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A Numerical Cnoidal Theory for Steady Water Waves
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Department of Mechanical Engineering, Monash University,
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Summary: A method is presented for the numerical solution of the full nonlinear problem of waves propagating steadily over a
flat bed. In recent years if high accuracy has been required the problem has been solved by methods involving Fourier approx-
imation. For very long waves, such Fourier methods become inefficient. This paper introduces a similar numerical method, but
where approximation is in terms of elliptic en functions rather than trigonometric functions, as suggested by conventional cnoi-
dal theory. Results are presented which show that the method is accurate for waves longer than some eight times the water depth,
and treats very long waves apparently without difficulty. As the theoretical highest waves are approached, the accuracy
decreases to an approximate engineering accuracy. However this limit is unlikely to be reached in practice, and the method
should provide an accurate and convenient method for all practically-possible long waves and, with some more development

work, possibly short ones as well.
1. INTRODUCTION

A convenient wave model for many applications in coastal
and ocean engineering is that of a periodic wave train propa-
gating steadily without change of form in water of constant
depth. There are three main approaches to solving this prob-
lem accurately. The first is to use a Stokes theory, which is
based on Fourier representation of the wave, but where the
coefficients are found by series expansions in terms of the
ratio of wave height to length. To lowest order this yields
linear wave theory. It has been shown ([1]) that results from
these are of surprisingly high accuracy provided the waves
are not too long relative to the depth. The second approach,
more suited to shallow water, is to use a cnoidal theory,
where the name comes from the Jacobian elliptic en func-
tions which are used, and is based on an assumption that the
wave motion is long relative to the depth,. The approach of
conventional cnoidal theory is to express the expansions in
terms of the ratio of wave height to water depth. Results for
fluid velocity have been shown to be erratic, ([2]). In [1] it
has, however, been shown that results from cnoidal theory
are also of surprisingly high accuracy if, instead of being
converted to series in terms of wave height to depth, the
series are expressed in terms of shallowness, the ratio of
water depth to wave length. However, for very high waves
and for shorter waves, even the modified cnoidal theory
becomes inaccurate.

For reliable and highly accurate solutions, numerical
solution of the resulting nonlinear system of equations has
become the preferred method of solution. To date, these
methods have used Fourier approximation, but where the
coefficients are found numerically instead of using perturba-
tion expansions (see, for example, [3]). One disadvantage of
these methods is that they are not so efficient for long
waves, the Fourier approximation suffering from having to

approximate both the short rapidly varying crest and the long
trough where very little is changing, so that large numbers of
terms and computational points are necessary, which can be
very demanding, as matrix solution methods are necessary.

This paper describes a new theory which occupies an obvi-
ous gap in the different approaches described above: it
solves the full nonlinear equations numerically, but uses
cnoidal functions as the fundamental means of approxima-
tion, so that very long waves can be treated without any
special methods. It is found that the method can be used for
waves whose length is greater than eight times the water
depth, and gives highly accurate results for all waves longer
than this. For physically-realisable wave heights it is very
accurate, but if the wave height is approaching that of the
theoretical maximum, when the accuracy downgrades to
approximate engineering accuracy. The method is still under
development; it has not yet been extended to the case where
the wave period instead of wavelength is specified.

2. THEORY
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Figure 1: Wave, showing important dimensions
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Figure 1 shows a typical steady wave, symmetric about the
crest, with the sharp crest and long trough characteristic of
steep and shallow waves. The (x,y) coordinate origin is on
the bed under the crest and moves with the crest. In this
frame all motion is steady. The physical dimensions shown
are the mean depth d, the wave height H, the wavelength A,
the elevation of the free surface above the flat bed at any
point, 1, and the depth under the trough A.

