel with its speed, this is an unneces-
sarily limiting assumption. Use of the spectral method does
have some further practical problems. To implement the
method it is usually necessary to resort to a number of
techniques of data analysis, which degrade the information
provided by the original signal. These techniques include
trend removal, multiplying by a "window" to remove spuri-
ous components due to end discontinuities, filtering and so
on.

An alternative approach to the problem, instead of using
global approximation methods such as the spectral method,
where the problem is solved throughout the whole period of
pressure recording, is to use local approximation methods.
Nielsen (4, 5) used an approach based on local interpola-
tion by trigonometric functions combined with linear
theory. This seems to remain controversial. The method
has as yet only been developed for bottom-mounted pressure
transducers, whereas a modern tendency is to use buoyant
cable-retained sensors rather higher in the water column,
which makes very good sense in view of the poor condition-
ing of the computational problem.

A different approach was used by Fenton (3), who used a
principle of local low-degree polynomial approximation,
partly based on standard least-squares approximation
methods and partly on solution locally of the full nonlinear
equations of motion. By assuming polynomial variation in
the vertical, the method is much less susceptible to the ill-
conditioning described above. The method has the potential
of being reliable and accurate. However the equations
obtained were very complicated, making the method some-
what inaccessible.

This paper develops a different approach to the problem of
using local polynomial approximation methods for inferring
surface wave data. It is found that if instead of a local
polynomial approximation for the free surface elevation,
point values are used corresponding to the observational
points t,, the equations obtained are very much simpler,
and a simple iterative process is suggested for the solution.
When compared with numerical solutions for steadily pro-
gressing periodic waves the method is found to give good
results for bottom-mounted transducers for waves longer
than about eight times the water depth, and acceptable
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even for relatively short waves. The method is compared
with some experimental results and is found to be robust
and accurate. Most importantly, the simple method sug-
gested here seems to be at least as accurate as the rather
more complicated version presented by Fenton (3). More
testing is necessary, yet it seems that the method might
have potential for the robust and routine analysis of sub-
surface pressure records.

2. THEORY

It is assumed, in common with most other simple wave
theories, that the waves are travelling over a flat imperme-
able bed, that all motion is two-dimensional, and that the
fluid is incompressible and the fluid motion irrotational. In
this case a velocity potential ¢ exists which is a function of
time and space, such that the fluid velocity u= V¢, and ¢
must satisfy Laplace’s equation
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where the co-ordinate origin is on the bed, under or at the
pressure probe, the x co-ordinate is in the direction of pro-
pagation of the waves and the y co-ordinate is vertically
upwards.

The principle introduced in Fenton (3) and adopted in this
work is that all features of the wave motion in the vicinity
of the pressure probe in both space and time can be approx-
imated locally by a relatively low-order polynomial. As the
entire discussion is based on local approximation we can use
a local time ¢, which is taken to be zero at the instant of
the pressure reading. The approximation is made that the
motion locally is propagating without change in the x direc-
tion with a speed ¢, which is as yet unknown. Hence, vari-
ation with x and ¢ can be combined in the foom X = x - ¢f,
where the travelling co-ordinate X has been introduced for
convenience. Locally, this is a reasonable assumption, as the
time scale of distortivn of the wave due to dispersion and
nonlinearity is considerably larger than the local time over
which the theory is required to be valid.

The local polynomial approximation is adopted such that in
the vicinity of the pressure probe, throughout the depth of
fluid, the velocity potential ¢(x, y, ¢) is given by a fourth
degree polynomial:
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This equation satisfies the governing equation (1) identi-
cally throughout the flow, and it also satisfies the bottom
boundary condition

v(x,o,r)=%$(x,0,s)-0. 3)

The coefficients ay, ..., a4 are initially unknown. They are to
be determined by using the information obtained by the
pressure probe.

