Simulating wave shoaling with boundary integral equations

John D. Fenton

Department of Mechanical Engineering
Monash University, Clayton, Victoria 3168

SUMMARY A numerical method is developed for the solution of wave propagation problems. Like several others, it
makes no essential analytical approximation. Unlike the others, it is simple to program and potentially rather more accu-
rate. The results presented in this paper show that it is capable of accurately modelling problems of nonlinear wave propa-
gation and shoaling and some detailed results are presented. However, in the present formulation its performance was not
as robust as would be expected from a routine tool, and more development seems necessary, for which some suggestions

are made.
1. INTRODUCTION

Numerical methods for wave propagation using integral
equations have been proposed for some years. These
almost always require the solution of the governing field
equation at each step in time, which if the fluid is assumed
incompressible and the flow irrotational, is Laplace's equa-
tion, which makes computations demanding. Usually the
solution is by means of a boundary integral equation,
either obtained using a Green's function, or using Cauchy's
integral theorem. Then, having solved for the potential
distribution around the boundary, the velocity of a point
on the boundary may be calculated, and Bernoulli's equa-
tion used to calculate the rate of change of the potential on
the boundary. These give differential equations for each
boundary point, and the solution and the wave may be
advanced in time. Usually it is not necessary to make any
essential analytical approximation, such as is otherwise
usually the case in studies of water waves.

This approach was initiated by Longuet-Higgins and
Cokelet (1) for the study of waves in deep water. Some of
the methods used a Green's function method, which set up
and solved a boundary integral equation with a logarithmic
kernel. A different approach was introduced by Vinje and
Brevig (2), who used the Cauchy integral theorem in terms
of a complex potential function as the integral equation
valid around the boundary .

A brief history of various attempts using these methods is
described by Liu et al. (3). An interesting different
approach was introduced recently by Leitao and Fernandes
(4), who took as the upper surface of the computational
domain the undisturbed water surface, solved Laplace's
equation in that region, but used a second-order Taylor
expansion on the undisturbed surface instead of applying
the exact boundary conditions on the actual surface. In this
way, their computational domain was constant, and they
only had to solve a matrix equation once, rather than at
each time step. The process of timestepping following the
evolution of the surface waves then simply involved using
the values on the undisturbed surface. However, only a
second order set of results could be obtained.

It is the impression of the author that the methods, except
for those which confine themselves to periodic waves over
a horizontal or infinitely deep bed which can then use a
very concise computational domain, (1) or (5) for
example, are still not accurate enough to be considered for
use as a reliable tool by coastal engineers.

The author (6) has developed a method for the solution of
Laplace's equation in two dimensions which has some
advantages over traditional methods: it is simpler in theory
and implementation, yet is more accurate, and of particu-
lar importance to the problem of shoaling waves, it is
computationally robust and allows the use of iterative
methods for solution. It is the aim of this paper to apply
that method to the problem of shoaling waves. In the
following sections the theory and computational methods
are presented, then application to some problems of wave
propagation and shoaling is described. It will be seen that
even the method advocated, despite its formidable accu-
racy for fixed domains, is somewhat fragile when the
domain is allowed to move, such as for a free surface
problem. Some results are presented, showing how it can
solve wave propagation accurately, but in practice it was
found to be not as robust as the author had hoped, and it
has not yet been able to simulate the overturning of a
plunging breaker. Nevertheless, as it is simpler than other
approaches, it may be preferred. Its real metier may yet
prove to be the approach of Leitao and Femandes, where a
single highly accurate solution on a fixed domain is
required.

2. THE INTEGRAL EQUATION

Consider a two-dimensional region such as that shown in
Figure 1 containing an incompressible fluid which flows
irrotationally, in which case a scalar potential function <)>
exists and satisfies Laplace's equation: V(7> = 0. A typical
boundary value problem is where the value of <[> or its
normal derivative dtydn or a combination of the two is
known at all points on the closed boundary C. One way of
doing this, in which only values on the boundary have to
be considered, is to solve the integral equation:
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Figure 1. Typical computational domain showing
important points and coordinates
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where s is an arc length co-ordinate around the contour,
%K. is the interior angle at the point m, (which if the
boundary is smooth at that point is &), r is the distance of
the general point from m, and at that point a normal and
tangential co-ordinate system (s, n) exists. If necessary, the
integrals are to be interpreted in a principal value sense.
Equation (1) is the form that has received most attention in
the literature . However, numerical approximation of the
integrals and the boundary is demanding, especially near
the singularity at m, and considerable effort has to be
given to the details of computation schemes. For example,
to approximate the integrands and the boundary by quad-
ratic variation, a great deal of complicated mathematics
has to be worked through and presented, and for higher
orders of approximation the effort would be prohibitive.