It is assumed that the water is incompressible and the flow
irrotational and two-dimensional, such that a stream function
y(x,y) exists and satisfies Laplace's equation throughout the
flow:

— + — =0, 1
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The boundary conditions are that the bottom is a streamline
on which v is constant:

y(x,0)=0, ¥))
and that the free surface is also a streamline:
Y, nx)=-0, 3)

where O is the volume flux per unit span underneath the
wave train. The negative sign is because the flow relative to
the wave is in the negative x direction, such that relative to
the water the waves will propagate in the positive x direc-
tion. The remaining boundary condition comes from
Bemnoulli's equation: the condition that the pressure on the
free surface is constant is expressed by
2 2
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in which g is gravitational acceleration, R is the Bemoulli
constant, and we have used the result that the velocity (u,v)
is given by

_O¥ . 9V
u=3 and v = ol &)
We assume a Rayleigh expansion for y of the form:
_ df B
y=-siy L f= 2+ L v ©6)

as in [2]. This satisfies the ﬁeld equation (1) and the bottom
boundary condition (2) identically. The kinematic surface
boundary condition (3) becomes

sinn /@)= 0, ©
This equation is a nonlinear ordinary differential equation
for the local fluid depth 1 and f”(x), the local fluid velocity
on the bed, in terms of the horizontal coordinate x.

It is more convenient to write the equations in terms of
dimensionless variables. We introduce the scaled horizontal
variable 6 = ax/h, where a is a stretching parameter. Writing
M+ =N/h, equation (7) can be written
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Introducing /7(8) = h/Q dfidx and the series expansion of the
sin operator, the equan'on becomes
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We can write the dynamic surface boundary condition (4) as:
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after multiplying by (h/ Q) to make it non-dimensional. The
velocity components are obtained by differentiating equation
(5) to give, in dimensionless terms;

_L‘g.’i= d
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Writing these as expansions we have
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in which the factor of 2i + 1 has been retained in the denomi-
nator of (12a) because the factorial term in the denominator
will be absorbed into subsequent coefficients. The dynamic
boundary condition (10) can be written in terms of these
quantities as
%(u&,+v%;)+g.1}- =Rt, (13)
where g. =gh’/Q* and R. =Rh*/Q?.

We use a spectral approach, in which all functions of x are
approximated by polynomials of degree N in terms of the
square of the Jacobian elliptic function cn?(8lm) for the
surface elevation and bottom velocity of the form suggested

by conventional cnoidal theory:
N.=1 +): ; cn¥(8lm), (14)
fl=Fo+ Z;F,- cn¥(lm), 15)
=
where the Y; and ¥; are numerical coefficients for a particu-

lar wave. Conventional cnoidal theory expresses the coeffi-
cients as expansions in terms of the parameter o which is
related to the shallowness (depth/wavelength)’, and
produces a hierarchy of equations and solutions based on
series expansions in terms of o, which is required to be
small. In this work we attempt to solve the equations by
making no expansions in terms of physical quantities, and
we seek numerical solutions, in a manner similar to that in
which Fourier approximation methods relate to Stokes
theory for steady water waves.

On substituting equations (14) and (15) into equations (9)
and (13) we have the general problem of evaluating an arbit-
rary derivative of an arbitrary even power of cn(8lmj:

()" corolm) )

for any integer i and j. Incorporating the factorial in the
denominator of equation (12), this can be expressed as the
double sum

—1—-(1)2icn’=’(elm) = E 2", Ay cn®@lmyme, (17)
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where the 4;;,, are purely numerical constants which only
have to be computed once at the beginning of calculations.
The algorithm for this is presented in the Appendix.



