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SUMMARY This paper studies the nonlinear dynamics of pipes subject to ocean waves and currents. It examines
the nature of the oscillations of pipelines subject to fluctuating loading by both an experimental study and a theoreti-
cal and computational study. The experiments provide a view of the remarkable complexity of the problem, while the
other study attempts to describe the effects of individual terms in the governing equations, and how the various terms
affect the nature of pipe oscillations. The paper is descriptive, concentrating on trying to understand the processes at

work.

1. INTRODUCTION

The motion of an elastically-mounted cylinder has been
observed in an oscillating water column. For small-
amplitude fluid oscillations, the motion of the cylinder
was a regular small-amplitude transverse oscillation.
As the fluid oscillations were increased, the motion of
the cylinder became a wild, erratic, and possibly
chaotic motion. This has raised the question as to
whether or not the motion was actually chaotic in
nature.

An overview of chaotic systems is given in Parker and
Chua (1989), and there are many modern presentations
of a more-or-less popular nature. There are four main
types of steady-state behaviour of a dynamical system.
In order of increasing complexity they are equilibrium,
periodic solutions such as a limit cycle, quasi-periodic
solutions (i.e. expressible as a countable sum of
periodic functions), and finally chaos. There is no
widely accepted definition of chaos. It can be defined
as "none of the previous cases", such that for practical
purposes, it is bounded steady-state behaviour that is
not at an equilibrium point, not periodic, and not quasi-
periodic.

Chaotic trajectories are attracted to a strange attrac-
tor, an object in state space with complicated proper-
ties. Well-known examples are those which appear in
solutions of the Lorenz equations. One characteristic
of most chaotic systems is that they show sensitive
dependence on initial conditions, so that given two sets
of initial conditions of a dynamical system, arbitrarily
close to one another, the trajectories emanating from
these initial conditions diverge until they become
uncorrelated. This is the situation of the so-called
"Butterfly Effect” whereby the equations of meteorology
show that the beating of a butterfly's wings could sub-
sequently alter the state of the weather halfway across

the world. Practically, this means that there is a limit
to the predictability of the weather, even though the
equations can be solved numerically.

It is well-known that the periodically forced motion of
a nonlinear oscillator can exhibit chaotic motions. For
example, Bryant and Miles (1990) considered the
motion of a pendulum to which a periodically-varying
torque is applied. The equation of motion is

X +¢x +sinx = F sinwr, (1)

where x is the angular displacement from the down-
ward vertical, each dot denotes differentiation with
respect to time f, ¢ is a damping coefficient, F is a
measure of the torque applied, which in the scaled vari-
ables used here, is applied at a frequency @ times the
natural frequency. The equation is nonlinear, because
the dependent variable x appears as the argument of a
trigonometric function. In this situation, the motions
show a high degree of chaos, depending on the magni-
tude of the forcing. If the amplitudes of oscillation are
small, then sinx in equation (1) can be replaced to
good approximation by x, the equation is linear, and
solutions show simple harmonic motion at the natural
frequency of the pendulum plus a further harmonic
motion at the forcing frequency @. There is no chacs.

2. ONE-DIMENSIONAL OSCILLATIONS OF A
BODY SUBJECT TO OSCILLATING FLOW

2.1 Elastic restraint

The relevance of the model equation (1) to the subject
of this paper is suggested by the equation governing the
motion -of bodies subject to fluid velocity fields, namely
Newton’s second law of motion, where the force is
given by the empirical Morison equation. The one
dimensional form of the resulting equation is:
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(M+p(Cn—1)V)x + Cx +Kx =
PVConii (t) + ag—ch @(t)=%) lu@)-%1, )

where
M = mass of the body,
p = fluid density,
Cm = inertia coefficient,
¥V = volume of the body,
x = linear displacement of the body,
C = structural damping coefficient,
K = stiffness of the elastic system,
Cq = drag coefficient of the fluid on the body,

b

= area of the body transverse to the flow,
u(t) = fluid velocity.

The broad similarity between this second-order
differential equation and equation (1) becomes clear on
detailed comparison. This equation does not contain a
nonlinear restoring force (it has Kx instead of sinx ),
but it does contain a nonlinear term due to the drag
force of the fluid on the body, where there is a term
which varies like x multiplied by a term which includes
¥ and which can abruptly change gradient as the rela-
tive velocity changes sign.

Initially we examined solutions of this equation for
various combinations of parameters. No unusual
behaviour at all was found. It is interesting to gain an
insight into the reason for that and the expected nature
of solutions by considering the nature of the equation.
Dividing through by the coefficient of the second
derivative gives:

F+CE+Kx = Coii (0)+Ca ()= ) u ()% |, (3)

where the defmitions of the coefficients shown with
primes can be easily obtained by performing the ele-
mentary operations.

