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ABSTRACT 

Fenton, J.D. and McKee, W.D., 1990. On calculating the lengths of water waves. Coastal Eng., 14: 
499-513. 

A discussion is given of the physical approximations used in obtaining water wave dispersion rela- 
tions, which relate wave length and height, period, water depth and current. Several known explicit 
approximations for the wave length are presented, all of which ignore effects of wave height and cur- 
rent. These are compared and are shown to model the usual linear dispersion relation rather more 
accurately than it describes the physical problem. A simple approximation is obtained: 

L= (gT2/2n) {tanh [27 t~ /T]3 /2}  2/3 

in terms of wave period T, depth d and gravitational acceleration g, which is exact in the limits 
of short and long waves, and in the intermediate range has an accuracy always better than 1.7%. 
Explicit approximations which include the effects of current are presented, plus an algorithm 
based on Newton's method which converges to engineering accuracy in one evaluation, and 
requires the specification of a value of current, which is a useful reminder that one is obtaining 
an approximate solution to an approximate problem, and no great effort should go into refining 
methods or solutions. 

INTRODUCTION 

T h e  p r o b l e m  o f  d e t e r m i n i n g  the  length o f  a wave ,  wi th  values  o f  wave  height,  
wa t e r  dep th ,  p e r i o d  a n d  c u r r e n t  k n o w n ,  is essent ia l ly  one  o f  so lv ing  the  dis- 
pe r s ion  re la t ion ,  wh ich  is an  e q u a t i o n  for  the  wave leng th ,  bu t  where  it ap-  
pea r s  in such  a c o m p l i c a t e d  m a n n e r  t ha t  an  expl ic i t  so lu t ion  is no t  poss ible .  
M a n y  a t t e m p t s  h a v e  b e e n  m a d e  to p r o v i d e  expl ic i t  a p p r o x i m a t i o n s  for  the  
wave leng th ,  a n d  a grea t  deal  o f  a t t e n t i o n  has  been  g iven  to d e v e l o p i n g  a n d  
c o m p a r i n g  fo rmu lae .  S o m e t i m e s ,  h o w e v e r ,  th is  has  b e e n  w i t h o u t  the  recog-  
n i t ion  tha t  a l m o s t  a lways  the  d i s p e r s i o n  r e l a t ion  is on ly  a rough  a p p r o x i m a -  
t ion  to  the  phys ica l  p r o b l e m .  

T h e  genera l  case o f  w a t e r  w a v e  m o t i o n  is one  where  d i s t u r b a n c e s  p r o p a g a t e  
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in varying directions over water of possible nonuniform density which might 
be flowing on a current such that the vorticity is nonuniform, over a bed which 
is not horizontal, where the effect of tides is also to modify the depth, and the 
disturbances interact nonlinearly in accordance with the surface boundary 
conditions. It is not possible to solve this general problem analytically. In- 
stead it is convenient to assume that, locally at least, the bed is fiat, that the 
propagation of disturbances is collinear and that they are of infinite length 
transverse to the direction of propagation such that the flow is two-dimen- 
sional, that the fluid is homogeneous and incompressible, and that the bound- 
ary layer is small such that irrotational flow theory can be used. Further, it is 
assumed that the disturbances may be decomposed into a number of different 
wave trains with a discrete harmonic frequency spectrum. A common as- 
sumption is that the waves do not interact nonlinearly or that there is only 
one component wave train present. With all these assumptions, a dispersion 
relation can be obtained which is an approximation to the physical problem. 

Usually, however, further assumptions are made, in particular that the wave 
is of such small height that effects of wave height on the wave speed can be 
ignored, and that the effect of currents on which the wave might be riding can 
also be neglected. With these further assumptions, the resulting dispersion 
relation is an even rougher approximation to the physical problem. Neverthe- 
less, there have been many attempts to provide highly-accurate approxima- 
tions to this dispersion relation. Some clever methods have been devised, 
which are accurate and useful provided their limitations to certain wave- 
length values are recognized. However, something of an industry has grown 
up in producing yet more such formulae. In most cases the amount of com- 
putation is of a similar order of magnitude, as is the order of accuracy, but 
considerable attention has been paid to the comparison of marginal advan- 
tages between the various formulae. One really wonders what all the debate 
has been about. What few of them do, however, is to allow for effects of cur- 
rent or nonlinearity, for which dispersion relations do exist. It should have 
been recognized that the ability of each formula to approximate the linear 
dispersion relation is rather better than the latter's ability to approximate the 
actual problem and that differences between formulae are not very important. 

