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Reservoir routing
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Abstract This paper asserts that the traditional method for reservoir
routing is unnecessarily complicated. It requires the solution of a trans-
cendental equation at each time step. Reservoir routing is actually simply
the numerical solution of a differential equation. Any standard method
can be used, and all are simpler than the traditional method. The paper
also shows that the alternative form of the governing equation in terms
of the reservoir surface elevation has some advantages over the usual
form involving storage volume. The presentation incorporates the case
where reservoir outflow may be varied by control of valves or spillway
gates. Numerical methods for reservoir routing are examined and com-
pared, and it is concluded that simple standard methods for solving
differential equations are to be preferred to the traditional method for
flood routing, and should replace it.

Laminage des débits de crues par un réservoir

Résumé Cette communication part du principe que la méthode tradi-
tionnelle, utilisée pour calculer le laminage produit par un réservoir, a
masqué la simplicité fondamentale du probleme a résoudre. En revanche,
s’il est reconnu que le calcul du laminage correspond au processus de la
résolution d’une équation différentielle, alors il est possible d’employer
les méthodes numériques normales, celles-ci étant beaucoup plus simples
que la méthode traditionnelle. En outre, il est démontré qu’une autre
forme d’équation principale, exprimée en fonction du niveau de 1’eau
d’un réservoir, présente certains avantages par rapport a 1’équation
habituellement employée pour calculer le volume d’eau accumulée. Un
partie du présent exposé est consacrée au probleéme du réservoir dont le
débit peut étre contrdlé au moyen de robinets ou de vannes de déversoir.
Diverses méthodes pour calculer I’écoulement du laminage produit par
un réservoir sont examinées et comparées; la conclusion qui s’en dégage,
c’est que les méthodes simples, employées normalement pour résoudre
les équations différentielles, sont préférables a la méthode traditionnelle-
ment employée pour calculer le laminage produit par un réservoir et que,
par conséquent, ces méthodes simples devraient remplacer la méthode
traditionnelle.

INTRODUCTION

The storage equation governing the rate of change of reservoir storage volume
is:

s _ . | 1
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in which: S is the volume of water stored in a reservoir relative to an arbitrary
datum; ¢ is time; I is the volume rate of inflow, which is either a known
function of time or known at points in time; and Q is the volume rate of
outflow. To solve the equation it is necessary to relate the outflow to the
storage volume, i.e. to give the form of Q(t, S), usually via the dependence of
each on the elevation of the water surface. In many discussions of the storage
equation the outflow Q has been considered to depend only on S. However,
where reservoir outflow is controlled by a valve or a spillway gate the outflow
characteristics can be varied by human or automatic control. The outflow is
then some known function of time ¢ as well as §.

Equation (1) is a first order differential equation for § as a function of
t. It can be solved numerically by any one of a number of methods, of varying
complexity and accuracy, of which the most elementary are very simple indeed.
The fact that the problem is merely one of solving a differential equation, and
the ease with which this can be done, seem not to have been widely realised or
exploited in hydrology.

The main aim of this paper is to demonstrate that the standard methods
of numerical solution of differential equations work very well for reservoir
routing, and that use of the traditional hydrological method has made its
presentation to students and its implementation rather more difficult and
time-consuming than necessary. It is suggested that the traditional method be
not further implemented.

THE TRADITIONAL METHOD

The traditional method of solving equation (1), described in almost all books
on hydrology, is relatively complicated. The differential equation is approxi-
mated by:

1)+ 1t + A) + 2S@)/A - Q[S@®)] = 28(t+A)A+Q[S(E+A)] @)

where A is a finite step in time, and where it has been assumed that there are
no externally controlled discharges, and so Q can be expressed as a function
of § only. At a particular time, ¢, all the quantities on the left side of equation
(2) can be evaluated. The equation is then a nonlinear equation for the single
unknown quantity S + A), the storage volume at the next time step, which
appears transcendentally on the right side. There are several methods for
solving such equations, which, although not particularly difficult in principle,
in practice tend to obscure with mathematical and numerical detail the under-
lying simplicity of reservoir routing. Textbooks at an introductory level present
procedures for solving such equations by graphical methods or by inverse inter-
polation, while at an advanced level a number of practical difficulties may arise
(Laurenson, 1986), such that in the solution of the nonlinear equation
considerable attention may have to be given to pathological cases. As some of
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the methods are iterative, several function evaluations of the right side of
equation (2) are necessary at each time step.