Let the pressure at the level of the probe as a function of x
and ¢ also be given by a polynomial in X =x-ct,
corresponding to the pressure field also propagating with
speed ¢ in the positive x direction:
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from Bernoulli’s equation in the progressing frame (X, y)
in which motion is presumed to be steady. R is a constant,
g is gravitational acceleration, and y,, is the elevation of the
pressure probe. The coefficients p; can be found from the
pressure readings p(t,) and knowledge of the speed of pro-
pagation c. Details of this are presented in the appendix.

Substituting equation (2) into equation (4) and performing
the manipulations gives a power series expansion in X, and
equating coefficients in like powers of X (the equation must
be satisfied locally for all values of X) gives the set of equa-
tions:

Pyt agag+ ajas + %322= 0, (5.1)
Pyt agaz+ ajar = 0, (5.2)
P2+ agaz+ ‘;‘312 +yHaz - 6agag)= 0,  (5.3)
p1+ agay + yy(aya; - 3agaz) = 0, (54)
and
R=py+gyp+ ag+ ya(af - agay)
+ y;{aoa4 + ;ﬁzz -aaz). (5.5)

Bernoulli’s equation can also be applied at the free surface,
to the point over the pressure probe x = 0 at ¢ = 0, where
the surface elevation is denoted by 7, vsually the quantity
which is sought.
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Equations (5) and (6) are a set of six nonlinear algebraic
equations in the seven unknowns agp---ay, R and 7. It
will be seen in the appendix that to determine the pressure
coefficients pg * * * pg4 from the pressure readings, that the
speed ¢ at which the local disturbance propagates past the
pressure probe also enters the equations so that there are
actually eight unknowns.

The pressures in the fluid are determined by the dynamic
(Bernoulli’s) equation. Hence it would be expected that
this equation should be solved before any others to relate
pressures and surface elevations. It would be possible also
to require the kinematic boundary condition on the free sur-
face to be satisfied, and in the development of the theory
this was tried. It was found that the equations which were
obtained were such that solution was often difficult and
erratic. Additionally it would seem a little restrictive to
insist that the kinematic equation also be satisfied, in a gen-
eral situation where waves of different heights and
wavelengths are passing through each other.

To introduce more equations so that there are the same
number of unknowns, the rather ad hoc assumptions are
made (a) that the wave speed is given by long wave theory:

c=(gn"? (7)

which ignores all effects of the non-uniformity of fluid velo-
city in the vertical, and (b), possibly even less rational is
that the coefficient ay which is the main fluid velocity com-
ponent, is simply given by



ag= -c, (8)

such that its magnitude is equal to the speed of the distur-
bances, and is negative because relative to the wave the
flnid is rushing backwards in the negative x direction. It is
possible that a better approximation for a; might be
discovered.

The set of nonlinear equations now can be solved. Nor-
mally solution of such a system is difficult and requires
sophisticated techniques. However it was found that a very
simple scheme can be used, making use of direct iteration,
whereby each equation is written such that evaluating each
equation allows the updating of one variable. The solution
scheme is given in Table 1. The solution procedure is the
nonlinear equivalent of Gauss-Seidel iteration. In the cal-
culations reported in Section 3, it was found that the pro-
cedure worked well. It was found that convergence of this
scheme was sure and rapid. Four iterations were enough to
have the solution converge to four significant figures.

For each of the points in time, with an initial estimate
of n= po+y, (the hydrostatic result):
{
Calculate the coefficients P; forj=0,-+-, 4
from equations (A.1) in the Appendix.

Iterate until converged (usually 2 iterations) by
evaluating, with the initial estimate of 7 that
from the previous point:

{

ag= -c¢

ag =~ (Py/c*+ aas + a?/2)/a

az = ~ (P3/c?+ aja3)/ag

ay = ~ (Py/c*+ af/2+y} a3 - 6agay))/ag

ay = ~ (P1/c + yXajar~ 3apas))/ag

gn=gy,+ Po+ (- y)agay - af/2)

+ (i*- y)ara3 - af/2- agay)

c= %&n
}

Table 1. Iteration scheme for the solution for 1.

