
Chaotic   and   Other   Oscillations   of  Pipelines 

J  D Fenton 
Professor, Dept. of Civil Engineering, University of Auckland, Auckland, NZ 

A C Josem 
Research Fellow, Dept. of Mechanical Engineering, Monash University, Clayton, Australia 

J B Hinwood 
Associate Professor, Dept. of Mechanical Engineering, Monash University, Clayton, Australia 

SUMMARY This paper studies the nonlinear dynamics of pipes subject to ocean waves and currents. It examines 
the nature of the oscillations of pipelines subject to fluctuating loading by both an experimental study and a theoreti-
cal and computational study. The experiments provide a view of the remarkable complexity of the problem, while the 
other study attempts to describe the effects of individual terms in the governing equations, and how the various terms 
affect the nature of pipe oscillations. The paper is descriptive, concentrating on trying to understand the processes at 
work. 

1. INTRODUCTION 

The motion of an elastically-mounted cylinder has been 
observed in an oscillating water column. For small-
amplitude fluid oscillations, the motion of the cylinder 
was a regular small-amplitude transverse oscillation. 
As the fluid oscillations were increased, the motion of 
the cylinder became a wild, erratic, and possibly 
chaotic motion. This has raised the question as to 
whether or not the motion was actually chaotic in 
nature. 

An overview of chaotic systems is given in Parker and 
Chua (1989), and there are many modern presentations 
of a more-or-less popular nature. There are four main 
types of steady-state behaviour of a dynamical system. 
In order of increasing complexity they are equilibrium, 
periodic solutions such as a limit cycle, quasi-periodic 
solutions (i.e. expressible as a countable sum of 
periodic functions), and finally chaos. There is no 
widely accepted definition of chaos. It can be defined 
as "none of the previous cases", such that for practical 
purposes, it is bounded steady-state behaviour that is 
not at an equilibrium point, not periodic, and not quasi-
periodic. 

Chaotic trajectories are attracted to a strange attrac-
tor, an object in state space with complicated proper-
ties. Well-known examples are those which appear in 
solutions of the Lorenz equations. One characteristic 
of most chaotic systems is that they show sensitive 
dependence on initial conditions, so that given two sets 
of initial conditions of a dynamical system, arbitrarily 
close to one another, the trajectories emanating from 
these initial conditions diverge until they become 
uncorrelated. This is the situation of the so-called 
"Butterfly Effect" whereby the equations of meteorology 
show that the beating of a butterfly's wings could sub-
sequently alter the state of the weather halfway across 
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3. EXPERIMENTS 

3.1 Apparatus 

The experimental facility described in Reid and Hin-
wood (1987) has some features which endow it with 
unusually-ideal conditions for the testing of a cylinder 
subject to oscillating flows. The apparatus shown in 
Figure 3 consists of a vertical U-Tube in which the 
water is excited to a resonant oscillation by a loose 
fitting plunger. This simulates the action of a wave 
past the cylinder which is elastically supported and 
weighted so that it is neutrally buoyant. It was 0.5m 
long, 25.4mm in diameter, had a mass of 0.25kg, and 
was fitted with end plates. A current can be superim-
posed on the oscillating flow and is controlled by a 
pump which circulates flow through the working section 
and is returned via a pipe. The current speeds range 
from 0.07 to 0.26 m/s. 

The idealising features alluded to above include: (1) 
that the flow is parallel to the sides of the tube and 
there are no vertical velocities superimposed thus elim-
inating that extra variable, and (2) that the fluid velo-
cities in the tube are simple harmonic, containing only 
a single sine wave. This is unusual in a system oscillat-
ing under gravity. For example, the pendulum 
described in equation (1) is a highly nonlinear system, 
because the restoring force is proportional to the sine of 
the displacement. 

3.2 Observations 

For small fluid velocities, the motion of the cylinder 
was predominantly vertical, oscillating in a direction 
transverse to the flow. This shows that the drag 
coefficient must be varying little, while the lift forces 
are varying appreciably due to the vortices separating 
from the cylinder. This is in keeping with other studies 
(see Chandler and Hinwood, 1985, for example). 

As fluid velocities were increased, the behaviour 
depended very much on whether or not oscillating velo-
city or mean current was dominant, and provided a fas-
cinating illustration of the different modes of behaviour 
possible. It was really only after traces of the path of 
the cylinder were recorded and plotted that the nature 
of the behaviour in each case became apparent. Con-
sider the motion where there was no net current, so 
that the fluid velocity was that of simple harmonic 
motion with an amplitude of 0.12 m/s, as shown in Fig-
ure 4. A preferred type of motion is apparent, that 
describing something of a butterfly, but within that it 
can be seen that the motions are very irregular indeed. 
Although the shape of the butterfly was not obvious in 
early visual observations, the apparently-chaotic nature 
of the motions was, and suggested a program of further 
study and comparison with computer simulations. 

With the addition of a current, the motions changed 
dramatically. Figure 5 shows some of the different and 
fascinating behaviour as the current was increased, 
while the peak wave velocity was held constant  at 
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