One intention of this paper is to suggest that the problem of approximating 
the dispersion relation has been well and truly solved. The simple formulae 
of approximation give acceptable accuracy for many engineering purposes. If 
higher accuracy is required, it should be recognized that dispersion relations 
exist which include wave height and current. The problem of solving these 
numerically is in principle no more difficult than that of solving the linear 
dispersion relation by numerical means. 

It is possible to produce explicit approximations which include the effects 
of current. Two such formulae are presented here, one of which has been given 
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previously by Hedges (1987). Newton's method can be used to refine the 
approximation. It is simply programmed and can be used to achieve arbitrary 
specifiable accuracy. In fact, the inclusion of current yields a minor modifi- 
cation of the method. An algorithm is presented which is recommended for 
obtaining wavelengths from the linear dispersion relation, whether or not the 
effects of current are considered. Although in many situations it might be 
considered unnecessary to incorporate the effects of current in calculations, 
the act of being forced to specify a value of current, even if it is zero, is a 
salutatory reminder that one is obtaining an approximate solution to an ap- 
proximate problem, and no great effort should go into refining methods or 
solutions. 

THE EFFECTS OF WAVE HEIGHT AND C U R R E N T  

Consider a single train of periodic waves of length L, height H and period 
T propagating in water of constant depth d, which is incompressible and the 
fluid motion is irrotational. Let the mean component of current in the direc- 
tion of wave propagation at any point be a~, constant throughout the fluid. 
Using Stokes' theory to approximate this problem, the dispersion relation to 
fifth-order in wave height, obtained by Fenton ( 1985 ), is: 

(k/g)l/2al 2~z ( ~ ) z  ( ~ ) 4  
T(gk)~/2 I-Co(kd)+ C2(kd)+ C4(kd)=O (1) 

where, instead of the length, it is more convenient to write the equation in 
terms of the wavenumber k=  2n/L, and where the quantities Co (kd), C2 (kd), 
and C4(kd) are functions only of the wave length/depth ratio (expressed by 
kd as shown). Formulae for these quantities were given by Fenton, for ex- 
ample, Co(kd)= (tanh kd)1/2. (In this paper the symbol a~ is used for the 
mean current at a point; CE was used in the original paper). The equation is, 
of course, a mathematical approximation even to the idealized physical ap- 
proximation described above; neglected terms of order (kH/2)6 and higher 
are not shown. 

Provided T,H,d and a~ are known, this equation is a transcendental equa- 
tion for k. It can be solved by any of the usual iterative methods, for example, 
trial-and-error, bisection, or the secant method. The latter is a sensible alter- 
native to Newton's method, which is difficult here because the functional de- 
pendence on k is complicated. The bisection method is the simplest to 
program. 

If the component of the depth-averaged mass transport velocity az is known 
instead of the mean current at a point, then a similar formula is obtained, and 
could be solved using the methods described above (see Fenton, 1985 ): 
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2~ (kH_)2( D2(kd)~ 
(k/g)'/2fl2 T(gk),/2 ~-Co(kd)+ C2(kd)+ ~ )+ 

4 

~- C4(kd)+ -~ = 0  (2) 

in which the symbol Cs was used for the depth-integrated mean current ~22. 
Equations 1 and 2 are valid for waves which are not so high as to be close to 
breaking and for waves which are not too long. The recommended longest 
waves are those which are 10 times as long as the water depth. For waves 
which are longer than this, if there is a single wave train present, the disper- 
sion relation for cnoidal theory should be used. Fenton (1990) has given a 
simplified fifth-order procedure. To first-order in wave height it can be shown 
to give the dispersion relation: 

(gd),/2~-1+ 1 2 K ( m )  

(higher-order terms) = 0 

2) md2 
-\3gHTaJ 4K(m) + 

(3) 

In this relation m is the parameter of  elliptic functions, and K(m ) and E( m ) 
are elliptic integrals. Having found m, the wavelength follows from cnoidal 
theory. Here the dispersion relation Eq. 3 (or that for mean mass flux velocity 
in terms of U2 also given by Fenton but identical to this order) is to be solved 
for the parameter m. 