Substituting into equation (9):
N1 = i N-i W
Nfe+ 2 [(—D'w*‘ZF;Z Bj cn**’(eim)]— 1=0,
=1 =l  p=0
(18)

where we have replaced the sum which occurs throughout
the work by the symbol

Bjp=2 Ajpgm?, (19)
=0

where the outer summation over i has only been taken as far
as N-1 and the inner summation over j has only been taken
as far as N-i, because from conventional cnoidal theory this
would give a consistent accuracy to order o2V,

Substituting equation (17) into equation (12) we have:
N-1 ) N=i
Ueg=—ft— 3, [(-1)' Qi+1m¥Y Fff‘, Bipg cnzf’(ﬁlm)]
i=1 j=1 T p=0
(20a)
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It can be shown that
%(m@(elm)) =-2pcn® (8lm)sn@lmydn(®lm) , (1)
for p > 0, such that
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in which

df =-2sn(8lm) dn(elm)z jFj cn¥ ' @lmy. (23)

When this quantity is squared in the Bemoulli equation (10),
the relationships
sn2(Blm)=1- cn2(@lm)
and
dn2(8lm) = 1—m+m cn?(8lm) 24)
may be used, so that only the function cn need be used.

3. SYSTEM OF EQUATIONS

The free surface boundary conditions include the following
unknowns: o, m, g+, R., a total of N values of the ¥; for
i=1...N,and N+1 values of the F; for i=0...N, making a
total of 2N+ 5 unknowns. For the boundary points at which
both boundary conditions are to be satisfied we choose M+1
points equally spaced in the vertical such that:

cnz(a%lm)=1—if‘M for i=0...M, (25)

where i =0 corresponds to the crest and i =M to the trough.
This has the effect of clustering points near the wave crest,
where variation is more rapid and the conditions at each
point will be relatively different from each other. If we had
spaced uniformly in the horizontal, in the long trough where
conditions vary little the equations obtained would be simi-
lar to each other and the system would be poorly condi-
tioned. We now have a total of 2M+ 2 equations but so far,
none of the overall wave parameters have been introduced. It

is known that the steady wave problem is uniquely defined
by two dimensionless quantities: the wavelength A/d and the
wave height H/d. In many practical problems the wave
period is known, but this developmental paper will restrict
consideration to those where the dimensionless wavelength
Ad is known. It can be shown ([2]) that A/d is related to o
by the expression which we term the Wavelength Equation:

az‘-i —2K(m) =0, 26)
where K{(m) is the complete elliptic integral of the first kind,

and where the equation has introduced another unknown d/h,
the ratio of mean to trough depth.

The equation for this ratio is obtained by taking the mean of
equation (14) over one wavelength or half a wavelength
from crest to trough:

N
% =1+3 ¥; cn¥ @lm). @7
Al

The mean value of the power of the cn function over half a
wavelength can be computed from the recurrence relation
(see, for example, [2]), where if

K
Ip)= % [ (men?@lmyy°as
0

then I(0)=1 and I(1)=-1+m+E(m)/K(m), where K(m)
and E(m) are complete elliptic integrals of the first and
second kinds, and
_2p+2 2p+l1
Ip+2)= 2p+3(2m—l)fw+l)+zr3(m m*) K(p), (28)

for p=0,1,.... Then,

cn"fi (x%im |=";{:,l forall j=1...N, (29)
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thereby providing one more equation, the Mean Depth
Equation.
Finally, another equation which can be used is that for the
wave height:
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which, on substitution of equation (14) at x =x¢ =0 where
en(0lm) = 1 and, because cn(owx ylm) =0 from equation (25),
gives

N
Hd_3 y,=o, 32)

the Wave Height Equation.

The system of nonlinear equations which we have to solve is

listed in Table 1. We write the system of equations as
e(z)={ei2), i=1..2M+5} =0, (33)

where e; is the equation with reference number i as given in

the table, and where

z={zj, j=1..2M+6}, (34)
where z; is the unknown with reference number j as given in
the list of unknowns in Table 2.



Equation Number of | Reference
Equations Number

Wavelength Equation (26) 1 . 1
Wave Height Equation (32) 1 2
Mean Depth Equation (30) 1 3
Kinematic free surface M+1 4. .M+4
Dynamic free surface M+1 M+4.2M+5
Total 2M+5

Table 1: System of nonlinear equations

The variables which are used are set out in Table 2. Whereas
the parameter m has been used in the above development, it
has the unpleasant property that it has a singularity in the
limit as m — 1, which corresponds to the long wave limit,
and as we will be using gradient methods to solve the
nonlinear equations this might make solution more difficult.
It is more convenient to use the ratio of the complete elliptic
integrals as the actual unknown, which we choose to be the
first:
K(m)

T K(1-m)’ 6)
The remaining variables and their reference numbers are
shown in Table 2, and will be referred to as z;, where j is the
reference number in the right column.

