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Abstract

Two models governing the propagation of signals in hydraulic control lines are considered.
One is a linear model starting with two-dimensional viscous equations of motion, and the
other a nonlinear model with a nonlinear friction term. It is shown that the speed of propaga-
tion of disturbances is not the commonly accepted expression, but is modified by friction, and
in fact, depends on the nature of the disturbance. In most practical cases this effect is small,
but it is desirable to be aware of the effect. It is shown how both linear and nonlinear model
are related, and then a computational scheme is developed which is based on the method of
characteristics and high-order approximation by splines. It is found to be robust and accurate
and capable of treating problems with rapidly-varying transients.

1 Introduction

Subsea control systems are characterised by very long hydraulic control lines, 10-15 km in
length are not uncommon. Responses of hydraulic actuators which operate production control
valves on a subsea christmas tree are directly affected by transmission characteristics of the
connecting lines. One of the regulatory requirements for a subsea contro} system is to deter-
mine, at the design stage, the time needed to close all production control valves under the
scenario that all hydraulic valve actuators are vented to the surface at the platform level. Thus,
we need to have an exact model of the connecting line. As the lumped parameter approxima-

tion of a very long transmission line requires long computation time, distributed parameter
models are investigated and described in this paper.

We examine the equations for compressible flow in rigid pipes to obtain a greater understand-
ing of the nature of the propagation of waves and with a view to developing computational
schemes. We start with a linear two-dimensional model, which is converted to a one dimen-
sional model which we investigate in the time domain. The results contain some novel
features: the speed of propagation of disturbances depends on the amount of friction, and the
waves are dispersive such that distortion of the wave form may be important. In the majority
of cases such effects are small, however 1t is important to have a detailed understanding of the
real processes at work and to know when the effects may be finite. Then the case of nonlinear
friction is considered, for which time domain methods are necessary. It is shown how the
linear and nonlinear cases are related. Then a numerical method is developed for both linear
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and nonlinear cases. The method is based on a characteristic formulation, and it is shown how
the formulation reduces to simple processes of interpolation, for which the use of spline and
exponential spline approximation is suggested, giving a fast method of high accuracy and for
which most programming details may be relegated to subroutines. When applied to the propa-
gation of rapidly-varying transients the method is seen to be robust and accurate and able to
describe well the rapid variation across the shocks.

The proposed model may be extended to include compliant lines. The line model is easily
interfaced with lumped parameter models (eg. bondgraph or block diagrams) or other compo-

nents in the control system.

2 Nomenclature

Latin symbols

" Latin symbols (continued)

a Radius of line vy velocity component and mean
C: Characteristics of gradients uxco v Mean of v over section
C  Actual propagation speed v+ Valueofvatx=x:
¢, Mean speed of sound in the line x  Coordinate along line
d Diameter of line x; Coordinate of point i
D Coefficient matrix x: x;—(uxcoA
E Coefficient matrix Greek symbols
Fo; Functionrelating p, u & tatends o  Friction coefficient / Decay constant
G Negative of the pressure gradient B Dimensionless quantity (eqn. 7)
H,,, Coefficients A Computational time step
i -1, also used as integer A Parameter introduced for characteristics
k  Wavenumber A Dimensionless nonlinear friction coefficient
Length of line u  Coefficient of time in exponent of e
p, D Pressure and its mean across line v, Mean kinematic viscosity of the fluid
p: Valueofpatx=x. 0 Dimensionless frictional parameter
¢ Volume flux along line p, Mean fluid density
r  Radial coordinate @ Angular frequency of waves
t Time Subscripts
1 x velocity component and mean R,J Real and imaginary parts
i  Mean of # over section +/-  Associated with Cx characteristics
u: Valueofuatx=x: 0/L Mean value in line, or value at left/right end
u  Vector of variables Other symbols
U Coefficient vector O(A?) Landau order symbol "at least of order of"
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3 Equations of motion

We consider two different models of an hydraulic line. The first will be based on linearised
equations in two dimensions for the motion of a viscous incompressible fluid, the second will
be a one-dimensional nonlinear model. We will examine them and relate the two.