The numerical problem of solving a transcendental equation is essentially 
the same, whether Eq. 1,2 or 3 is to be solved. If one actually has the idealized 
problem as described above, where only one component  wave train is present 
or nonlinear interactions are ignored, and high accuracy is required, then Eqs. 
1,2 or 3 can be solved by standard means. Provided an initial approximation 
is known, then most methods work. If, however, the problem being solved is 
one in which various wave trains might be present and the nature of the non- 
linear interactions is unknown, then one is forced to assume that the harmon- 
ics do not interact and that each phase travels independently of  the others. In 
this case, or if it is recognized that the physical approximations already made 
are such that seeking high accuracy is not reasonable, then the linearized dis- 
persion relation is used, by neglecting the higher-order terms in Eqs. 1 and 2 
(the cnoidal solution is nonlinear, so it is ruled out further here ), to give: 

2g 
(k/g)l/2~-T(gk)~/2 ~-Co(kd)=O (4) 

In this equation a denotes either the component  of the mean current at a 
point al or of the mass-transport velocity a2, as at this lowest-order of approx- 
imation the two dispersion relations are the same. 
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Here, the substitution Co(kd)= (tanh kd)1/2 is made and the radian fre- 
quency a =  2rt/T used, to give: 

a k -  a+ v/ gk tanh kd = 0 ( 5 ) 

It is possible to obtain explicit approximations in the long and short wave 
limits. In the latter, short wave (deep water), case, kd---,oo, tanh kd--, 1 and 
Eq. 5 becomes a quadratic which can be solved for k -1/2, which gives the 
result: 

4a2/g 
k =  (1 + x / l  +4aa/g) 2 (6) 

as obtained by Hedges ( 1987 ). Expressions related to this have been given by 
Yu (1952) and earlier workers. It is illustrative to consider the effects of cur- 
rent on wavelength using this equation: if the current a =  0 then: 

k =  O'2 (7) 
g 

and the wave speed in this case, denoted by Co, is given by: 

L a g (8) 
co T k  a 

and Eq. 6 can be written as: 

4a2/g 
k =  (1 +x/1 + 4a/co )2 (9) 

Using power series expansions and neglecting second and higher powers of 
a/co this can be written as: 

k = a 2 ( 1 - 2  u~- +. . . )  (10) 
g Co 

The factor of two in this equation shows that in the calculation of wave num- 
ber (and hence wave length) for waves in deep water, the fractional effect of 
the current is twice the ratio of current to wave speed. This is a possibly un- 
expected result, and increases the possible need to include current in 
calculations. 

In the other limit, that of long waves, when kd--,O, tanh kd--,kd and a power 
series can be written for the last term in Eq. 5. This can be reverted, and 
elementary but tedious series manipulations give the explicit long wave 
approximation: 

k a _ a x / ~ f  1 (ax/a /g)  3 ( 1 1 -  19F) 
I + F  6 ( I + F )  4 ÷ 3 6 0 ( l + F ) 7 ( a v _ , o ) 5 + . . . .  d/d/d/d/d/d/d/d/d/ff/g ( I1)  
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in which we have introduced the quantity F =  a/x/-~, the Froude number,  
but whose more important  significance here is that it is the ratio of  the current 
to the speed of  long waves in still water, x / ~ .  The approximation that has 
been made here is that higher powers of  rr have been ignored; there has been 
no approximation in terms ofF ,  the dimensionless current. In this expression 
it can be seen that the role of current becomes rather more important  in the 
higher-order terms. However to leading order the result is: 

k=  /,ffd_ o 
I + F  - ~ - d +  a (12) 

From this it is easily shown that, unlike the case for short waves, a change in 
current yields the same fractional change in wave number  and length. 

THE LINEAR DISPERSION RELATION FOR ZERO CURRENT 

Now, as is widely done, if it is further assumed that there is zero current, or 
this is assumed in the absence of  any information about the current, substi- 
tuting a =  0 in Eq. 4 gives the lowest level of approximation to the full disper- 
sion relation: 

2n 
T(gk ) ~/2-C°( kd) = 0  (13) 

or in the same form as Eq. 5: 

a -  x/~k tanh kd=O (14) 

It is usually one of  these two forms which is referred to as " the" dispersion 
relation, and widely used in practice. 