AN ALTERNATIVE FORM OF THE GOVERNING EQUATION

In addition to the S formulation already described, other forms of the differen-
tial equation (1) can be obtained simply. If the reservoir surface elevation, A,
changes by an amount dh, in the limit as d# — O the change in storage, dS, is
given by:

ds = A(h)dh €

where A(h) is the plan area of the water surface at elevation 4. Substituting into
equation (1), writing the outflow, O, as a function of both ¢ (in the case of
controlled discharges) and of A (usually a simple mathematical function like
(B = Youner” and/or (B — y ), Where y . is the elevation of a pipe outlet
to atmosphere and y,,. is the elevation of the spillway crest), an equivalent
form of the storage equation is obtained:

%’} = [I(®) - O, WA @

which is a differential equation for the surface elevation itself. This equation
has been presented by Chow ez al. (1988, Section 8.3), and by Roberson et al.
(1988, Section 10.7), but as a form supplementary to equation (1). In fact it
has some advantages over that form, and this equation (4) formulation for A
might generally be preferred. It makes no use of the storage volume S, which
then does not have to be calculated for routing purposes.

If the traditional equation (1) form is used, then the storage volume § has
to be obtained as a function of A4 from the integral:

Sty = | A0)dy ©

by a low order numerical approximation for various surface elevations. Then
it is necessary to express S as a function of Q, usually by creating a table of
pairs of corresponding values. In those cases where the discharge is controlled,
this has to be repeated every time a gate or valve is adjusted. The A formula-
tion avoids those steps. The dependence on ¢ can be obtained by specifying a
vertical gate opening or a valve characteristic as a simple function of time.

In the same way that the dependence of Q on S is usually represented by
a table of pairs of values, in general the & formulation requires a similar table
for A and h, to give A(h), obtained from planimetric information from contour
maps. However, this process is less liable to error for the reasons set out in the
following argument: almost every spillway has a crest level considerably above
the bottom of the reservoir, and the total operating height range of the spillway
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is small compared with the total depth of the reservoir. Whereas there might
be a number of contour intervals used to calculate the volumes in the reservoir,
there might be relatively few in the operating height range of the spillway. If
the conventional § formulation is used, then the outflow Q has to be calculated
as a function of § in that range, and there might be few values of S for that
purpose. If this is the case, then the knowledge of Q as a function of § might
have to be obtained with few data points and be correspondingly inaccurate,
particularly as Q is sometimes a discontinuous and rapidly varying function of
elevation. This can degrade the accuracy of the computations considerably. In
the case of the h formulation this is not a difficulty, as illustrated by the
following model problem.

Consider a reservoir where the plan area of the water surface varies as
A = 1000 A* for typical operating levels. Integration gives the storage volume
as a function of height: S = 667 #*2. In a typical practical problem, contour
area information is not available in the form of the precise function given here
but in the form of numerical values. In this example it is presumed that they
are known at intervals of 1 m between the minimum elevation of the water
level at 1 m, and the maximum at 5 m. A spillway is installed with a crest at
elevation 3.5 m. The rating curve is givenby: @ = 1 X (h — 3.5)%2 for h >
3.5and Q = 0 for h < 3.5. The points making up the rating curve for Q as
a function of § are shown on Fig. 1(a), as well as the linear interpolation
between these points, which is often the method used in practice. It is obvious
that the paucity of § information in the operating range of the spillway and the
discontinuous and rapidly varying nature of Q as a function of § can cause the
interpolated values of Q to be significantly in error. Numerical solution using
linear interpolation would infer that the spillway starts to discharge at a value
of § rather below that corresponding to the crest! Even if a higher order
interpolation were used, the discontinuous nature of the function at the crest
would still produce errors, with possibly negative values of Q. While it may
be possible to use linear interpolation to provide an extra value of § at the
spillway crest level, thus reducing the errors there, it still seems that specifying
the discontinuous and rapidly varying Q as a function of the possibly sparsely
known § would be a source of error.

The above situation can be compared with the A formulation in which
case the details of the spillway or other outlet functions in the form of the
power law expressions can be accurately evaluated for any value of 4. The only
interpolation for the shape of the reservoir is in the pairs of values of A and A,
which generally have a smooth relationship. The values for the model problem
are shown in Fig. 1(b), which shows that the accuracy of linear interpolation,
and hence the evaluation of the right side of the differential equation, is rather
better for the A formulation than for the § formulation. It should be noted that
Q will still be a discontinuous function of A (it is zero for 4 below crest level);
however it can be calculated accurately for all values of A.