It is convenient to rewrite the equation in a pseudo-
linear form by writing the magnitude of the fluid velo-
city relative to the body as ur(t) = |u(t)-x |, and re-
arranging to give

X+(C+Caue(t))x +K'x = Crqu (¢)+Caur(t)u(t) .(4)

In this form, similarities to equation (1) or to the equa-
tion for any linear oscillator become clear. The role of
the fluid drag is now more obvious. On the left side of
the equation it appears with the structural damping.
Hence, even though the term is nonlinear, its role is to
damp out the body motion. On the right side of the
equation, the terms combine to act in a similar way to
the case in equation (1) where the body is in a
periodically-fluctuating velocity field due to waves.
Both u (¢) and u (t) contain harmonic variation of the
same wavelength. It is possible to linearly combine the
two such that the net effect is an input of the same
wavelength but with a different phase. A further non-
linear effect is caused by u.(¢t) being a discontinuous
function, whose gradient changes when the fluid

velocity passes the body velocity.

In the general maritime case, the right hand side illus-
trates a sometimes-forgoiten danger which can have
important repercussions for the fatigue strength of a
structural member. If the input wave signal is not just
a single sinusoid, but can be decomposed into a Fourier
series containing a number of harmonic terms, the non-
linearity of the last term means that more harmonic
terms may be present than expected - for example,
even if u (¢) just contained a single term in sin@¢, then
the nonlinearity means that terms like the square of
this will be present, and an elementary trigonometric
identity shows that this appears as a term in cos 20X
plus a constant term. In this way, the nonlinear drag
term can generate higher and lower frequency com-
ponents.
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Figure 1: Incident fluid velocity and resulting motion of

cylinder where oscillations at the natural frequency are
excited by harmonics from the nonlinear drag term.

A more important feature is, however, that these or any
other terms in the input wave signal may be close to
the natural frequency of the system, which can easily
be shown to be YK in the notation of equation (4).
As an example, consider the results shown in Figure 1.
The incident wave has two components, the fundamen-
tal, and one of twice the frequency but half the ampli-
tude, leading to the marked asymmetry shown, and by
its sharper crests and longer troughs mimicking the
behaviour of real waves. Calculations were performed
for a system whose natural frequency of oscillation was
three times that of the fundamental input frequency.
The figure shows that the nonlinear drag term can
combine the first and second harmonics to produce a
third harmonic, at the resonant frequency of the body,
and the resultant output shows a very marked oscilla-
tion at this higher frequency, generally in phase with
the input signal, but looking nothing like it. As the
graph shows, the displacement and hence the stress in
the system shows reversals at the higher frequency, giv-
ing implications for the fatigue strength. In a practical
situation of course, higher harmonics than the third
might be excited.

The results of this section, and all others in this paper,
were obtained using the fourth-order Runge-Kutta
method for solving differential equations numerically.



2.2 Nonlinear restraint

The problem may also be rendered nonlinear if the
nature of the elastic restraint changes for larger
deflections. An example of this in ocean engineering is
the case of an articulated mooring tower driven by
steady waves. This may be considered as a single
degree-of-freedom oscillator whose dynamics are non-
linear by virtue of a stiffness discontinuity. The stiffness
has different magnitudes for positive and negative
deflections when a mooring cable tightens for positive
deflection but provides no extra restraint for negative
deflection. This is described in Thompson and Stewart
(1986), who showed the existence of subharmonic reso-
nances and multiple solutions depending on the starting
conditions.

The effects of such a nonlinear restraint were examined
in the present work, and the one-dimensional motion of
a cylinder under waves was simulated, with a marked
stiffness discontinuity for large deflection. Results are
as shown in Figure 2. It can be scen that when the
increased stiffness is encountered while the fluid holds
the cylinder at an extreme position, higher frequency
oscillations are set up, as might be expected based on
linear considerations (frequency proportional to the
square root of the stiffness), but then when the cylinder
is swept in the other direction, the general oscillation
corresponds to the more flexible restraint. The motion
is complicated, but it is periodic and is not chaotic.
Below we will see that this is not the case in two
dimensions.
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Figure 2. Complicated periodic motion with
nonlinear stiffness

An additional way in which equation (4) becomes non-
linear is because the coefficients Cy, and Cy4 in equation
(2) depend on the local fluid velocity, so that
coefficients in (2) will depend on u.(¢). This behaviour
may give rise to galloping or other large-amplitude
oscillations. To test this, computations were carried out
simulating the variation of the coefficient in this way,
but the behaviour of the solutions were hardly affected
and certainly no chaotic behaviour was noted.