In Reference (6), a complex integral equation is derived,
from which equation (1) can be obtained. The complex
equation is, however, not singular and is easier to approxi-
mate numerically for a given level of accuracy. The
computational points may be interpolated by Fourier series
for plotting purposes, and a simple scheme is developed to
compute the weighting coefficients for a completely
general shape of figure. The theory is briefly restated here:
As ¢ is an harmonic function, another function y exists, a
conjugate harmonic function, related to ¢ by the Cauchy-
Riemann equations
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It can be shown that if these relations are satisfied, then
the complex function w= ¢+ iy, where i= /=1 , has a
unique derivative with respect to the complex variable
z=x+iy, and the Cauchy integral theorem is valid and
can be written with (w(z) —~ W(zm))/(z—zm) as integrand:
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In this equation the integrand is everywhere continuous,
even at z=z,, and its numerical approximation should be
simpler and potentially more accurate than in equation (1).
In this form it is not necessary to calculate the angle ©, at
each point. It will be shown below that using the stream
function y and equation (3) leads to a system of algebraic
equations which are all nearly diagonally dominant, unlike
equations obtained from equation (1).

3. BOUNDARY CONDITIONS

Solid Boundaries

In this paper which is primarily concerned with the shoal-
ing of waves we will not consider the problem where part
of the solid boundary might move, such as in wavemaker
problems or the generation of tsunami. On the sea bed,
assumed impermeable here, the condition that flow does
not cross the boundary is simply that, on the boundary,

y=0. 4)
Free Surface

On the free surface, denoted by y=1(x,), the governing
equations are nonlinear, partly because the location of the
free surface also appears in them. There are two equations:
one is the kinematic condition that the velocity of a
particle on the surface is equal to the fluid velocity at that
point. Thus, if x,, and y, are the coordinates of a point on
the surface, then )

dxm _9% dym _ 90
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or, using the fact that the complex conjugate of the fluid
velocity is given by the derivative dw/dz = u—iv:

d(xm = Iym) dw
g = g ©

where the real and imaginary parts provide a pair of ordi-

nary differential equations for the movement of the surface
particle.

The second free surface boundary condition .is obtained

(a) from the pressure equation (the unsteady Bemnoulli
equation):

a0 1

e +5 prem+5 |2 =0, )

where p/p is the pressure divided by the fluid density,
which is zero on the surface, ym =Mn at the surface
particle and g is the gravitational acceleration, and

(b) from the expression for the rate of change of ¢ at a
particle the material derivative:
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which, setting p =0 on the surface, combine to give
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a differential equation for ¢, at the free surface particle.
This gives us a way of calculating ¢ as time evolves so
that at any instant it is known at all points on the free
surface, while we know that y =0 on the sea bed from
equation (4). Hence we have enough boundary information
to obtain a solution of equation (3) at each time step,
namely to obtain the values of ¢ on the bottom and y on
the free surface, so that w=¢ + iy is known at all points,
dw/dz can be calculated, the solution advanced, and so on.

4. NUMERICAL SCHEME USING PERIODICITY
AROUND THE CONTOUR

A feature of boundary integral methods exploited in refer-
ence (6) is that around the boundary all variation is peri-
odic, for in a second circumnavigation of the boundary the
integrand is the same as in the first, and so on. This
suggests the use of methods that exploit periodicity to gain
handsomely in accuracy. A continuous co-ordinate j is
introduced here, which is 0 at some reference point on the
boundary, and after a complete circumnavigation of the
boundary has a value N, which will be taken to be an
integer. The integral in equation (3) can be written
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Now a numerical approximation is introduced to transform
the integral equation into an algebraic one in terms of
point values. The integral in equation (10) is replaced by
the trapezoidal rule approximation:

N w(z)—w(zm)
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where z;=z(j) and z; =dz(j)/dj, but in which after the
differentiation, j takes on only integer values. In this case
the trapezoidal rule has reduced to the simple sum as the
end contributions are from the same point, z¢ =z because
of the periodicity. This is a particularly simple scheme
when compared with some such as Gaussian formulae
which have been used to approximate boundary integrals.
Where the integrand is periodic, as it is here, the trap-
ezoidal rule is capable of very high accuracy indeed. If it
is periodic and has a continuous kth derivative, and if the
integral is over a period, then:
Constant
-

For functions that are of low degrees of continuity, where
k might be 0, 1 or 2 say, the accuracy will be comparable
to traditional low-level polynomial approximation of the
integrals, however if high degrees of continuity exist, the
method should be very accurate, as was shown in refer-

ence (6).

In the form of equation (11), the expression is not yet
useful, as the point j=m has to be considered. It is easily
shown that in this limit, the integrand (and hence the

Error < (12)

summand) becomes dw(m)/dm, and extracting this term
from the sum gives the expression with a "punctured sum”
j#Em:

N-1 W, —=Wm s
Bmy+ 3 sz =0 (13)
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form=0, 1, 2,..., N-1, and where the obvious notation
=w(j) etc. has been introduced. The notation dw(m)/dm
means differentiation with respect to the continuous vari-
able m, evaluated at integer value m. It is convenient here
to introduce the symbol Q,; for the geometric
coefficients:

!
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whose real and imaginary parts are the coefficients o,
and B,,;. Equation (13) becomes

dw N-1
S +J_=OZ; Qpi(Wj—wn) =0. (15)
, jem

It is easily shown, writing z(j) in complex polar notation
as z(j) = 2 +(j)e®?, that

amj=%§—=;aogr), and B,,,-=§;, (16a,b)

such that
d
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also able to be obtained from equation (14). These weight-
ing coefficients can be seen to be related to kernels of the
real integral equation (1). They have a relatively simple
physical significance.

One is free to use either the real or imaginary part of the
integral equation and of the sums which approximate it,
equation (13) or (15). The two parts can be extracted to
give

--(rn)+ Z [Omi(®; — Om)~Bami(¥; — Wm)] =0, (172)
J=0, jem

and

E(m“ 2 [ (Wj —¥m) +Bmi(¢; = dm)] =0. (17b)
J=0, jam

One of these equations can be used at each of the N
computational points, provided either dp/dm or dy/dm is
known that point, which can be done from the boundary
conditions as described above. Each equation is written in
terms of the 2NV values of ¢; and y; . If N of these are
known, specified as boundary conditions, then there are
enough linear algebraic equations and it should be possible
to solve for all the remaining unknowns.

It can be shown that in these equations, the dominant coef-
ficients are the sum X)), Bay, the coefficient of W in
(17a) and ¢, in (17b), and it can be shown that the



equations are nearly diagonally dominant in those quan-
tities. This is fortunate, for as equation (17a) can be used
on the free surface where d¢/dm can be evaluated and
where Y, is the unknown and (17b) on the sea bed where
dy/dm =0, and where ¢, is unknown, the system of equa-
tions is nearly diagonally dominant, which suggests a
certain computational robustness, and the possibility of
iterative solution.

5. DISTRIBUTION OF COMPUTATIONAL
POINTS

The linear algebraic equations approximating the integral
equations have been expressed relatively simply in terms
of the coordinates of the computational points z; and the
derivative around the boundary, z;‘ The accuracy of the

method depends on how continuous the latter are, and in
Reference (6) some effort was spent in ensuring continuity
across corners of the boundary. In fact it was found that
even if no special spacing was used, the accuracy was still
surprisingly high. In the original paper some effort went
into producing a system capable of exploiting fully the
potential accuracy of the method. When it was applied in
the present work to moving boundary problems the disap-
pointing result was obtained that as the boundary points
moved, the most sophisticated schemes for point spacing
became the most inappropriate, as the accuracy of the
scheme was quickly destroyed by the movement of the
points. In this work it was found that the most robust
schemes obtained using simply equally-spaced points.