Although great accuracy is usually not necessary in hydrological
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Fig. 1 Comparison between the two formulations showing how
interpolating for reservoir geometry may be an important limit to
the accuracy with which the S formulation might be solved.

computations, unnecessary inaccuracies should be avoided, and certainly
simpler methods should be favoured. In view of the complications and
inaccuracies associated with the S formulation as described above, it seems that
the h form is to be preferred. The methods described below, however, are
valid for either.

METHODS OF SOLUTION OF THE DIFFERENTIAL EQUATION

Whichever formulation is adopted, S or 4, the problem is one of the numerical
solution of a differential equation, for which there are many methods and much
computer software available. Reference can be made to any book on numerical
methods for a description of some of them. Some methods are briefly described
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below and their performances are compared.
The forms of the storage equation can be generalized by the expression:

% - F(t,%) ©)

where x is the dependent variable, either S or 4. In the case of equation (1), x = §
and F(z, S) = It) — Q(t, S), while for equation (4), x = hand F(t , h) = [I(r) —
Q(t, h))/A(h). The general form in equation (6) encompasses cases where the out-
flow is controlled and where it is not. All the following methods can be applied
whether or not control is varying the form of the outflow function with time.

To commence solution it is necessary to know the initial conditions,
either the value of S or 4 at ¢ = 0, denoted by S, and A, respectively. At later
times the subscript z is used to denote the value at time £, = nA, and n + 1
attimes, + A =1¢,,., = (n+ DA

Whichever method is used, perhaps the most complicated part of solving
the differential equation is that of interpolating in a table of value pairs. It is
necessary to obtain A(h) for arbitrary A, or Q(t, S) for arbitrary S. If time steps
other than the interval of the inflow hydrograph were used, it would be
necessary to obtain I(¢) for arbitrary values of ¢, also from data pairs. For first
and second order methods linear interpolation in a table of data pairs gives
accuracy consistent with the numerical method. However, this is not the case
for higher order methods, for which more accurate approximation is necessary
for consistency. For reservoirs where the discharge function can have gradient
discontinuities, such as where a higher spillway takes over from a lower
spillway or pipe, linear interpolation would be rather more robust. Its
simplicity is generally to be preferred for flood routing, where great accuracy
is usually not justified.

Test problem

For the purpose of comparing the accuracy and performance of different
numerical methods there are some reservoir routing problems which have
analytical solutions. In particular, a case given by Yevjevich (1959, Table 3)
is quite a good one for simulating real problems. The inflow hydrograph has
the same shape as a typical real hydrograph, and this case might be adopted as
a suitable test for developing computer programs to check on their accuracy or
for comparing methods. The details are:

(@ inflow hydrograph:
1) = I,+Ptse™ @)

where P, s and f are constants defining the storm hydrograph and I, is
a base flow added in this work for greater generality;
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(b) storage and area functions:
Sth) = ah™ A(h) = amh™! (®)

where a and m are constants; and

(c) discharge function:

Q) = bh™ ©®)

where b is a constant and the exponent m is the same as for the storage

function. Hence, Q = ¢ S, where ¢ = b/a, a constant. This does imply that

the outlet level is at the bottom of the reservoir, which might seem rather
special, nevertheless this is typically experienced in detention reservoirs,
and in any case this does not make the case any easier to compute.

By rewriting the differential equation with Q as the dependent variable
and solving by an integrating factor method, it can be shown that this case has
the analytical solution:

slcP

Q = I+e [ Qy-Iy+ S
0 [ 0 “0 (f—C)“'l (10)

_ S o, L0
WG [1 (f-on+... —r ]

for the case where s is an integer and where Q, is the initial discharge (Q, =
Q(t = 0)). A solution in terms of incomplete gamma functions can be found if s
is not an integer. (It should be noted that the solution corresponding to equation
(10) given by Yevjevich (1959, Table 3) contains some typographical errors.)
The problem defined by equations (7) to (9) was solved by a number of
numerical methods and compared with the analytical solution, equation (10), to
examine their performance. The results shown below are those obtained from
solving the § formulation of the differential equation (1). Numerical values used
in the computations are given in Table 1. The storage details correspond roughly