For the long wave case, when kd--,O, tanh kd~kdand Eq. 14 becomes: 

(15) 
the well-known result that long waves have a speed c = r r / k = L / T = x / ~ .  In 
the short wave (deep water) case, kd--,oo, tanh kd---, 1 and the dispersion re- 
lation Eq. 14 becomes: 

rr2=gk (16) 

If the water depth and wave period (i.e., frequency) are known, then, despite, 
the simplifying physical assumptions of  neglecting effects of  wave height and 
current, Eq. 14 is still a transcendental equation for the wavelength L (given 
by k). Numerical solution of  this is no easier in principle than that of  solving 
the more complete dispersion relations, Eqs. 1, 2, 3 or 5. 

If the physical problem is well-defined such that high accuracy is sought 
and effects of  nonlinearity and current are included, then either Eq. 1 or 2 
should be used, or for long waves the cnoidal theory as described in Fenton 
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(1990), approximated to first order by Eq. 3. In most cases, however, the 
approximate relation Eq. 14 can be used. In the past it has not always been 
recognized that it is an approximation. Here we estimate the effects of nonlin- 
earity and current which have been neglected in going from Eqs. 1 and 2 to 
Eq. 14. Figure 1 shows "the" dispersion relation, Eq. 14 and various approx- 
imations to it (to be described below). The heavy solid line is the linear dis- 
persion relation with no current (Eq. 14). The region shown by vertical lines 
shows the effect of nonlinearity on the dispersion relation. The upper bound- 
ary to this region is Eq. 14, while the lower boundary corresponds to steady 
periodic waves of greatest height (but with no current) obtained from the 
results of Cokelet (1977 ). Hedges (1978, 1987 ) has plotted this region on a 
similar diagram. It can be seen that nonlinearities strongly affect the wave 
length for a given wave period. This is quantified to fifth order by Eq. 1, which 
is accurate over most of the region and which shows that departure from the 
linear relation is quadratic in wave height, so that the results for a wave which 
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Equation 14, also Hunt, Eq. 23 

Wu & Thornton, Eqs. 27 & 28 

Eckart, Eq. 17 

Equation 21 
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Venezian, Eq. 24 

Nielsen, Eq. 26 _ 
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Regions in which waves can exist: 

Effects of nonlinearities 
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Fig. 1. Plot of  the regions where a wave can occur, plus several mathematical  approximat ions 
to the linearized zero-current relation (Eq=l 4). The abscissa is dimensionless wavelength L/d, 
the ordinate is dimensionless  period T~/g/d. 
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is half as high as the highest for that wavelength would fall about 1/4 of  the 
width of the shaded region below the solid curve. 

The horizontal lines show the effects of current on the wavelength, for a 
given period. The boundaries of this region are simply those corresponding 
to a current which is _+ 1 / 10 of  the wave speed. This value was arbitrarily 
chosen; of  course in many situations the current may be less than this. 

For waves of large amplitude on a favourable current, the effects of  nonlin- 
earity and current are cumulative, so that the point corresponding to an ac- 
tual wavelength and period might be some distance below and to the right of 
both the hatched regions. 

From the above it can be seen that wave height and current have significant 
effects on the wavelength corresponding to a particular period. In fact, Eq. 14 
is at best a rough approximation. It has, however, been the subject of many 
papers attempting to use it to obtain a mathematical approximation to kd as 
an explicit function of  ax /~g .  Below some of  those approximations are 
presented. 

APPROXIMATIONS TO THE STANDARD DISPERSION RELATION 

Figure 1 shows most of  the approximations which are described below. In 
most cases the plotting of  the curve has ceased where its deviation from Eq. 
14 has become such that the curve is identifiable. Where the curves agree 
closely with Eq. 14 they are of  course not visible. 

Eckart's approximation 

In 1952, Eckart produced a remarkable irrational approximation which is 
not well known. His approximate solution (Eckart, 1952 ) is: 

k =  a2 [coth (a2d/g) ]1/2 (17) 
g 

Strictly speaking the equality should be replaced by an approximate equality, 
however, we retain the equality sign here and in other approximate formulae. 
To examine the behaviour of  this approximation in the long wave limit we 
take the limit ~2d/g-*O and use the limiting behaviour of the hyperbolic func- 
tion to give: 

k=a/x//-gd (18) 

which is the exact solution of  Eq. 15. For deep water or short waves, Eckart's 
approximation Eq. 17 in the limit a 2 d / g ~ ,  becomes: 

k=a2/g (19) 

an exact solution of Eq. 16. Hence in the two limits, of  long waves and short 
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waves (relative to the water depth),  Eckart's relation is an exact solution of 
Eq. 14. 

