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ABSTRACT 

The conventional method of solving the problem of the scattering of waves by a large 
structure of arbitrary shape and calculating the forces induced is to solve an integral equa
tion over the surface of the body. This paper describes a more direct approach, in which a 
series solution for the potential due to incident and scattered waves is written, and coeffi
cients in the series found by satisfying simultaneously the boundary condition at a number 
of points on the body. Results are obtained for stmctures which are axisymmetric about a 
vertical axis. These suggest that the method has some limitations and some exciting possi
bilities which make it worth developing for more general problems. 

INTRODUCTION 

Offshore shuctures with dimensions which are a significant fraction of the wavelength 
scatter the incident waves, and a significant component of the force on the structure is due 
to that diffraction of the waves. For structures which have relatively simple geometry such 
as truncated circular cylinders it is possible to develop analytical methods, or methods 
which make extensive use of series of known solutions, each term of which satisfies the 
field equation. Variational techniques or Galerkin techniques may be used (see, for 
example, Black, 1975), however these methods have been limited to simple geometries. 
For bodies of arbitrary geometry, methods based on boundary integral equations have been 
the usual method of solution (Sarpkaya and Isaacson, 1981 ), using a time dependent 
Green's function, which contains an infinite series of Bessel functions, and then integrating 
this Green's function over the surface with an unknown potential or source sh·ength to give 
the integral equation. For bodies which are axisymmetric, the problem can be decomposed 
into Fourier modes and each solved separately. The author (Fenton, 1978) showed how the 
convergence of the series could be enhanced if the singularities in the Green's function 
were removed. The result was a very complicated function indeed, and Isaacson (1982) 
showed that there were some mathematical and typographical eiTors in that paper. 
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This paper is an initial attempt to develop a method for general bodies which is simpler 
than integral equation methods, because, like the variational and Galerkin methods, it 
assumes a solution which satisfies the field equation and the surface boundary condition, 
and the problem remains simply to find the coefficients in the series by satisfying the 
boundary condition on the body at a sufficient number of points. The only numerical 
approximation of the method is in the truncation of the series of solutions. Initially only 
bodies which occupy the entire depth of the water can be treated, however in further work 
a more general method will be developed. The method is further developed for axisym
metric structures and some problems solved. It is simple to implement, although the equa
tions obtained are not as robust as those based on integral equations. However, the numeri
cal properties of the system of equations can be considerably improved by performing a 
discrete numerical transform. For practical problems, the nature of the approximation of 
the present method may have some advantages, as it somehow mimics the nature of the 
diffraction process, that higher order terms are relatively unimportant, such that the wave 
may not "see" the fine details of a structure. 

Results which are presented show that the method in its present form is capable of high 
accuracy, but for difficult geometries it may be better to use a different set of basis func
tions. In its present stage of development, the method has some limitations and some excit
ing possibilities, including extension to nonlinear problems. 

FORMULATION 

Consider the incident wave field 

<I>= 91(~Cicrt) 

where <I> is the velocity potential such that the velocity u = V<I>, 91() shows that the real 
part is to be taken, ~ = ~i + ~s, the complex potential which is the sum of the incident and 
scattered wave fields respectively, a= 2n/T is the angular frequency and Tis the wave 
period, and t is time. We assume that the incident potential due to waves of wavenumber 
k = 2nl L, where L is the wavelength, and height His 

~i = -igH coshk(z+d) eikx 

2a coshkd ' 

where i = H , g is gravitational acceleration, and x is a cartesian coordinate axis in the 
direction of the waves propagation, z is vertically upwards with origin at the mean water 
level, and dis the water depth. The expression can be written 

-igH cosh k(z + d) ~ 
~i = -2- hkd £.J f3mJm(kr) cosm8, 

CT COS m=O 

where Jm() is a Bessel function of the first kind, (Abramowitz and Stegun, 1965), f3 0 = 1, 
and f3111 = 2i111 for m;:::: 1. The polar coordinates (r, 8) have origin at the cylinder axis and 
the x axis respectively. This f01mulation follows that given, for example, in Sarpkaya and 
Isaacson (1981) or Isaacson (1982). 