3.1 TWO-DIMENSIONAL LINEAR EQUATIONS FOR A VISCOUS COMPRESSIBLE
FLUID

- Consider the two-dimensional equations of motion of a viscous compressible fluid in cylindri-
cal coordinates:

dp (au v z)_
31 TP G o =0 (1)
ou_10p 0*u . 1ou

%, L2 v[ +’”8r] (1.2)

where (u,v) are the velocity components in the (x,r) directions, along and transverse to the
pipe respectively, p is the pressure, ¢ is time, p, is the average fluid density, ¢, is the mean
speed of sound in the fluid transmission line, and v, is the average kinematic viscosity of the
fluid. These equations form one of eight models considered in [1] and [2], from the full
Navier-Stokes equation to a simple one-dimensional incompressible linear model, which after
testing it was identified as being not too complex but gave very good results in the frequency
domain to model the phenomena in long lines.

Now we convert to a single space dimension by integrating over the cross sectional area. For

the first terms in equation (1.1) this is trivial, for the terms in radial velocity we have
dv 1 d

3 + = (vr), (2)

and multiplying by 2nr and integrating from r—O to r=g where v=0 we obtain zero
contribution, leaving for the mass-conservation equation in integrated form

dp 20U
2+ poct SE =0, G)

where the overbars denote mean quantities over the area of the line. Now considering the
momentum equation (1.2), the derivative terms on the right side are

o%u  1du_14 ( Bu)
o Tor Torlor “)
and multiplying by 2nr and integrating gives
dJu
2ma ar[ (5)

in terms of the velocity gradient at the pipe wall. Hence the mean momentum equation
becomes
d% 1 0P _2Vo du
S o e 6
or Poox 4 orl. ©)
and if we assume that the velocity gradient at the wall is given by a linear relation in terms of
the mean velocity over the section by

du
07 | =g

==, (7
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where B is a dimensionless quantity, then the momentum equation becomes

o, 19dp 2|3V0 _
aI+|30 2 2 =0. ®
In the case of steady incompressible Poiseuille flow in a tube, [3, p.181] shows that
oul _ _Ga

ai‘ ,.___a_ 2[)0\70, (9)

where G is the negative of the pressure gradient, and also that the volume flux down the tube
is

nGa*
= 10
Q=3 Sove’ (10)
such that % = Ga?/8poV,, and we can write
dul _ 4-
ar| = a u. (11)
Comparing with equation (7), we have, for steady incompressible flow,
B=4. (12)
Now if we introduce the symbol
2[3\/0 8]3\!0
e T a a3

where d is the pipe diameter, then, suppressing the overbars for mean quantities across the
section, equations (3) and (8) become:

op 20U

Bt+p0 a—=0, (141)
du, 19p
- rou=o, (14.2)

where p is mean pressure across the section, u is the mean velocity in the direction of the pipe,
and o is the friction coefficient defined in equation (13). These equations are linear, and
provide a framework for examining the behaviour of the line.

3.2 ONE-DIMENSIONAL NONLINEAR EQUATIONS _
These equations include nonlinear terms, as well as a nonlinear empirical friction term. They
can be written:

o, 9 2 au

= + =0 15.1

ou Qg 1 aP A
or "“ax Poax T 2d
where A is a dimensionless coefﬁment of friction, and where the p and the u are mean quan-

tities across the section.

Zylu| = ' (15.2)

4 The Telegrapher's equation

Initially in this work we are concemed about examining the nature of the propagation of
disturbances in hydraulic lines, and most information will be able to be obtained by using the
linear model, equations (14.1) and (14.2). One way of examining the equations is to obtain a
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single higher-order partial differential equation in a single unknown. This is easily done as the
system is linear. We consider equation (14.1) differentiated with respect to #;

p . 2% _
~5 HPocos S =0, (16)

and equation (14.2) differentiated with respect to x:

u  19°p  du

=+ ———+0o==0.

oot Poae T “ax (17
Eliminating 9%u/0x0t between these equations and eliminating du/dx using equation (14.1)
gives a single partial differential equation in terms of p:

2 2
Jat 9 ox?