E4

Variable Number | Reference Number
K(m)/K(1 —m) 1 1
o 1 2
d/h 1 3
lg. =gh*/Q? 1 4
R.=Rh*(Q? 1 5
Fj, j=0..N N+1 6..N+6
Y, j=1.N N N+7.2N+6
Total 2N+6

Table 2: List of variables
4., NUMERICAL SOLUTION

The solution of the system of nonlinear equations follows
that in (3], using Newton's method in a number of dimen-
sions. We denote the system to be solved, equation (33), as

e(z)=0. (36)
To solve this nonlinear system an iterative procedure will be
used. If z® is the approximate solution vector after iteration
n, then evaluating the left side of equation (36) will give, not
zero, but E:

e@™y=E" forall i=1..2M+5. 1)

If we were to compute an estimate of the errors at the next
iteration we could write the system of equations as a multi-
dimensional Taylor expansion:

2N+6
E?ﬂl) =E?') ¥ E

Fl
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&T[zj 3 ]+ 38)
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and, for computational purposes we require that this expan-
sion be truncated at the order shown and assume that this
would give Eg'"")=0 for all the i, so that the equation can
be written as a matrix equation which we can solve for the
updated solution vector z"1

(n)
Z

J

in which the matrix element at (i,j) is the derivative of equa-
tion i with respect to unknown j as shown. It would be poss-
ible to obtain the derivatives analytically, however, particu-
larly in the surface boundary condition equations the
unknowns appear embedded very deeply. It is far simpler to
obtain the derivatives by numerical differentiation: adding
an arbitrary small quantity 8z; to variable z;, evaluating all
the equations, and taking the appropriate differences, as
done in [3].

As the number of equations and variables can never be the
same (2M+5 can never equal 2N+6 for integer M and N), we
have to solve this equation as a generalised inverse problem.
Fortunately this can be done very conveniently by the Singu-
lar Value Decomposition method (for example Press et
al. [4], #2.6) so that if there are more equations than
unknowns, M> N, the method obtains the least squares
solution to the overdetermined system of equations. In prac-
tice this was found to give a certain rugged robustness to the
method, despite the equations being rather poorly
conditioned.

5. INITIAL CONDITIONS

In the computations reported in this paper the simplified
fifth order cnoidal theory presented in [1] was used. The first
step is to compute an approximate value of  and hence z;
using the analytical expression for wavelength in terms of m
given as equation (19) in [1], combined with the bisection
method of finding the root of a single transcendental equa-
tion. After that the rest of the fifth order expressions pres-
ented in [1] can be used. It was found, in performing
computations for this paper, that providing only first order
results as the approximate initial solution was not enough for
waves which are high or not so long, when the first order
theory becomes less accurate.

6. RESULTS

Figure 2 shows the solution obtained for a high wave of
intermediate length, when conventional cnoidal theory is
considered not valid. In (a), the surface profiles are shown,
and in (b), the fluid velocity profiles under the crest are
shown. Two curves are plotted on each, results from the
present method and those from the Fourier approximation
method, which should be highly accurate in this relatively
short wave limit. It can be seen that the results are almost
indistinguishable at the scale of plotting. Whereas conven-
tional cnoidal theory should not be valid in this shorter wave
limit, as it depends on the waves being long for its accuracy,
there is nothing in the present numerical method which
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Figure 2: Results for a high intermediate wave of H/d = 0.5 and Figure 3: Results for a high long wave of H/d = 0.55 and Md = 30
A/d = 8 solved by the Fourier approximation method with solved by the Fourier approximation method with 30 terms and
25 terms and the present theory with N = 10. the present theory with N = 9. Results are almost coincident.

necessarily limits its accuracy to long waves. In the prepara-
tion of this paper, for the initial conditions only cnoidal
theory was used, and it was not accurate enough for waves
shorter than this example. If Stokes theory could be modi-
fied to provide the initial conditions, there is no reason why
the present method could not be used for considerably
shorter waves.