In this work we will be considering structures which occupy the whole of the vertical axis 
below the surface. Hence we assume a fo1m for the scattered wave of 
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-igH ~ ( coshk(z+d) ~ ) 
<l>s = -2- £..J cos me amo hkd Hm(kr) + £..J amj COSKj(z+d) Km(Kjr) ' 

O" m=O COS j=l 

where the am.i for;, m = 0, ... , oo are coefficients to be determined, the Km() are modified 
Bessel functions, which go to infinity as r ~ 0, hence they are ruled out locally if the body 
does not occupy all of the sub-surface vertical axis. The Hm() are Hankel functions, also 
singular at the origin, and the Kj are solutions of the linear dispersion relation: 

cr2 = gk tanh kd = - gK.j tan K.id. 

In practice it is necessary to solve this equation numerically for sufficient Kj, i = 1, ... , for 
which McKee ( 1988) has presented a simple and accurate method. 

The problem is now to satisfy the boundary condition at points on the body, that the veloc
ity normal to the structure Un is zero, that is 

Un= Urnr + Uon0 + Uznz = 0, 

where we have used cylindrical coordinates in which nr, n0, n 2 are the components of the 
unit normal vector at a point and the three components of velocity are 

ap 18c!> ap 
u,. = or' U9 = r ()8' Uz = OZ. 

Hence, the velocity components of the incident wave (ui,r,Ui,z,Ui,o) are 

_ -igH coshk(z+d) ~ 1 • 
Ui,r - - 2-k hkd £..J ~mJ~1 (la) cosm8, 

O" COS m=O 
igH 1 coshk(z+d) ~ . 

Ui,8 = -2 r hkd £..J m~,,,Jm(kr) smm8, 
O" COS m=O 

-igH sinh k(z + d) ~ 
Ui,z = -2-k hlid £..J ~mJm(kr) cosm8. 

O" COS C m=O 

The components of velocity of the scattered wave (us,r, Us,z, Us,o) are: 

_ -igH ~ ( coshk(z+d) 1 ~ 1 ) 
Us,r - -

2
- £..J cosm8 amok hkd H1n(kr)+ £..J amjKj cosKj(z+d) Km(K.ir) , 

O" m=O COS j=l 

igH 1 ~ . ( coshk(z+d) ~ ) 
Us,8 = -2 r £..J m smme amo hkd Hm(kr) + £..J amj COSKj(z+d) Km(Kjr) ' 

O" m=O COS j=l 

-igH ~ ( sinhk(z+d) ~ . ) 
Us,z = -2- £..J cosm8 amok hkd Hm(kr) - £..J amjKj SIIlKj(z+d) Km(Kjr) . 

O" m=O COS j=I 

Satisfying the boundary condition on the cylinder gives the equation, after dropping 
common factors and multiplying by d to make it non-dimensional: 

nr( f cosm8(kd cosh~z;;d) (f3mJ~1 (kr) + amoH~(kr)) + f am; K;d COS K;(z + d) K~(K;r))) 
m=O COS ;=I 

- n~d(f m sinme(cosh~zk:d) (fJn.Jm(kr) +a mo Hm(kr)) + f am; cosKJ(z+d) Km(K1r))) 
~ ~ ~ 

+nz(f cosme(kd sinhi:k:d) (fJmJm(kr) +amo Hm(kr)) - f am} Kjd sin Kj(Z +d) Km(KJr))) = 0, 
m=O COS ;=I 
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in which the co-ordinates (r, 8, z) are not independent but are such that they correspond to 
a point on the surface of the body. This equation for that point on the body involves all the 
unknown amJ. To solve for those coefficients we have to consider a sufficient number of 
such points, giving a linear system of equations. 