This is one form of the Telegrapher's equation, well known in Electrical Engineering, for
which a massive literature exists in studying the effects on the propagation of alternating
current on lines with losses. Note that for no friction, &t =0, we recover the wave equation,
with solutions those of waves travelling up and down the pipe at speed cs.

0. (18)

To examine the behaviour of solutions we assume a solution, periodic in x, of the form
p = exp (ikx + i), (19)

such that the solution has a wavelength of 2n/k. Substituting into equation (18) to determine
the behaviour in time gives

p2+ o+ kel =0, (20)

2
-%J_r /%_-kzcg : 1)

In fact, if we introduce the angular frequency of the waves,
W = keo, (22)
and extract a factor of -1 from under the square root, the expression can be written

o, . ’ ol
= —=1 s
We =—TLio 1 Pt (23)

where i = /=1 . The physical significance of this will be discussed below. It is useful here to
introduce the dimensionless frictional parameter 8:
P X = &
2keo  20Y
expressing the ratio between two quantities with an inverse time scale, the decay constant to
the radian frequency. If we adopt the steady incompressible Poiseuille result (12) that § =4,
then equation (13) gives

with solutions

I

L

(24)

32V0
= , 25
72 (25)
and
16vg
0= . 26
7o (26)
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With this symbol 6 equation (23) for the eigenvalues can be written in the more physical form
ut:—%iikcm/l—ez. 27

Small friction: For the small friction case, o < 2kcq, 0 < 1, if we write i = {Lz +ilis, then the
real and imaginary parts are given by
o

Uz =5 (28.1)

Wr=tkeoy1-62 (28.2)

showing that the waves decay exponentially with a rate constant o2, and they propagate up
and down the channel with propagation speed C =;/k:
I 2
= L
C=cy ,J 1 ( 20))
thus showing that the actual speed of propagation is not co but is that quantity modified by a
frictional term which also depends on the frequency of the disturbances, so that the waves
exhibit the phenomenon of dispersion, where their speed depends on their length. In this case,

the longer waves (m smaller) will have a smaller speed of propagation, unlike surface gravity
waves on still water. The dependence of C/co on the friction parameter is shown in Figure 1.

; (29)

1.2

Conventional expression

L0

08 F

06 |

0.4

Dimensionless wave speed

0.2F

0.0 A 1 'l L
0.0 0.2 0.4 0.6 0.8 1.0

Friction parameter

Figure 1. Dependence of wave speed C/c, on friction parameter c.

Large friction: For the large friction case, 00> 2kco, ©> 1 and the real and imaginary parts

are given by
1
-, 30.1
| B (30.1)

pr=0, (30.2)
which is a dramatic result, that there is no imaginary part. This means that in equation (19),
the expression for pressure, the coefficient of ¢ is real so that any disturbance simply decays
exponentially with rate constant given by the two values of Lz and no waves propagate. It is
easily shown that both values of |Lg are negative, and the waves are stable and do not grow
with time.

o
-
18 5T

a2 R
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Here we examine the physical conditions corresponding to the limit 8 = 1, that is, /20 =1. If
we adopt the case for Poiseuille flow B =4, equation (26) gives the limiting condition that
waves propagate:

16vo

T - 1. (31)
If we consider the case of a water line with v =0.01 cm?/s, d=1.27 cm and a frequency of
1 Hz, 6=0.016, and the effects of friction on the propagation speed will be small. For oil of
viscosity 30 times that of water and the same other parameters, we obtain 6 =0.5, and the
propagation speed will be substantially affected, such that C/ce =0.87. If a complex signal
being transmitted were Fourier analysed, the lowest frequency might easily be smaller than
this and the propagation speed rather more profoundly affected.