To conclude this section, it can be stated that the non-
linearities in the equation governing one-dimensional
oscillations gave no hint of chaotic motion.

3. EXPERIMENTS

3.1 Apparatus

The experimental facility described in Reid and Hin-
wood (1987) has some features which endow it with
unusually-ideal conditions for the testing of a cylinder
subject to oscillating flows. The apparatus shown in
Figure 3 consists of a vertical U-Tube in which the
water is excited to a resonant oscillation by a loose
fitting plunger. This simulates the action of a wave
past the cylinder which is elastically supported and
weighted so that it is neutrally buoyant. It was 0.5m
long, 25.4mm in diameter, had a mass of 0.25kg, and
was fitted with end plates. A current can be superim-
posed on the oscillating flow and is controlled by a
pump which circulates flow through the working section
and is returned via a pipe. The current speeds range
from 0.07 to 0.26 m/s.

The idealising features alluded to above include: (1)
that the flow is parallel to the sides of the tube and
there are no vertical velocities superimposed thus elim-
inating that extra variable, and (2) that the fluid velo-
cities in the tube are simple harmonic, containing only
a single sine wave. This is unusual in a system oscillat-
ing under gravity. For example, the pendulum
described in equation (1) is a highly nonlinear system,
because the restoring force is proportional to the sine of
the displacement.

3.2 Observations

For small fluid velocities, the motion of the cylinder
was predominantly vertical, oscillating in a direction
transverse to the flow. This shows that the drag
coefficient must be varying little, while the lift forces
are varying appreciably due to the vortices separating
from the cylinder. This is in keeping with other studies
(see Chandler and Hinwood, 1985, for example).

As fluid velocities were increased, the behaviour
depended very much on whether or not oscillating velo-
city or mean current was dominant, and provided a fas-
cinating illustration of the different modes of behaviour
possible. It was really only after traces of the path of
the cylinder were recorded and plotted that the nature
of the behaviour in each case became apparent. Con-
sider the motion where there was no net current, so
that the fluid velocity was that of simple harmonic
motion with an amplitude of 0.12 m/s, as shown in Fig-
ure 4. A preferred type of motion is apparent, that
describing something of a butterfly, but within that it
can be seen that the motions are very irregular indeed.
Although the shape of the butterfly was not obvious in
early visual observations, the apparently-chaotic nature
of the motions was, and suggested a program of further
study and comparison with computer simulations.

With the addition of a current, the motions changed
dramatically. Figure 5 shows some of the different and
fascinating behaviour as the current was increased,
while the peak wave velocity was held constant at
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Figure 3. Experimental arrangement of the U-Tube

0.09 m/s and a frequency of 0.44Hz. Part (a) shows a
complex but remarkably regular pattern. As the velo-
city was increased, a more random trace within a
defined region became apparent, as shown by (b). At a
current of 0.15 m/s the cylinder spent more time trac-
ing a slow path in the central area, as well as making
random excursions in other directions. Here the motion
scemed to be chaotic. As the flow velocity was
increased to 0.17m/s, the cylinder traversed a clearly
defined path avoiding the central region! The richness
of the behaviour sets a considerable challenge to
describe analytically and computationally.

Figure 4, Apparently chaotic motion for no current.

To conclude this section, there is ample evidence for
irregular motions of an elastically-mounted cylinder in
an oscillating flow. Particularly for the case of no
current there seemed to be little underlying order.
Whether the motions are chaotic or not was tested by
computer simulation, as will now be described.

4, TWO-DIMENSIONAL OSCILLATIONS OF A
BODY SUBJECT TO OSCILLATING FLOW

It is well known that systems with more degrees of
freedom have a greater tendency to exhibit chaos. An
example is that of the Lorenz equations for the motion
of a particle, which show chaotic behaviour in three
dimensions but not in two. It might be expected then,
that the irregular motions observed experimentally
might be able to be simulated numerically.

In two dimensions, Newton’s law and the Morison
equation for two dimensions yield:

(M+p(Cn—1)V)X + CX + Kx = pVCni
+123ch w(@)-%) u @)~ +y2+D(t), (5

for the x direction (parallel to the flow), and
(M+p(Cn=1)V)y +Cy + Ky =
L et () Ju@)=5)"+52+ L), (©

for the y direction. The fluid velocity imposed in the
U-tube has only a horizontal component and only a sin-
gle harmonic as discussed above: u (t) = Ap+ 41cos0t,
where 0 is the frequency of the input wave, and A is
the mean current.