It has been possible to obtain these equations by hand cal-
culation to about sixth order without much effort. In the
original formulation (Fenton, {3)), where a series expansion
for n was adopted as well, the amount of calculation
became prohibitive for fourth order calculations, for which
it was necessary to use a symbolic algebra manipulation
package on a computer. The resulting equations were very
long indeed, making the method rather less accessible and
dependent on the software. It is hoped that the simplicity
of the equations presented here will make the method
rather more usetul in practice.

When computations were performed, it was found that the
sequence of free-surface elevations n(t,) showed certain
irregularities for experimental pressure data. Even though

the least squares method should show smooth results, exper-
imental variation was sufficient to show a lot of high-
frequency fluctuations. It was found that a procedure could
be followed such that smooth and reliable results could be
had: for each point n, if a total of K points are used in the
least squares approximation, then the fluid flow parameters
ap ... a4 and equation (2) are valid over the range of all
these K points, and so the surface elevation can be calcu-
lated at each of the points from Bernoulli’s equation in the
frame of the steady flow. In this way the final computed
value might be the mean of computations at several values
of n. The overall procedure can be summarised in Table 2.

For n from 0 to the end in steps of 1 or more
{
From K pressure readings symmetric about n
calculate the velocity coefficients ay, ..., ag
and the surface elevation at n, n=1,,
using the procedure of Table 1.
Calculate R from equation (5.5).

For j corresponding to each of the K adjacent points
in turn

{

Iteratively until the process converges

{

Calculate the surface velocities

u=2a¢/9X,v=2a¢/3y

atx = 0,1 =t,,; andy = 1,,;

from equation (2), then calculate

1

EMnaj = R - "2_(“2"' vl)

'
Combine the calculated value of n,,; with the
previously accumulated values to give an updated mean.

}

Table 2. Overall scheme for processing a sequence of
pressurc readings p),.

3. RESULTS

Comparisons were made with numerical solutions of
steadily-progressing waves in water of constant depth,
Solutions were obtained using a Fourier approximation
method (Fenton (2)) which can accurately solve the
steadily-progressing wave problem. Values of pressure at
the hypothetical transducer at equally-spaced intervals were
obtained, plus the corresponding surface elevations (in usual
problems it is not known, of course). Using the pressure
values the methods of Section 2 above were applied, as well
as the more complicated version presented in (3). Quartic
approximations were used throughout equation (2) and 7
adjacent points were used to fit the polynomials at each
point by least squares, that is, K = 7.

It was to be expected that the polynomial method would
work best for long waves, while for shorter waves the varia-
tion in the vertical tends to exponential and it would not be



appropriate. Figure 1 shows results for a bottom-mounted
transducer for a relatively short wave of length five times
the depth (L/d=5), and a Height/Depth ratio
H/d = 1/3, The long-dashed lines are the results from
various local polynomial approximation methods, including
the version of (3) and the nonlinear algorithm (Table 1).
Other versions will be reported in a later paper. The results
are not very good, but what is notable for a wave as short
as this and for this notoriously poorly posed problem, is that
they are also not very wrong, showing that this might be
considered a lower boundary on the wavelength for applica-
tion of the theory. The inclusion of 6th degree terms in the
theory would make it rather more accurate.
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Figure 1. Actual and calculated free surface of a steady wave of height
1/3 of the depth and a length 5 times the depth, where results from a
bottom-mounted transducer have been simulated. The abcissa is
dimensionless time £ ¥g/d , the ordinate shows elevation and
pressure head non-dimensionalised with respect to mean depth.
The solid line is the actual surface, the short-dashed line
the pressure trace, and the long-dashed lines the results
from various local polynomial approximation theories.

A different picture is obtained for a pressure transducer
mounted at a depth of 25% of the total depth beneath the
surface, for which results are shown in Figure 2, for the
same wave as in the previous figure. The results are
encouraging.
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Figure 2. Results for the same wave as Figure 1, but where the
simulated pressure transducer was at a depth of 25% of the total.