5 Matrix formulation of the linear equations

Another way which can be used to examine the nature of solutions of the linear equations is to
constder a matrix formulation. The equations (14.1) and (14.2) may be written in matrix form

as
9| P 0 pocd |3[p ] [oo][r]_ [0
at[“]-{ 1/po Oo:lax[u}‘[o d}[u}—[o]' (32)

We write this as the matrix equation
du ~du

S DS HEu =0, (33)

The conventional interpretation of the operator dw/d¢ + Ddu/dx is that the eigenvalues of D
give the velocity of propagation of disturbances. In fact, it is easily shown that the eigenvalues
of D are +cq, suggesting that the velocity of disturbances relative to the flow is this conven-
tional expression. It is our assertion that the presence of the third and additional homogeneous
term Eu in equation (33), traditionally ignored in considerations of the nature of such second-
order systems, not only changes the nature of solutions into diffusive and dispersive solutions,
but also changes the fundamental velocities at which disturbances propagate.

To demonstrate this we assume a solution of the form uw= Uexp (ikx + 1f). Substituting into
the matrix differential equation we obtain
(W +ikD + E)Uexp (ikx +ut) = 0. (34)
Hence,
(W+ikD+E)U=0, (3%

showing that the . are the eigenvalues of the matrix —i4D—E with corresponding eigenvectors
U. Performing the operations we obtain for the eigenvalues:

2
uiz—%i }“T—kzcg , (36)

exactly the same as equation (21) obtained previously using the Telegrapher's equation, and
with the same deductions as to the real and imaginary parts, the decay rate constants and the
speeds of propagation. Here, however, we can extract more information which we can put to
effect in deriving a computational scheme. The eigenvectors corresponding to the eigenvalues
are
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l: ~ipocgk ] (37)
Mz

Hence the general solution of the differential equation is

- 2 . —i 2 .
u(x, f) EHI{ lpOCOk j| e’kx+u*'+Hz|: 1p060k il e:kx—«»u_:, (3%)
+ —
from which solution we extract
p = —i pocek (Fhe™™ + Hre™*H-1y and (38.1)
u=Hifls et + H|l_ e®oHi-t, (38.2)

It is possible that a computational scheme could be devised which could exploit this knowl-
edge of the precise behaviour of the solution. However in the following section we exploit the
very simple nature of the equations when interpreted in a characteristic sense to develop a
scheme of high accuracy.

6 Numerical scheme

6.1 CHARACTERISTIC FORMULATION

Consider the nonlinear equations (15) written in the form
o, . 23u_,

§+”ax+p°c°§= , (15.1)
ou, du, 19p
= +u + 50 3 +o{u)u =0, (15.2)
where we have written the frictional coefﬂc1ent as
ofu) = Aul/2d, (39)

following the notation from the linear friction case, equation (14.2), where o was a constant.
Using this notation we hope to be able to consider both models. Now, multiplying equation
(15.2) by a parameter A and adding to equation (15.1), the combined equation can be written
in the form

ot dx Poox 9t A ox T a

and if we write the coefficients of the x derivatives in both terms as dx/dt, such that

B, P LA ap+A[a“ Poco a—"+u—+0ﬂ(u)u} (40)

(41)

then we can solve for A giving A =%po co and hence dx/dt = u+tco. Equation (40) can then be
written
9 dxdp (au dx ou )
=+ + ===+
ot arax PO\ g T O
such that on the charactenstlcs, which are paths given by solutions of the differential equation
%=uico, @2.1)

the differential equation holds:
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dp (@ )_
dripﬂco dz+oc(u)u =0. (42.2)

In this way we have converted the two partial differential equations into the four ordinary
differential equations given by both corresponding sign alternatives in equations (42.1) and
(42.2). In the case of the linear approximation, equation (14), these equations are easily shown
to be

dx _ 4 ., (d& )_
dr_"CG and dt"poco dt+oau =0. 43)

As the two forms are so clearly related we will retain the nonlinear form for our discussion
and whenever the linear form is required it will be a simple matter of deleting the leading u
from the gradient of the characteristic and of using a constant value of .