EQUATIONS FOR AXISYMMETRIC BODIES 

In this work we further limit ourselves to bodies which are axisymmetric about the vertical 
axis, such that ne = 0, and all the geometric quantities r, z, nr, and n2 are independent of 8 
such that we can satisfy each term in min the Fourier series separately, and so taking and 
combining the coefficients of cos me we have the equation: 

nr(kdcoshk~zk~d) (f3 111 J~(kr) + a1110H~(kr)) + ~ amJKJd cosKJ{z+d)K~(K1r)) 
cos ;=l 

+n2 (kd sinh~k:d) (f3mJm(kr) +amoHm(kr)) - ~ am1K1dsinKJ(z+d) Km(K1r)) = 0, 
cos ;=l 

for each m = 0, 1, .... Rearranging, the equation to be satisfied for each m is 

( 
cosh k(z + d) / sinh k(z + d) ) 

a111okd nr coshkd H~1(kr)+nz coshkd Hm(kr) 

N-1 

+ L am1K1d(nr COSKJ{z+d)K~,(K1r)- nz sin KJ{z+d)Km(K1r)) 
j=l 

_ ( coshk(z+d) / sinhk(z+d) ) 
- -f3"Jrd nr coshkd J~,(kr) +nz coshkd Jm(kr) ' (A) 

where, for computational purposes, the summation over j has been truncated at N-1 rather 
than infinity. The right side of the equation can be evaluated for any point on the body. 
The left side, for each value of m, contains a total of N unknowns, the am1 for 
i = 0, ... , N - 1, for which the equations must be solved simultaneously. 

Writing equation (A) at M separate points, (ri,zi), i=O, ... ,M-1, where the integer 
symbol i should not be confused with the same symbol for H , the system can be written 
as the complex matrix equation 

[A!i] a= b, 

where the elements of the Mx N matrix Ay are given by: 

A _,Td( (")coshk(zi+d) '(,~·) (")sinhk(zi+d) (kr)) d 
iO - 1\,1 nr l coshkd H~n l\f i + nz l coshkd Hm i , an 

(B) 

Ay = K1d (nr(i) cos KJ{z1 + d)K~1 (K1r1)- nz(i) sin Kj(Zt + d)Km(K1r1)), for i = 1, .. . N- 1, 

for i = 0, .. . M- 1. The N-vector of unknowns is a= [a mo am1 ... a111,N-d T, and the M-vec
tor of right hand sides is b = [b 1], where 

_ ( . coshk(zi + d) / sinhk(zi + d) ) 
bi - -f3111kd n,.(1) coshkd Jm(krt) +nz coshkd Jm(kri) . 
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COMPUTATIONAL CONSIDERATIONS 

The matrix is not dominated by diagonal terms, unlike those equations obtained from 
boundary integral equations, where numerical solution seems to present no real problems. 
In fact, the KmO show exponential decay for large values of the argument, and it is poss
ible that the magnitudes of the coefficients in the present theory vary by orders of magni
tude, which can render the matrix ill-conditioned. 

Fortunately modem methods of solution can handle systems of equations which are poorly 
conditioned. A good example is the Singular Value Decomposition method (Press et al., 
1992) which almost always provides a useful numerical answer, and is particularly helpful 
in providing the least-squares solution to an over-determined set of linear equations. In the 
first development of this work an equation was written for a significantly larger number of 
boundary points than the number of coefficients available, and that system was solved in a 
best (least squares) sense by the Singular Value Decomposition program provided by Press 
et al .. This was found to not as computationally robust as would be necessary in practice. 

An alternative approach is suggested by previous work in water wave theory, which is the 
use of a numerical integral transform. It is known that the set of functions 
{coshk(z+d),cosxj(z+d)forj=O, ... ,N-1} is orthogonal when integrated in the verti
cal, using the boundary condition on the bottom and the linear dispersion relation on the 
surface, such that if any two different functions are integrated, the result is zero. This 
suggests that in the present work, a convenient trick might be to use a numerical discrete 
transform of the system of equations, even if the computational points (ri,zi) are not in a 
vertical line, in some rough way to mimic the effects of a full integral transf01m in a verti
cal line. This may give a more robust system of equations. 