Table 1 Numerical values used in computations for Figs 2 and 3

Quantity Value

N = number of time steps 20

Time step A 300 (s)

Qo 1.0 m® s

I, 1.0 (m* s

P 2 x 10 B mdsh
s 5

m 372

f 0.003 (s1)

a 5000 (ST units)
b 4 (SI units)

¢ = bla 0.0008 (s!)
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to those of a small detention reservoir, which has a single sharp-crested weir of
length about 2.5 m, and the plan dimensions, if it were a square, would be about
100 m by 100 m if the reservoir were 2 m deep. The numerical constants
associated with the inflow hydrograph were chosen by trial and error to be
characteristic of those encountered in practice with a single rainstorm of short
duration. The computations were not performed using equations (8) and (9) for
reservoir and discharge characteristics but rather by interpolating in a table of 10
pairs of values, as would be encountered in a practical problem where values of
storage or reservoir area might be known only at a finite number of points.
Similarly, the inflow hydrograph was specified by 20 numerical values of I(¢)
obtained from equation (7), and interpolation used to calculate intermediate
values, where necessary. In practical problems, of course, the values would be
interpolated between measured data points.

Figure 2 shows the inflow hydrograph from equation (7), the outflow
hydrograph from equation (10) and various numerical solutions for the outflow
hydrograph. Almost all the methods described below give results of acceptable
practical accuracy. The various methods will be described and compared.

Euler’s method

This is the simplest but least accurate of all methods, being of first order
accuracy only. It is an explicit method, given by:

X,,; = X, +AF(t,,x)+0(A%) (11)

n+1

and the right side of the differential equation has to be evaluated only once per
time step. The Landau order symbol O(A?) means that neglected terms vary
like the second or higher powers of the time step A. In the case of equation
(1), equation (11) becomes the simple expression:

S(t+A) = S@) +A{@) - Olt, @)} + O(4?) (12)

The evaluation of the right side of equation (12) to obtain S + A) is a
much simpler process than the numerical solution of the transcendental equation
(2). However, it can be seen from the test case results as shown on Fig. 2, that
the accuracy of Euler’s method is not particularly good. The results are in error
by more than 10% at the peak. However, greater accuracy can be obtained by
choosing computational steps smaller than those used to define the inflow
hydrograph (when linear interpolation might be used to give intermediate values
of the hydrograph).

As Euler’s method is so simple, and the time interval reduction such a
simple and useful artifice, this method might be the best for introducing the
subject to students; and in view of the imprecise nature of much hydrological
data, it might be the scheme favoured in practice.

There is another advantage to using smaller time steps. Not only would
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Fig. 2 Results obtained by various computation schemes for the
outflow hydrographs (theoretical inflow and outflow hydrographs
obtained from equations (7) and (10), numerical values given in

Table 1).

it give rather more accurate results, but the peak of the hydrograph would be
identified rather more accurately. Fig. 2 has been plotted using linear interpola-
tion between computational points, and shows that without a more sophisticated
means of interpolation, the peak of the hydrograph is underestimated; for this
important quantity the accuracy of the actual computational points would be
rather in vain. Using smaller computational time steps, the difference between
the maximum computational point value and the actual peak would be reduced.
A rather better method of determining the time and magnitude of the maximum
would be to use, for example, quadratic or spline interpolation.

Figure 3 shows, for various time steps, the performance of Euler’s method
and various other methods for the numerical values given in Table 1, obtained
by computing each time until # = 6000 s. Tests with N = 10, 20, 30 and 40 steps
were made. The errors plotted are the mean errors of outflow of all of the 20
points in time where a numerical value of the inflow hydrograph was specified.
It can be seen that the curve for Euler’s method is parallel to the upper dashed
line, corresponding on this log-log plot to the error varying like A, proportional
to N!. Clearly the method is behaving as a first order method, such that a
halving of the time step halves the error. This is in keeping with the local
truncation error O(A?) per time step of equation (11), as the total number of time
steps is proportional to 1/A, and hence the total error at a given time is O(A).