Figure 1 shows Eckart's approximation. The worst fractional error in cal- 
culated wavelength is about 5%, for waves which are about 7 times the water 
depth. However, given that a wave might occur anywhere in the shaded re- 
gions of the figure, it would seem that Eckart's result, Eq. 17, is at least as 
good as Eq. 14, and probably better, in that it errs on the side of over-esti- 
mating wave length, thereby mimicking the effects of nonlinearity. 

In many practical cases this accuracy is certainly acceptable, given the ap- 
proximations on which Eq. 14 are based, that the water is of constant depth, 
that the waves are of small amplitude, that they are periodic, that the flow is 
irrotational, and that there is no current flowing. 

A new approximation 

Although, opposed to the idea of generating yet more approximations to 
Eq. 14, we mention here the fact that all approximations of the following form 
suggested by Eq. 17, namely: 

-]1/tJ 

satisfy both long and short wave limits Eqs. 18 and 19. We have experimented 
with different values of v (Eckart's approximation, Eq. 17 is for v=2) .  We 
found that the minimum value of the maximum error over all wave lengths 
in approximating Eq. 14 was for v=1.49. Rounding to ~=3 /2 ,  the 
approximation: 

is obtained. Substituting k =  2g/L and a =  2rt/T and re-arranging it gives: 

gT 2 r 7 213 
L = ~ - n  [ tanh ( 2 n ~ / T ) 3 / 2 1 2 / 3 = L o L t a n h  (2nd/Lo)3/4j (21) 

in which L0 is the deep-water wavelength, Lo=gT2/2n. In either form, this 
approximation has a maximum error of only 1.7%; it is shown in Fig. 1. It is 
always closer to Eq. 14 than is Eq. 17, whose maximum error was 5%. It is 
one of the aims of this paper to emphasize that such accuracy is not necessar- 
ily an advantage, however, it is possible that Eq. 20 or 21 might be useful in 
practice, as a simple expression valid for all wavelengths. 
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Olson’s approximation for longer waves 

Olson ( 1973) obtained the series expansion of Eq. 14, and reverted the 
series, to give a series approximation, valid for longer waves: 

(a2d/g)3+ (a2d/g)“+ 
45 189 

0.0007760 14 ( a2d/g)’ - 0.000044892 ( a2d/g) 6 - 

0.000071391 (a2d/g)‘-0.000022654(a2d/g)* (22) 

It can be seen on Fig. 1 that this is an excellent approximation to Eq. 14 for 
waves which are longer than twice the depth. 

Hunts approximation 

Hunt ( 1979) obtained an approximation in PadC approximant form: 

(kd)2= (a2d/g)2+ a2dlg 

1 + g d,(a2d/g)” 
(23) 

where the d,, are given by d,=0.6666666667, d,=O.3555555556, 
d3 =O. 1608465608, d,=O.O632098765, dS = 0.02 17540484, and 
d,=O.O065407983. This expression is a remarkably accurate approximation 
to Eq. 14 over all wave lengths. Indeed, it was derived so as to be exact in both 
long and short wave limits. It is plotted on Fig. 1, but is everywhere obscured 
by the solid line which it approximates. 

Venezian’s approximation for longer waves 

Venezian ( 1980) presented two PadC approximants for the reverted series 
expansion of Eq. 14. One is particularly simple: 

kd= qm 
1 - ;02d/g (24) 

This is accurate for long waves, as can be seen in Fig. 1. It will be seen below 
that it closely mimics the reverted series approximation to second order. It is 
not intended to be used for shorter waves, where it loses accuracy, unlike 
Hunt’s rather more complicated expression, Eq. 23 which was intended to be 
valid in that limit also. 



CALCULATING THE LENGTHS OF WATERWAVES 509 

Interpolation in a table 

Young and Sobey (1980) adopted the computationally-efficient procedure 
of using linear interpolation in a table of values of kd and trx/d/g, originally 
computed from Eq. 14. While apparently not as appealing to other workers as 
an explicit formula, it is an efficient and elegant solution to the problem. The 
setting up of the table is of course a simple exercise. 