6.2 NUMERICAL APPROXIMATION OF CHARACTERISTIC FORMULATION

As the quantity u on the right side of equation (42.1) is a function of both x and 7, we cannot
obtain exact solutions in general, however as lu| << co a convenient and good approximation
is that 4 is constant on a characteristic, such that it is a straight line. This is exact for the linear
case. We denote characteristics on which dx/dr =uZco by Cs Tespectively. Figure 2 shows the
arrangement on the (x,7) plane. At a computational point (x;,z+4) at which we require the
updated values of p and u, consider the two characteristics approximated by straight lines
meeting at that point. They intersect the line corresponding to time level 7 at xx =x; — (uxco)A
respectively, where the value of u is that at (x;, 7).

(xh l‘-]'_A)

t+A +

Xo

Figure 2. Computational points and typical characteristics

Now consider equation (42.2). It would be possible to approximate the derivatives by forward
difference expressions, which have errors O(A), however this is not as accurate as the scheme
which we propose here. Integrating the equation with respect to time gives

PEpo Co[u + j ow)u dt} = constant, (44)

C:
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and now we approximate the integral by the trapezoidal rule, which has error O(A?), so that
we obtain: :

pg(T+ A)x Po Co(u,'(l"i' Ay + —é—(a(ui)ut + ot + AY) ui(z + A))) = Py + PocCots, (45)

where we have used the notation pi(t+A) =px;, t+A), pr = p(xs, 1) and the same notation for
u. By adding the two equations (+ and - cases) we obtain an explicit expression for the
updated value of p which we require:

pi+A)= P+ ~2i~p_) + Po CO(ZJ' L) —Po a;%(oc(u.r) ur—ou)u), (46)

and by subtracting the two expressions we obtain an expression for the updated value of u:
Ui+ A) = (U +u )+ —p)poco — A, s + ofu-yu )2
! 24 Acui(t+ A)) '
This equation is not as simple to implement, as in the nonlinear case the unknown u;(z+A)
appears in the denominator on the right side. In the linear case, O is constant, and the equation
can be evaluated explicitly. In the nonlinear case, the equation could be solved as a quadratic
or it could be solved iteratively using equation (47). As the term is small anyway, and the

coefficient of friction is only approximately known it might be most appropriate simply to use
another velocity in the denominator, for example (1. +u_)/2.

6.3 IMPLEMENTATION USING SPLINE APPROXIMATION

To implement the scheme, all that is required is to obtain the values of and p at points
Xz =X;—(utco)A intermediate between the computational points, so that the problem is one
of interpolation. In fact, any convenient local interpolation method could be used, and the
implementation of the method would be very simple. However, given the problem which we
have here, of knowing the values at a number of computational points, rather more accurate
methods can be used. One option is to use spline interpolation, which has a number of advan-
tages over conventional piecewise polynomial methods ([4] for example). The error of spline
interpolation is fourth order, proportional to the fourth power of the maximum spacing
between interpolation points, and is considerably less than conventional local polynomial
methods.

(47)

In [5], solving equations similar to those of the present work, it was shown that a convenient
way of implementing the interpolation is to use exponential splines ([6]) which have the
advantages of cubic splines, but which have the added advantage that there is a free parameter
which varies the degree of stiffness of the approximation and which reduces to cubic splines in
one limit. For smoothly varying functions, that is the limit to use, but if, as in the present case
of pressure pulses in an hydraulic line, there are some very rapid tramsients, then the expo-
nential splines can describe these with very few extraneous oscillations, such as conventional
methods would obtain,

6.4 BOUNDARY CONDITIONS

These can be treated in an obvious way using the characteristics formulation. For example,
considering equation (45), at x =x,, the left boundary on F igure 2, the characteristic C? can
be used. As it is a C_ characteristic, we choose the lower of the alternatives in equation (45),
with the negative signs. Then, suppose that the boundary condition at xo can be expressed as a
function connecting p and » at any time 1
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Fo(po(t),uo(t),1) =0, (48)

then to obtain the updated solution we solve the pair of equations consisting of the lower alter-
native of equation (45) and the equation

Folpo(t+A), ug(t + A), 1+ A) =0, (49)