Runge-Kutta second order method
The next of the methods in the hierarchy of accuracy is also known by several

other names, including the "modified Euler method". It is also an explicit
method, which involves only one more function evaluation per time step, and
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gives a scheme which is of second order accuracy. The scheme is:

X, = X, + Yalk +ky) + O(A%) (13a)
where:

k, = AF(,,x,) (13b)

k, = AF(t,+A,x, +k;) (13c)

This is a second order method, as shown by the gradient of the results
on Fig. 3, where the error varies like 1/N2. On Fig. 2 the results define the
bottom edge of the thickened line containing this and all higher order results.
Clearly the method is rather more accurate than Euler’s method. What is
convenient is that the order of accuracy is not degraded if simple linear inter-
polation is used to evaluate the function F at intermediate values of ¢ and x.
The results from this method on both Figs 2 and 3 were obtained using such
linear interpolation.

Higher order Runge-Kutta Methods

These methods obtain the solution at (f + A) in terms of the solution at time
t and the evaluation of F(¢, x) at those two times and at intermediate points.
Reference can be made to most texts on numerical methods for details of the
methods. The results obtained are shown on Fig. 2, where they are indistingui-
shable from the exact expression (10), and on Fig. 3.

Figure 3 shows an interesting phenomenon, viz. that although the higher
order methods were more accurate for large time steps (small N), refining the
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time step had little effect on the achievable accuracy, and they did not act like
third and fourth order methods. The reason for this is that the differential
equation was evaluated using interpolation between discrete data points for Q
as a function of §, thereby providing a limit to the achievable accuracy.

For practical calculations there seems to be little point in using methods
of high order accuracy for reservoir routing. What is notable on Fig. 2 is the
fact that, except for Euler’s method, results obtained by all the methods
described here were satisfactory. If a smaller time step were used, even Euler’s
method would give acceptable accuracy.

Also on Fig. 3 are shown the results of the method used by Chow et al.
(1988) for a nominally third order Runge-Kutta scheme, but where linear inter-
polation in time and for the surface area function was used. It can be seen by
the gradient of the results that this was an incompatible approximation and it
is actually only a second order method. However, the results were slightly
more accurate than the second order Runge-Kutta method (the error was
halved) and this scheme might be preferred in practice.

Traditional method

This is the method based on solution of the nonlinear transcendental equation
(2). Laurenson (1986) and Pilgrim (1987) have described a number of aspects
of this method. Implementation of the traditional method is complicated, both
at an introductory level (involving the graphical or numerical solution of a
nonlinear transcendental equation at each time step), and at an advanced level,
where some complicated programming is necessary to treat pathological cases.
The accuracy of the traditional method for Yevjevich’s test problem is shown
on Fig. 3. It was, in fact, slightly more accurate than the second order Runge-
Kutta method. Over the whole range of computations its error was always close
to half that of the Runge-Kutta method. Both are second order.

There has been some controversy as to the validity of the traditional
method based on equation (2) for the case when the discharge is controlled.
Here it is shown that it is indeed a legitimate approximation to the governing
differential equation. Substituting equation (1), the § formulation of the
differential equation, into the implicit scheme (the Adams-Moulton second
order method):

X, = X, +AI2[F(t,,x,) + F(t,+A,x,, D] + O(A%) (14)

n+1
and regrouping terms gives:
I0)+I(t+ Ay +25@)/A-Q[t, S@)] = 25t +A)A+Q[t+A,St+A)] (15)

This shows that the modification of equation (2) to allow for controlled
discharge is trivial. Here, on the left, the value of Q is obtained from the
storage S using the controlled discharge characteristics at time ¢, while on the
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right in the as-yet unknown term the discharge characteristics at time ¢ + A are
used. This is what has been done in practice, but seems to have caused some
suspicion in the technical literature. Placing it in the context of differential
equation theory shows that it is a consistent second order approximation. At
worst it assumes that the outflow characteristics vary uniformly between the
two time points. It is not based on an assumption that the discharge increases
with no change in storage (¢f. Laurenson, 1986). If a gate were fully opened
or shut between two computational steps, which may well occur because the
speed of gate operation is usually faster than the rate at which water levels
fluctuate, then it might be necessary to vary the computational steps to describe
that variation adequately.

STABILITY OF SOLUTION SCHEMES

To test the performance of the various solution methods for practical problems,
they were applied to the sample problems included in several hydrology texts
and reference books, nearly all of which use the traditional § formulation. In
almost all cases they performed totally satisfactorily. There were two excep-
tions, however, where the Runge-Kutta explicit methods gave erratic results,
whereas the the traditional method performed as well as for other problems.
The examples were those of Hjelmfelt & Cassidy (1975, p. 122) and Pilgrim
(1987, p. 141). The behaviour encountered was that of instability of the explicit
numerical schemes, which was overcome by simply reducing the size of the
computational time step.

