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SUMMARY A numerical method is developed for the solution of wave propagation problems. Like several others, it 
makes no essential analytical approximation. Unlike the others, it is simple to program and potentially rather more accu-
rate. The results presented in this paper show that it is capable of accurately modelling problems of nonlinear wave propa-
gation and shoaling and some detailed results are presented. However, in the present formulation its performance was not 
as robust as would be expected from a routine tool, and more development seems necessary, for which some suggestions 
are made. 

1. INTRODUCTION 

Numerical methods for wave propagation using integral 
equations have been proposed for some years. These 
almost always require the solution of the governing field 
equation at each step in time, which if the fluid is assumed 
incompressible and the flow irrotational, is Laplace's equa-
tion, which makes computations demanding. Usually the 
solution is by means of a boundary integral equation, 
either obtained using a Green's function, or using Cauchy's 
integral theorem. Then, having solved for the potential 
distribution around the boundary, the velocity of a point 
on the boundary may be calculated, and Bernoulli's equa-
tion used to calculate the rate of change of the potential on 
the boundary. These give differential equations for each 
boundary point, and the solution and the wave may be 
advanced in time. Usually it is not necessary to make any 
essential analytical approximation, such as is otherwise 
usually the case in studies of water waves. 

This approach was initiated by Longuet-Higgins and 
Cokelet (1) for the study of waves in deep water. Some of 
the methods used a Green's function method, which set up 
and solved a boundary integral equation with a logarithmic 
kernel. A different approach was introduced by Vinje and 
Brevig (2), who used the Cauchy integral theorem in terms 
of a complex potential function as the integral equation 
valid around the boundary . 

A brief history of various attempts using these methods is 
described by Liu et al. (3). An interesting different 
approach was introduced recently by Leitao and Fernandes 
(4), who took as the upper surface of the computational 
domain the undisturbed water surface, solved Laplace's 
equation in that region, but used a second-order Taylor 
expansion on the undisturbed surface instead of applying 
the exact boundary conditions on the actual surface. In this 
way, their computational domain was constant, and they 
only had to solve a matrix equation once, rather than at 
each time step. The process of timestepping following the 
evolution of the surface waves then simply involved using 
the values on the undisturbed surface. However, only a 
second order set of results could be obtained. 

It is the impression of the author that the methods, except 
for those which confine themselves to periodic waves over 
a horizontal or infinitely deep bed which can then use a 
very concise computational domain, (1) or (5) for 
example, are still not accurate enough to be considered for 
use as a reliable tool by coastal engineers. 

The author (6) has developed a method for the solution of 
Laplace's equation in two dimensions which has some 
advantages over traditional methods: it is simpler in theory 
and implementation, yet is more accurate, and of particu-
lar importance to the problem of shoaling waves, it is 
computationally robust and allows the use of iterative 
methods for solution. It is the aim of this paper to apply 
that method to the problem of shoaling waves. In the 
following sections the theory and computational methods 
are presented, then application to some problems of wave 
propagation and shoaling is described. It will be seen that 
even the method advocated, despite its formidable accu-
racy for fixed domains, is somewhat fragile when the 
domain is allowed to move, such as for a free surface 
problem. Some results are presented, showing how it can 
solve wave propagation accurately, but in practice it was 
found to be not as robust as the author had hoped, and it 
has not yet been able to simulate the overturning of a 
plunging breaker. Nevertheless, as it is simpler than other 
approaches, it may be preferred. Its real metier may yet 
prove to be the approach of Leitao and Femandes, where a 
single highly accurate solution on a fixed domain is 
required. 

2. THE INTEGRAL EQUATION 

Consider a two-dimensional region such as that shown in 
Figure 1 containing an incompressible fluid which flows 
irrotationally, in which case a scalar potential function <)> 
exists and satisfies Laplace's equation: V2(j> = 0. A typical 
boundary value problem is where the value of <|> or its 
normal derivative dtydn or a combination of the two is 
known at all points on the closed boundary C. One way of 
doing this, in which only values on the boundary have to 
be considered, is to solve the integral equation: 

admin
Text Box
Back to
Papers



 



 
4. NUMERICAL SCHEME USING PERIODICITY 

AROUND THE CONTOUR 



5. DISTRIBUTION OF COMPUTATIONAL 
POINTS 

6. NUMERICAL COMPUTATION 
OF COEFFICIENTS 

7. SET-UP AND SOLUTION OF SYSTEM 
OF EQUATIONS 



the storage was 0(N), and large numbers of points could 
be used. Overall, the implementation of the scheme in this 
iterative form was particularly simple and rapid. 

8. RESULTS 

The first test of the method was on the steady propagation 
of a wave. A test wave was used of height 25% of the 
mean depth and a length 20 times that of the depth. The 
initial conditions were computed using the accurate 
numerical method described in reference (7), and the wave 
was then placed in a computational "tank" twice its length, 
so that what was being simulated was the propagation of a 
solitary wave. Results are shown in Figure 2. 