However, if current is included, then it is necessary to set up a table of 
corresponding wave lengths and periods for a finite number of current values, 
and then to use two-dimensional interpolation in this table. Such tables have 
been given by Jonsson et al. ( 1971 ) and Jonsson ( 1978 ). 

Nielsen's approximations 

Nielsen (1982) obtained approximations for expressions occurring in lin- 
ear wave theory in the limit of long waves and an approximation for Eq. 14 
in the short wave limit. For an approximation to Eq. 14 he presented: 

kd=tr d ~ [ 1  +6--g+3-~k--g-)ltr2d 11 / t r2d '2+ ' " l  (25) 

Equation 11 in the case of no current, F=  a /gd  = 0, is easily shown to reduce 
to this. It can be simply shown by manipulation of series that this is equiva- 
lent to the first three terms of Olson's expression, Eq. 22. It can be verified 
that Venezian's expression, Eq. 24 has a corresponding power series almost 
the same as this, but that the number 11 in the last term in Eqn. 25 is replaced 
by 10, demonstrating the fortuitous closeness of the simple expression, Eq. 
24. 

For shorter waves Nielsen (1984) presented the approximation: 

kd=Cr2d ( l "l-2e-2~r2d/g+...) (26) 
g 

obtained from standard asymptotic approximations to the tanh function for 
large arguments. This expression is plotted on Fig. 1, and gives good agree- 
ment for short waves. 

Wu and Thornton's approximations 

Wu and Thornton ( 1986 ) obtained the approximation: 

, cr2d/g{, ,  ~r2d/g\~] 
k d =  i (27) 
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which is exact in the long wave limit and agrees with Eq. 14 at the point 
t~x~g= l, kd= 1.200. 

For short waves they suggest the approximation: 

kd=tr2d/g[1 +2t(1  + t ) ]  (28) 

where: 

t=e-2-v', y ' =~d/g ( l + 1.26e -184°2a/g) 

Both these relations, Eqs. 27 and 28 are plotted using the same line type on 
Fig. 1. In the approximate range each is highly accurate, they are only visible 
on the figure in the other wavelength limit. 

Summary of the above approximations 

Considering all the above approximations, Fig. 1 shows that as approxi- 
mations to Eq. 14 they are almost all excellent, provided their limitations are 
recognized, usually that they be used for waves which are longer or shorter 
than a certain length. Also, from the above formulae, the amount  of compu- 
tation is a similar order of magnitude in most cases. One really wonders what 
all the debate and the comparison of  marginal advantages between the var- 
ious formulae has been about. 

Hunt 's  Eq. 23 is very accurate over all wave lengths. Considering the long 
wave formulae, Olson's Eq. 22, Venezian's Eq. 24, Nielsen's Eq. 25 and Wu 
and Thornton 's  Eq. 27 are all highly accurate for waves longer than L/dE 3 
( T x / ~ d ~  4). Indeed, they are all based on the same reversion of the power 
series approximation, but with an extra interpolation point in the case of Eq. 
27. It is interesting that the inclusion of higher-order terms as in Eq. 22 ex- 
tends the range of  validity only marginally, relative to the simplest expression 
of them all, Eq. 24. 

Turning to the short wave formulae, both Nielsen's Eq. 26 and Wu and 
Thornton 's  Eq. 28 are excellent for L/d< 4 (Tx/g/d< 5 ). For longer waves 
the former deviates from Eq. 14 much more rapidly than the latter. However 
in this range the previously-presented long wave formulae are more valid 
anyway. 

It is the main intention here to point  out that all the formulae ment ioned 
above (except for Eqs. 17, 20 and 21 ) have the capacity to represent Eq. 14 
very accurately in their appropriate ranges. What none of them do is to allow 
for any effects of current or nonlinearity. Eckart's irrational approximation 
Eq. 17 and Eqs. 20 and 21 both mimic the effects of  nonlinearity by over- 
estimating wave length, given a value of  period. 

We suggest that with any of  the above formulae the problem of approxi- 
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mating Eq. 14 has been well and truly solved. In fact we strongly urge a mor- 
atorium on the production of further formulae. The above simple formulae 
give acceptable accuracy for many engineering purposes. It should be recog- 
nized that the ability of each formula to approximate Eq. 14 is rather better 
than that of Eq. 14 to approximate the actual problem. 