6. NUMERICAL COMPUTATION
OF COEFFICIENTS

In problems of wave shoaling, the boundary of the
computational region, including the sea bed and the free
surface, is quite irregular. The periodicity around the
boundary may be exploited to give a simple scheme for
computing the necessary derivatives around the boundary.
The main problem is to compute values of the z;. Also, it
is convenient to be able to use a means of interpolation
between the computational points for plotting purposes
which has the same accuracy as the underlying numerical
method. Both can be accomplished simply and economi-
cally using Fourier approximation.

Suppose the position of each of the N boundary points z;,
i=0,1,---,N—1, is known. Consider the discrete Fourier
transform of the points:

1 N-1 .
Zn =5 X 2N = D(zj;m), (18)
=0

which is a sequence of the complex Fourier coefficients
Zm, for m=-N/2,---,+N/2. The Fourier series which
interpolates the z; is

+N2 W i
W)= 3 Zu e, (19)
m=—NI2

where the sum £ is interpreted in a trapezoidal rule
sense, with a wvalue of 1/2 multiplying the end

contributions at +N/2. For the case of integer j, this is the
inverse discrete transform, denoted by the symbol D™} :

2=D"(Zu3)), (20)
although in keeping with the approach of this paper we

have not yet adopted integer values for the j in equation
(19). It can be differentiated to give:

4 .21: +NI2 W . -zn I
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In this way, if fast Fourier transform programs are avail-
able, the z;. may be computed by taking the discrete
Fourier transform of the points z;, multiplying each coeffi-
cient by m and inverting, all of which can be done in
O(Nlog N) operations.

7. SET-UP AND SOLUTION OF SYSTEM
OF EQUATIONS

When the z; have been obtained, the coefficients

Qpj = 0y + 1By can be calculated and used in expressions
(17a) and (17b), one for each point at which an unknown
exists. As the equations are nearly diagonally dominant,
however, it should be possible to exploit the simple Gauss-
Seidel iterative procedure, particularly for timestepping
problems such as those for wave propagation, and in prac-
tice this was found to work very well indeed. The
computational effort is O(N?) per iteration, and the happy
result was found in the present work, that as all boundary
points are interpreted as Lagrangian particles, and carry
the geometry of the problem with them, then the coeffi-
cients are very slowly varying, and a forward extrapolation
of previous results gave such an accurate initial estimate
that only one iteration was usually necessary each time
step to achieve an accuracy of seven figures.

Much programming detail can be avoided if the step of
assembling into a matrix is bypassed. In this case, equa-
tions (17a) and (17b) may simply be rewritten: for points
on the free surface

N-1
—do(m)dm~ 3, (Cmi(@;=Om) — BmV))
=0, j#m

Y= — . @29
2 Bu
J=0,j#m
and for points on the sea bed

N-1
dy(m)ldm +j=02_ (©wf(Y; = ¥m) + Bmid))
om= o . (22v)
2 Bw

0. jem

In practice, a procedure of over-relaxation can be adopted
to give faster convergence. It was found convenient in the
present work where the coefficients changed slowly, not to
store all the coefficients 0., eic., as this requires storage
of O(N?), but to generate the coefficients necessary for
each equation every time it had to be evaluated such that



the storage was O(N), and large numbers of points could
be used. Overall, the implementation of the scheme in this
iterative form was particularly simple and rapid.

8. RESULTS

The first test of the method was on the steady propagation
of a wave. A test wave was used of height 25% of the
mean depth and a length 20 times that of the depth. The
initial conditions were computed using the accurate
numerical method described in reference (7), and the wave
was then placed in a computational "tank" twice its length,
so that what was being simulated was the propagation of a
solitary wave. Results are shown in Figure 2.

It seems that the method is indeed capable of accurately

Figure 2. Results from the present method for the propa-
gation of a steady wave of translation.

describing the propagation of a steady wave of translation
with practically no distortion as it propagates, giving some
confidence for its accuracy in other applications. There is
a slight dispersive tail being generated as the wave propa-
gates, although that may be due to the artifice of joining a
steady wave up to an undisturbed section in a rectangular
box. The computational resources required to obtain these
results were demanding, however: a total of 224 boundary
points were used: 104 on the free surface and 40 on each
of the solid boundaries, left, right and bottom. A computa-
tional time step of 0.01 was used (dimensionless with
respect to depth and gravitational acceleration). The figure
shows the results from every 50th step, with a total of
some 2000 steps, taking about an hour on a personal
computer. It is an unfortunate characteristic of the present
method at this stage of development, that as equally-
spaced points were necessary it did seem to need quite
large numbers of points on the sides, even though the
water is shallow. That is because of the global or Fourier
nature of the present method - even to describe the undis-
turbed rectangular tank to that accuracy, it would also take
that number of points. The convenience of the Fourier
method does seem to come at some cost, although plainly
it is very accurate indeed.