It seems that the method is indeed capable of accurately 

describing the propagation of a steady wave of translation 
with practically no distortion as it propagates, giving some 
confidence for its accuracy in other applications. There is 
a slight dispersive tail being generated as the wave propa-
gates, although that may be due to the artifice of joining a 
steady wave up to an undisturbed section in a rectangular 
box. The computational resources required to obtain these 
results were demanding, however: a total of 224 boundary 
points were used: 104 on the free surface and 40 on each 
of the solid boundaries, left, right and bottom. A computa-
tional time step of 0.01 was used (dimensionless with 
respect to depth and gravitational acceleration). The figure 
shows the results from every 50th step, with a total of 
some 2000 steps, taking about an hour on a personal 
computer. It is an unfortunate characteristic of the present 
method at this stage of development, that as equally-
spaced points were necessary it did seem to need quite 
large numbers of points on the sides, even though the 
water is shallow. That is because of the global or Fourier 
nature of the present method - even to describe the undis-
turbed rectangular tank to that accuracy, it would also take 
that number of points. The convenience of the Fourier 
method does seem to come at some cost, although plainly 
it is very accurate indeed. 

What was surprising and disappointing to the author was 
the fact that if the wave were allowed to propagate until it 
slammed up against the wall on the right side, computa-
tions became unstable and no reliable results could be 
obtained. This may be an artefact of the computer 
program, as the high accuracy of the method should carry 
over even to the wave reflection problem. 

The results show some of the interesting phenomena asso-
ciated with this nonlinear problem, although they are 
rather confused on the left side where the small waves 
generated by the interaction with the shelf have travelled 
to the left wall and been reflected there, obscuring the 
results. It is interesting that little seems to happen to the 
wave until it has travelled almost right across the shelf of 
about its own effective wavelength. Then, quite quickly 
the wave starts to grow in height, now travelling over 
water of constant shallower depth, and the large feature of 
a shelf develops behind the wave, which seems to be in the 
process of separating from the main wave and possibly 
becoming part of an oscillatory tail. The actual height of 
the wave achieved is about 35% greater than the original, 
rather more than the 19% which would be predicted by 
Green's Law, Massel (8), based on all variation being long. 
However, the main body of the wave now seems to be 
propagating without much change in this new depth. 

Another run was made, whose results are shown in Figure 
4, where the same wave was used, but where the sea bed 
came up from a dimensionless depth of 1 to 0.25, so that 
the effect on the wave should be so greater, and it was 
hoped   the   method   might   describe   overturning   and 



plunging of the wave. It can be seen that 
qualitatively, the results are similar to Figure 2. 
However, the results for the present 
computational method are disappointing, as it 
seems to have been unable, with the 
computational parameters used, to resolve the 
crest of the wave or to describe latter stages of its 
evolution. Another shelf was obtained, but in 
this case the wave crest continued to grow in 
height and sharpness as shown, but where there 
was insufficient computational resolution to 
describe the growth accurately or the probable 
overturning and plunging of the wave crest. 

9. CONCLUSIONS 

A numerical method has been developed for the 
numerical solution of Laplace's equation, which 
has been shown to have a number of desirable 
features and advantages over traditional methods 
for the accurate solution of potential problems. 
The method has some features which suggest 
that it might be a powerful tool in the numerical 
simulation of wave shoaling problems, as it 
handles irregular geometries easily, and has the 
potential to be considerably more accurate than 
other methods, and is computationally more 
robust. It has a feature which also suggests itself 
for unsteady wave propagation problems, that 
the equations are nearly diagonally dominant, 
and simple Gauss-Seidel iteration with over-
relaxation could be used, which worked very 
efficiently, as the converged solution at one time 
provided an accurate initial solution for the next 
time step. 

Some simple problems of wave propagation were 
solved, and the method was found to be powerful 
for some, and to provide interesting results, 
where a wave of moderate amplitude encounters 

 



a realistically varying seabed, the method was 
found to be accurate, possibly more so than other 
boundary integral methods. The problem of a 
shelf with a vertical face, or other sub-surface 
geometry would present no problems. 



However for some problems it was found to be 
not as robust as had been hoped. For example, it 
was found that the precise and accurate point 
placement necessary for very high accuracy 
could not be guaranteed for time stepping 
problems, and the simplest equally-spaced 
method was used. 

The method was found not to be able to handle 
the problem of wave reflection from a wall, 
although that may be a difficulty with the 
computer programming rather than the method. 

Also, at the present stage of development and 
computer resources, it was not able to describe 
the overturning and plunging of a wave 
where the bottom shoaled dramatically. 

As the method does have the ability to solve 
Laplace's equation to exceptionally high 
accuracy on a fixed domain, its most 
appropriate application might be to methods 
such as those of Leitao and Fernandes (4) which 
use such a domain with approximate boundary 
conditions. 
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