(a) Surface profile

Figure 3 shows the results for a long wave, of Hid = 0.55

(the maximum practical height, [5]), and X/d = 30. This

wave is sufficiently long that the Fourier method is begin-

ning to be tested considerably, yet it is capable of giving 200
results provided sufficient numbers of Fourier terms are

taken and the user waits long enough. It can be seen that the

present numerical cnoidal theory is also capable of high

accuracy, as demonstrated by the close agreement between g
the two very different theories. It used much smaller comput- =
ing resources, typically involving the solution of systems of

25 equations compared with 70 equations for the Fourier 0.50 |
method.

Figure 4 shows the behaviour of the numerical cnoidal T th i% ik % I8 W iw ol
method for very high waves. The Fourier method was at the Velocity

limits of its powers for this problem, requiring 14 steps in
height for the method to converge. Results from the numeri-
cal cnoidal theory for N= 7, 8 and 9 show certain irregula- (b) Velocity profile under crest

rities, and the method was having trouble converging for this :

wave, which is closer to the theoretical maximum for waves Figure 4: Results.for a very high long wavle of H/d = 0‘? and
of that length. Although the method shows difficulty with A/d = 30, showing results from the Fourier method with

convergence, it does yield results of engineering accuracy. 30 terms antgeﬁyn?isﬂ? pﬁic;n: ziggthe present

[— Numerical cnoidal = Fourier |




There is evidence that no long wave in shallow water can
exist at this height, and that a maximum of H/d=0.55 is
more likely [5], and that the accuracy of Figure 3 is more
likely to be that which obtains in practice.

Numerical cnoidal

e

Fourier

Figure 5: Results for a high very long wave of H/d=0.55 and
Md = 50, showing the present theory with N =10
and the Fourier method with 30 terms.

Figure 5 shows some of the difficulties associated with the
Fourier method for very long waves. It is well-known that
for long waves the Fourier method may converge to a wave
of 1/3 the wavelength [6], but that this can be remedied by
solving for lower waves of the same length and stepping
upwards in height. In the figure, some 10 such steps were
taken, using 30 terms in the Fourier series, a rather lengthy
computation, but the method still failed to converge to the
correct solution. The numerical cnoidal method, however,
converged to give an accurate solution to this rather
demanding problem.

7. CONCLUSIONS

A method has been presented for the numerical solution of
the full nonlinear problem of waves propagating steadily
over a flat bed, where approximation is in terms of elliptic
functions so that problems of very long waves can be solved.
Results are presented which show that the method is accu-
rate for waves longer than some eight times the water depth,
and treats very long waves apparently without difficulty. As
the highest waves are approached, however, the accuracy
decreases to an approximate engineering accuracy. The
method is still under development, and it is hoped that it will
be able to solve even deep water problems provided reasona-
bly accurate initial estimates can be provided.
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9. APPENDIX: CALCULATION OF TABLE OF
COEFFICIENTS

Setall A[i,j,p,q1 =0
Remark: Table of second derivatives
for p from 1 to N do

A1,pp-10 =p=1+2p)/3

Al.p,p—l.l =p(1-2p)/3

A 1,p.p.0 i P(_ZP)B

A1ppi = p(4p)/3

A 1,p.p+l1 I=p(—’ = 2}?)}'3

Remark: Calculate higher derivatives recursively:
for i from 2 to N do
for p from 1 to N-i+1 do
for ¢ from 1 to p+i-1do
for j from 0 to i-1 do
for J from 0 to 1 do
for & from 0 to p+i do

3
Aipips = Aipr s+ Gy Airtpigi Araks