This transform can be represented as premultiplying each side of the matrix equation (B) 
by the N x M matrix T, where 

I coshk(zo+d) coshk(z1+d) 

2 coshkd coshkd 

tcosx1(zo +d) cosx1(z1 +d) 

tcosx2(zo +d) 
T= 

tcoSKN-1(ZM-l +d) 

The factor of 112 in the first column, associated with point zo, is to mimic the act of 
integration by representing the sum as a trapezoidal sum. The same factor multiplies the 
last column. Instead of the over-determined M x N system to be solved in a least squares 
sense, the result is a smaller N x N system in which it is required to satisfy all the boundary 
condition at all the points, but combined linearly. 

In practice it was found that this procedure did not work particularly effectively. It was 
found, however, that if the Bessel functions were also included in the numerical transform, 
mimicking a Galerkin approach, the procedure was very much improved, and the conver
gence of the solution was much more rapid. The premultiplying matrix used was 
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T= 

1 coshk(z0+d) J (kr ) 
2 coshkd m O 

coshk(z1+d) J (kr ) 
coshkd 111 1 

kcosx1(zo +d)Km(K1ro) COSK1 (z1 + d)Km(K1r1) 

kcosx2(zo +d)Km(K2ro) 

All results presented in this paper are for the case where the system of equations has been 
numerically transformed by premultiplication of both sides and the SVD algorithm used. 

CALCULATION OF BODY FORCES 

From irrotational theory, the expression for the pressure pat any point in the fluid is 

P =-p(gz+ a:)' 
(Sarpkaya and Isaacson, 1981). The force on the body Fis given by 

F=-fpndS, 
s 

where n is a unit vector normal to the local body surface and directed into the fluid, and dS 
is an element of surface area of the body. The moment on the body Mis given by 

M = -f pr x n dS, 
s 

where r is the vector from the point about which the moment is desired. Here we consider 
only the wave-induced loading by ignoring the hydrostatic component of the pressure. We 
introduce a set ofunit vectors (i,j,k) in the (x,y,z) coordinate directions respectively, such 
that 

n =in,. cos8 + j n,. sine+ knz, 

and use dS = rd8 ds, where ds is an element of arc length of the body of revolution in the 
(r, z) plane. Substituting the equations necessary and performing the integration with 
respect to 8, all other contributions from the Fourier series other than the zeroth and the 
first disappear, giving the result 

F(t) = in(-rcpgHe-iatf c (i k<1> 1 (r(s),z(s)) n,.(s) + k<l>o(r(s),z(s)) nz(s)) r(s) ds), 

where the domain of integration is the wetted arc of the body in the (r, z) plane, and where 
the coefficients <l>o and <I> 1 are dimensionless coefficients in the series for <I>: 

-igH 00 

<I>= -
2
- L <l>m(r,z) cosm8 , 

Q' m=O 

such that 
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This shows the fortunate result that to obtain the force on a body we need only solve two 
problems, for m = 0 and m = 1 , each involving N + 1 unknowns. This is enough also to 
obtain the moment about the base, for similar operations to that for the force give 

M(t) = m(-npgHe-icrtf c j t<t> 1 (r(s), z(s)) (r(s)nz(s) - z(s) n,.(s))r(s) ds) . 

RESULTS 

Vertical circular cylinder 

In the case where the body is a vertical cylinder of radius a, the solution of (A) is 

Q J~(ka) d 0 _.. 11 · 0 
Gmo = -1-1m H~(ka) an Gmj = ior a J > , 

for all m, giving the well-known solution of MacCamy and Fuchs (1954). This was 
programmed on a computer and the matrix problem solved numerically for various values 
of N. In each case the double precision computer program obtained all the coefficients and 
the forces correct to more than six figures of accuracy. 