As expected, rather better results are obtained for longer
waves. Figure 3 shows the results obtained for a wave of
height H/d = 2/3 and a length L/d = 15, a wave which is
both very high and long. It is a feature of the polynomial
approximation method that no approximation in wave
height has been introduced, unlike almost all other wave
theories. Figure 3 is for a bottom-mounted transducer, and
the results are quite good for this most extreme case.
Results from individual theories have not been identified on
the figure, but the full nonlinear theory of (3) overes-
timated the crest height, while the simpler theories underes-
timated it. '
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Figure 3. Results for a wave of height 67% of the depth and a
length 15 times the depth, with a bottom-mounted transducer.

Figure 4 shows results for a wave of height 50% of the
depth and a length of 10 times the depth, with the trans-
ducer mounted at a depth of 25% . It can be seen that
results from all the polynomial approximation methods are
excellent. The nonlinearity of the wave seems not to cause
problems for the methods, perhaps unsurprisingly for the
fully-nonlinear methods as they incorporate no height limi-
tation.
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Figure 4. Results for a wave with H /d = 0.50, L /d = 10, with the
simulated pressure transducer at a depth of 25% of the total.



The above results show the potential accuracy of the
method, but are not a real test of the methods for actual
pressure records, as the simulated pressure readings showed
a very smooth variation in time. A laboratory study at
Auckland University has commenced, and some of the first
results are shown in Figure 5. The waves have a height of
about 45% of the depth, and a dimensionless period of
about 8, corresponding roughly to a length of about § times
the depth. The waves were generated by periodic motion of
a plunger-type wavemaker, and some oscillation in the tank
is shown by the variation of the crest height. Water depth
was about 35 c¢cm, and pressure readings were taken from a
bottom-mounted transducer at a frequency of 50 Hz. The
surface elevation was measured by a capacitance wave
gauge. Close examination shows that the pressure trace
contains local irregularities, particularly for the last three
waves. What is clear, however, is that all three versions of
the polynomial approximation method generally give good
results, although the trough results are not so accurate. To
obtain the smooth curves shown, it was necessary to use
K =19 in the least squares fitting. Using results from 13
points in time gave an oscillation in the results of about
10% of the wave height. Experience gained to date suggests
that the polynomial fitting method can be applied and will
give results with almost any computational parameters,
however the presence of oscillations shows that not enough
points are being taken in the least-squares fitting to give
smooth results. Once more, however, what is really notable
is that the simple theories presented above seem to be just
as accurate as the more formal theory reported in (3).
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Figure 5, Experimental and computational results for a laboratory wave
train. The solid line shows the experimentally-measured free surface, the
long-dashed lines show results from various local polynomial methods,
and the short-dashed lines show the pressure signal,

4. CONCLUSIONS

A new and much simpler version of local polynomial
approximation has been developed. Preliminary results
have shown it to be able to provide a robust and accurate
method for the determination of wave characteristics from
pressure transducer records.
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APPENDIX. Calculation of pressure coefficients

The use of a standard least-squares procedure using K
points for quartic approximation was shown by Fenton (3)
to give the matrix equations

K 2m2 Zm4 Py S Pnem/ P
sm?2 sm* smb||Pa%| = |sm?p,. /0|,
Zm" 2m6 Ems P4ﬂ4 Em"Pmm/P

and
2 4
Im® Zm7||=PyA 2m Ppam/ P

: Al
Zm 3pn+m/p ( )

sm* 3 m® —P3A3 -
in which all the summations are over K values of m, and A
is the time step between pressure readings, K is chosen to
be an odd number, and points are distributed symmetrically
about the point of calculation n, such that m varies from
m=-(K-1)/2 to m=+(K-1)/2. The coefficients
Py, Py, ...,P4 are related to the pressure coefficients by
Pj=pjc/ for j=0,..,4. Analytical solutions to these
equations for the P; can be written down (see any book on
linear algebra). The p; are determined as part of the itera-
tive solution described in Section (2).