AN A L G O R I T H M  WHICH INCLUDES C U R R E N T  

If high accuracy is required, it should be recognized that the problem of 
solving a dispersion relation is really one of solving a transcendental equa- 
tion, as has been done in several of the papers referred to above for the pur- 
pose of comparing the proposed approximate formulae. Newton's method can 
be used to refine the approximation. It is simply programmed and can be used 
to achieve arbitrary specifiable accuracy. In fact, the inclusion of current yields 
a minor modification of the method, unlike the complication of including 
current in explicit approximations, comparing for example, Eq. 11 with Eq. 
25. 

Equation 5 can be written: 

f (k )  = a k  - a + x/ gk tanh kd = 0 ( 29 ) 

If the current, depth and wave period are known, then in this form, Eq. 29 is 
a transcendental equation for the wavenumber k. Newton's well-known 
method can be used for the solution of such equations. It has the highly-desir- 
able property of quadratic convergence such that the number of figures of 
accuracy doubles with each iteration. It is written: 

f(kn) kn÷l 
f ' ( k~)  

giving the refined approximation k~+ 1 in terms of approximation k~. In the 
case of Eq. 29 this gives: 

kn+ ~ d= 2av/ -~x /knd  tanh k~ d -  knd tanh k~d+ k2 d2sech2k~d ( 30 ) 
2a/x /~x /k~d  tanh k~d+tanh knd+ knd sech2k.d 

Although this looks complicated it can be evaluated with relatively few oper- 
ations, as sech2k,d= 1 -tanh2k~d, and the tanh function need only be evalu- 
ated once per iteration. In the usual case where a is small relative to the speed 
of the waves, then any of the approximations described above might be used 
to provide a good approximation to give the initial estimate/Co. However, 
there is some advantage in using formulae which explicitly include the cur- 
rent. We have used these, and recommend the following procedure, although 
there are bound to be other approaches of a similar order of computational 
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complexity and accuracy. Searching for better methods would seem to be 
hardly worthwhile, given the results of the comparisons for zero current. 

The following algorithm uses Eqs. 6 or 11 to give an initial approximation, 
followed by use of Eq. 30 as an explicit approximation to refine the solution. 
It would be simpler to program to use Eq. 20 or 21 for the initial approxima- 
tion, but would usually require one more subsequent iteration for finite val- 
ues of current. The algorithm is: 

if Tx/g-/d< 4 Calculate ko from Eq. 6 

else, calculate k ° from Eq. 11 

F= fl / v/ gd 
09 = ¢TN/d/g 

for n = 0  (and n =  1,2,... only if really necessary) 

c~ = tanh kn d 

fl=ak, d 

kn+, d -  27o~-fl+ (knd)2-fl 2 
27F+a+k~d(1-a  2) 

For no current, after a single iteration the maximum error over all wave- 
lengths using this method is 0.001%. With a current of + 10% of the long wave 
speed a single iteration gives a maximum error of 0.02% in the wavelength, 
whereas with an adverse current of this magnitude a single pass gives a max- 
imum error of 0.4%, and a subsequent pass reduces this to less than 0.001%. 
Thus, the method converges to engineering accuracy in one iteration. Except 
for purposes of research or comparison, the second iteration is unlikely to be 
necessary. This algorithm is similar to that recommended by McKee (1988) 
for finding the sequence of imaginary values of k which satisfy Eq. 14. He 
found a simple quadratic approximation to provide an initial estimate and 
wrote an explicit iteration formula, the equivalent of Eq. 30 as it is evaluated 
in the above algorithm, which also required only one evaluation of a transcen- 
dental function per iteration. 

Although in many situations it might be considered unnecessary to incor- 
porate the effects of current in calculations, the act of being forced to specify 
a value of current, even if it is zero, is a salutatory reminder that one is ob- 
taining an approximate solution to an approximate problem, and no great 
effort should go into refining methods or solutions. 

C O N C L U S I O N S  

The physical basis for the dispersion relation has been discussed. Several 
explicit approximations for wave length as a function of other physical vari- 
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ables have been presented and compared, and it has been shown that they 
model the standard dispersion relation quite accurately. Effects of wave height 
and current ignored by these methods are rather larger than are differences 
between the methods. It is asserted that the problem of approximating the 
standard linear dispersion relation can be regarded as solved to engineering 
accuracy, and that further effort in that direction is not justified. 

Explicit approximations which include the effects of  current have been pre- 
sented, plus an algorithm based on Newton's method which is recommended 
whether or not the effects of  current are considered. 
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