These equations contain extra terms D(¢t) and L(t)
which are drag and lift force terms due to vortex
separation. It is known (Chandler and Hinwood, 1985)
that the lift term dominates and that vortex forces can-
not be calculated simply in terms of drag and lift
coefficients. Also, the nature of the dominant lift force
is a quite complicated function of time, even for the
case where the cylinder is fixed. In the present case of
a compliant cylinder the details of the vortex forces
must be very complicated. Here we adopt a simple
approach of representing them by relatively short
Fourier series:
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Figure 5, Changing motions of the cylinder
as current increased

D(t) =75 Dje' %! (7.1)
] P

L(t)=3 Lie! %! (72)
J

where i = /=1, the sums are usually from -3 to +3,
and O, is the vortex shedding frequency, which in the
case of lock-in will be equal to 0, the wave frequency.

Initially for the case of no current, numerical experi-
ments were conducted with two and three-term series
for the lift and drag. It was found relatively easy to
simulate the results obtained by Sumer er al. (1989)
for the path of a pipe above a scour trench. Typical
results are shown in Figure 6. The Lissajous-type

figures correspond to different relative magnitudes of
Fourier coefficients of the lift and drag forces. The
usual situation was that the lift force had a fundamen-
tal frequency twice that of the incident wave, as
reported by Chandler and Hinwood (1985) and
Justesen (1989). Where the fundamental lift fre-
quency was three times the incident, reported by
Justesen as a common case, a Lissajous figure similar
to the logo of the Australian Broadcasting Corporation
was obtained. This type of behaviour was not reported
in any of our experiments or those of Sumer et al.
(1989), who found some irregularity in their results
around these basic sorts of figures, however, there was
no tendency in our calculations for chaotic motions to
appear.

OV

Figure 6. Pipe trajectories.

It was considered rather more important to be able to
simulate the trajectories obtained in the experimental
program described, as we knew the experimental
parameters. For the case of no current, as shown in
Figure 4, with a high degree of chaotic motion, only
ordered motions were able to be simulated. Figure 7
shows something of the nature of the solutions: two tra-
jectories are shown, each with a different set of initial
conditions shown by the small rectangles. It seems,
that for finite drag forces, the equations are such that
the solutions approach a limit cycle, which would seem
to act against the development of chaos.

Figure 7. Pipe trajectories for no current, showing
results for two different initial conditions

For the case with a current of 0.17 m/s, from Figure
5(d), the simulation is shown in Figure 8. The
apparent non-uniqueness of the orbit is not a



characteristic of the equations, but due to the artifice of
allowing the vortex-shedding frequency to vary ran-
domly throughout the simulation. A similar picture to
the experimental one is obtained. However, there was
no tendency to chaotic motion.

Figure 8. Pipe trajectory for a current of 0.17 m/s.

In the course of performing the computations many
interesting figures and behaviours were revealed. A
noteworthy one is that shown in Figure 9, for the
rather idealised case of zero drag. It is included here
to illuminate the effect of the drag forces in the other
figures. In this case a dramatic two-periodic solution is
obtained, and the solution performs often-severe contor-
tions to remain within the envelope defined by the
many osculations. It is notable that with Cy set to
zero, the equations are linear, yet here show a rather
more interesting behaviour,

Figure 9. Trajectories for zero drag case

To this stage of the computations, no chaotic motions
have been revealed. Figure 10 shows the results of a
two-dimensional computation for the bilinear stiffness
case described in its one-dimensional form in #2, and
pictured in Figure 2. It can be plausibly deduced that
the motion is indeed chaotic. The two trajectories are
for slightly different initial conditions, and it is quite
clear that the two seem to have nothing to do with each
other after the motion has been well-developed. The
passage of the trajectory is quite dramatic, occasionally
oscillating vigorously across the domain, occasionally
lingering near the centre, and occasionally making

Figure 10. Chaotic motions for bilinear stiffness
great circular sweeps around the domain.
5. CONCLUSIONS

We have performed experiments which show consider-
able complexity of behaviour, moving out of and back
into chaotic regimes twice as the current was increased.
Some of the features of the motion have been simulated
computationally, but we have found chaotic motions
only for the case of a bilinear stiffness law. Despite its
strong nonlinearities in the drag term, the Morison
equation seems to be one which leads naturally to limit
cycle types of solutions. The drag term in the equation
acts so as to conform motion to the externally applied
velocity field. Any motions not conforming are quickly
damped out, leading to a limit cycle of a stable periodic
oscillation.
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