It is possible to obtain theoretical criteria for the stability of solution
methods for reservoir routing. Stability is usually guaranteed if the product of
the step size and the magnitude of the partial derivative of the right side of the
differential equation with respect to the dependent variable is limited in size.
For the general scheme dx/d¢ = F(¢, x) (equation (6)), the second order Runge-
Kutta method is stable for linear equations if;

A% <2 (16)
ox
For other schemes, the numerical value on the right side takes on other values
(see, for example, Rice, 1983, Fig. 9.8). For higher order schemes the value
is smaller and the criterion becomes more demanding.
Using the S formulation of the storage equation where the discharge is
not controlled the criterion for stability becomes:

dQ 17
AE(S) <2 17)

which can be tested before computations commence. In practice the best way
of testing stability is simply to start computing, and in the rare situation that
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results are unstable, reduce the step size and restart computation until the
instability has disappeared.

It is notable that the traditional scheme, equation (2), as used by hydro-
logists for many years with graphical or numerical methods of solution, is
unconditionally stable. This may account for its success and continued use,
despite its complexity.

There is a physical interpretation of the stability limit given by equation
(17), viz. that in practice instability will tend to occur where a large change in
discharge corresponds to a small change in volume. The sort of situation where
this might be a problem is where an outlet pipe is placed at the bottom of a
detention reservoir, where the storage volume and changes in that volume are
small. This is the case presented in Pilgrim (1987). For other types of reser-
voirs the stability problem would be expected rarely to occur, as the gradient
dQ/dS would be rather smaller. More often, the outlet level is some height
above the reservoir bottom, so that when the spillway starts to operate, storage
volume changes are very much greater, and stability is never a problem.

As suggested above, the easiest way of testing for stability is simply to
start computing, for if a scheme is unstable this quickly manifests itself through
oscillating results or numbers growing very large very quickly. If a scheme is
only marginally unstable, however, this may not be noticed. It would be
desirable always to solve a problem for at least two different time steps and to
verify that the solutions are acceptably close to each other. In all cases the use
of sufficiently smaller time steps renders the schemes stable and more accurate.

To conclude this section the question has to be posed: in view of the
desirable stability properties of the traditional method, should it not be retained
as the standard method of solution? The complexity of the method is a major
disadvantage, yet its superior stability is not so important, for simply reducing
the time step makes explicit methods stable in those rare cases where they have
problems. Solving a flood routing problem by an explicit method is usually
quite trivial in terms of computer resources, so that smaller time steps are not
a problem. Even with smaller steps it is probable that the computing resources
required are smaller than with the traditional method, which requires repeated
evaluations at each time step. It is the author’s opinion that the traditional
method should be no longer taught or implemented.

CONCLUSIONS

Use of the traditional method for reservoir routing has obscured the funda-
mental simplicity of the problem, and has required considerable attention to
details of the solution process. If, however, it is recognized that the procedure
is one of solving a differential equation, then procedures are simpler, are more
flexible and more automatic. Conclusions can be summarized as follows:

(@) Reservoir routing is simply a process of solving a differential equation,



246

(b)

©

()

)
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which can be done numerically by any one of a number of standard
methods of varying complexity and accuracy. The most elementary
methods are very simple.

Using the governing equation written in terms of the reservoir surface
elevation, A, has advantages over the traditional § formulation. It has
been shown that use of point data to relate Q and § causes the accuracy
of the governing equation and results to be highly dependent on the
accuracy of the numerical determination of the storage.

Various numerical methods have been examined and compared. It has
been concluded that simple explicit methods are to be preferred to the
traditional method. In particular, the second order Runge-Kutta method
has been found to give a good combination of ease of implementation
and acceptable accuracy. There is usually no need to use higher order
methods.

For special cases of an extreme nature, for which criteria have been
presented, explicit methods become unstable. However, they can be
made stable by reducing the computational time step, which also makes
them more accurate. At least two different time steps should be used to
provide a check on the accuracy of results.

Controlled discharges: the presentation has incorporated the case where
outflow from the reservoir may be varied by human or automatic control
by valves or spillway gates. All the methods described can be applied to
such a case, including the traditional method.

It is suggested that the traditional method involving the traditional
numerical solution of the transcendental equation (2) be not further
implemented. Indeed, there seems to be little point in presenting it in
books or lectures.
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