What was surprising and disappointing to the author was
the fact that if the wave were allowed to propagate until it
slammed up against the wall on the right side, computa-
tions became unstable and no reliable results could be
obtained. This may be an artefact of the computer
program, as the high accuracy of the method should carry
over even to the wave reflection problem.
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Figure 3. Results from the present method for the propa-
gation of a wave over a shelf of depth 50%.

Figure 3 shows the results for a rather more interesting
problem, where the same wave of Figure 2, of height 25%
of the depth and a length 20 times the depth was allowed
to propagate across a shelf, which shoaled to half the depth
in a distance of roughly the horizontal length scale of the
wave.

The results show some of the interesting phenomena asso-
ciated with this nonlinear problem, although they are
rather confused on the left side where the small waves
generated by the interaction with the shelf have travelled
to the left wall and been reflected there, obscuring the
results. It is interesting that little seems to happen to the
wave until it has travelled almost right across the shelf of
about its own effective wavelength. Then, quite quickly
the wave starts to grow in height, now travelling over
water of constant shallower depth, and the large feature of
a shelf develops behind the wave, which seems to be in the
process of separating from the main wave and possibly
becoming part of an oscillatory tail. The actual height of
the wave achieved is about 35% greater than the original,
rather more than the 19% which would be predicted by
Green's Law, Massel (8), based on all variation being long.
However, the main body of the wave now seems to be
propagating without much change in this new depth.

Another run was made, whose results are shown in Figure
4, where the same wave was used, but where the sea bed
came up from a dimensionless depth of 1 to 0.25, so that
the effect on the wave should be so greater, and it was
hoped the method might describe overturning and



Figure 4. Results from the present method for the propa-
gation of a wave over a shelf of depth 25%.

plunging of the wave. It can be seen that
qualitatively, the results are similar to Figure 2.
However, the results for the present
computational method are disappointing, as it
seems to have been wunable, with the
computational parameters used, to resolve the
crest of the wave or to describe latter stages of its
evolution. Another shelf was obtained, but in
this case the wave crest continued to grow in
height and sharpness as shown, but where there
was insufficient computational resolution to
describe the growth accurately or the probable
overturning and plunging of the wave crest.

9. CONCLUSIONS

A numerical method has been developed for the
numerical solution of Laplace's equation, which
has been shown to have a number of desirable
features and advantages over traditional methods
for the accurate solution of potential problems.
The method has some features which suggest
that it might be a powerful tool in the numerical
simulation of wave shoaling problems, as it
handles irregular geometries easily, and has the
potential to be considerably more accurate than
other methods, and is computationally more
robust. It has a feature which also suggests itself
for unsteady wave propagation problems, that
the equations are nearly diagonally dominant,
and simple Gauss-Seidel iteration with over-
relaxation could be used, which worked very
efficiently, as the converged solution at one time
provided an accurate initial solution for the next
time step.

Some simple problems of wave propagation were
solved, and the method was found to be powerful
for some, and to provide interesting results,
where a wave of moderate amplitude encounters



a realistically varying seabed, the method was
found to be accurate, possibly more so than other
boundary integral methods. The problem of a
shelf with a vertical face, or other sub-surface
geometry would present no problems.



However for some problems it was found to be
not as robust as had been hoped. For example, it
was found that the precise and accurate point
placement necessary for very high accuracy
could not be guaranteed for time stepping
problems, and the simplest equally-spaced
method was used.

The method was found not to be able to handle
the problem of wave reflection from a wall,
although that may be a difficulty with the
computer programming rather than the method.

Also, at the present stage of development and
computer resources, it was not able to describe
the overturning and plunging of a wave
where the bottom shoaled dramatically.

As the method does have the ability to solve
Laplace's equation to exceptionally high
accuracy on a fixed domain, its most
appropriate application might be to methods
such as those of Leitao and Fernandes (4) which
use such a domain with approximate boundary
conditions.
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