Frustrum of cone 

A simple geometry is that described by Sarpkaya and Isaacson (1981, p464) and Isaacson 
( 1982, p 192), which is a conical structure extending through the water surface. Results for 
the forces are shown in Figure 1. If the results were to be compared with graphs shown in 
the two references cited here, it can be seen that the results agree closely. 

It was found for this case of a bulk body with no appurtenances or fine structural detail 
that very low levels of spectral approximation (few terms in the series) can give a good 
engineering approximation to the force for both the raw overdetermined set of equations 
and the transformed equations. However, as the number of terms in the series was 
increased beyond about half the number of boundary condition points the behaviour of the 
spectral method without the transform of the system of equations was quite unreliable, and 
apparent convergence could be reached to values considerably in etTor. The transformed 
system of equations was very robust indeed, and its convergence was very rapid and satis
factory. The author has been surprised how few terms in the series it is necessary to 
describe the scattering problem for such bodies to acceptable accuracy. 

Compound cylinder 

A different picture emerges if the compound cylinders shown in Figure 2 are studied. The 
words "square" and "quadrant" refer to the shape in section. Rotating about the axis of 
symmetry gives a cylinder and hemisphere respectively. It was found that the present 
method did not perform as well in some of these cases. Here the flow around the bodies is 
complicated, partly by the tower on top of the base having a different length scale from 
that of the base, which requires more spectral terms to handle it, and partly by the sharp 
corner in the flow, as shown in Figures 2(a) and (b), which according to irrotational flow 
theory has a singularity there. The author presumes that boundary integral methods make 
no special allowance for such singularities. 
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Results for the horizontal force are presented in Figure 3. The method was quite satisfac
tory for (a), where the ratio of tower radius to base radius was 1/2, but for (b ), with a value 
of 1/4, the convergence of the spectral method was not as good, as can be seen in Figure 3, 
requiring more terms to describe the scattering due to the base and that due to the tower, 
while making use of the KmO Bessel functions which go to infinity at the origin. If the 
comer of the base was rounded as in Figure 2(c), the flow singularity no longer existed, 
and the method worked much better. A more extreme case is that of the smooth hemi
spherical base in ( d), where very few terms were needed to describe the flow. It is interest
ing that avoiding a bluff front on the body seems to reduce the force on it considerably, 
which seems obvious but which the author has not seen discussed. 

Finally, Figure 4 shows the flow field around two of the structures, and how the spectral 
method makes detailed flow computations relatively simple. Examination of (a) shows that 
the method is not very good at satisfying the boundary condition near the sharp comer, but 
then neither would the non-separated irrotational assumption be valid in this region. 
Neither, one must say, would the wave field be too bothered about the details of such a 
fine structure below the surface. In a sense, the present method approximates the problem 
in a similar way to that of the waves, that fine subsurface structural details play no great 
role in determining the loading. In the case of the hemisphere in Figure 2( d), Figure 4(b) 
shows that the streamlined shape allows fluid to pass over the structure at some speed, so 
that stagnation pressure effects, and force, are smaller. The lack of a singularity meant that 
the present spectral method performed very well, with few te1ms in the series. 
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Figure 1: Forces on surface-piercing cone with base radius aid= 1.0, 1.5 and 2.0, for a 
cone slope of 60°. Horizontal force plotted is FxlpgHa 2 , vertical force is Fz/pgHa 2 , and 

moment about base is My!pgHa 3 • 

(a) 

Square 
b/a=l/2 

(b) 

Square 
b/a=l/4 

(c) 

Rounded 
b/a=l/4 

(d) 

Quadrant 
b/a=l/4 

Figure 2: Compound tower strnctures studied numerically. Height and radius 
of the central base was half the water depth. 
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Figure 3: Results for horizontal force FxlpgHa 2 on compound tower structures 
of base radius a and tower radius b 
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Figure 4: Velocity fields due to them= 0 component in the vertical plane ahead 
of two of the compound towers. (a) the pedestal square in section, bla = 314, 

(b) the quadrant section, b/a = 1/4. 
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