If either pol(r+A) or uo(t+A) are specified explicitly, of course, the procedure is simpler.
Similarly, to implement the boundary at the right end, one would solve the upper equation in
(45) together with an equation similar to (49) for the pressure and velocity at the end x=L:

Fripr(t+A)ur(t+A),t+A)=0. (50)
7 Results

To test the method some simple but demanding tests were performed. A single line was
considered with the pressure at one end being instantaneously raised to a constant value and
kept there, with a fully-reflecting boundary condition at the other end, such that the velocity is
zero there and the wave should be fully reflected. The instantaneous nature of the initial transi-
ent is what makes this otherwise simple problem somewhat demanding. The computational
parameters are shown in Table 1, The linear model was used. Each run on a 486-based
personal computer took about 64 seconds to perform the basic calculations and about 10
seconds more to produce the hidden line plot.

Test 1 Test 2
Length of line 12000m
Po 1000 kg/m’
Co : 1414 m/s
o 0 0.2s"
A 0.05s
Number of computational points 140
Total number of time steps 400
Intermit for hidden line plot 10
Weight for exponential splines 2.00 4.00

Table 1. Computational parameters used in tests

Test 1 was without friction, to examine the ability of the computational scheme to handle an
abrupt change. Results are shown in Figure 3 each line showing the pressure in the hydraulic
line, successive lines at later times, where a hidden line plot has been used. It can be seen that
the proposed method performs this demanding computation well, and the abrupt shock moves
up and down the line with little numerical diffusion. There are wiggles at the bottom of the
shock. These can be reduced by using a larger weight for the exponential splines, which,
however, introduces more numerical diffusion. What is noteworthy is the ability of the scheme
to propagate the shock with almost no trailing waves at all. Somehow the scheme allows the
shock to pass through a computational panel and is sufficiently accurate that after it has
passed, the pressure settles down to the precise value.
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Figure 3. Instantaneous pressure surge travelling down a line
with full reflection at end; no friction

e,
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Figure 4. Instantaneous pressure surge travelling down a line
with full reflection at end; finite friction ot =0.2 s7!
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The only changes in Test 2 were that a finite value of & was introduced and a different value
of the exponential spline weight was used. Results are shown in Figure 4. Comparing the two
figures it is clear that the effect of friction in dampening the motion is much more important
than the effect which it has on the propagation speed of the front. The wavelengths associated
with the sharp front are all very short (corresponding to some kind of Gibbs' phenomenon in
describing a discontinuity with periodic functions), hence the frequencies associated with the
front are large, and as the expression for the propagation speed of disturbances equation (29)
contains the frequency in the denominator, the effect on propagation speed is relatively minor,

=

Long control litie
[ w% - ./' I
H L1
FO(PO("):”O(I)J) FL(FL(’):”LU)J) I__
Control valve
T D (surface)
-l
[ e

Valve actuator (subsea)

Figure 5. Diagram of control line with valves and actuators providing boundary conditions

In application to the modelling of subsea systems, the long transmission line model developed
above will be combined with lumped parameter models of valves and actuators placed at the
subsea on the Christmas Tree and control components located topside on the platform. The
lumped parameter models will be interfaced with the transmission line by means of the end
functions Fy() and F;() which represent any linear or nonlinear combination of pressures and
flows at the points of entry and exit, as shown in Figure 5.

8 Conclusions

In this paper we have considered the equations in physical variables including time, rather
than using a Laplace transform formulation.

1. It has been shown that the linear two-dimensional equations governing the motion of a
viscous incompressible fluid in an hydraulic line may be integrated to give the common-
ly used one-dimensional equations, with relatively few assumptions as to the velocity
distribution in the line.

2. It is then shown how the linear equations may have one variable eliminated, giving a
version of the Telegrapher's Equation,

3. Elementary solutions of that equation have been obtained, throwing some light on the
nature of wave propagation in hydraulic lines, and showing that waves which propagate
along the lines show diffusion and, possibly unexpectedly, that they also show disper-
sion, whereby the propagation speed depends on the wavelength of the disturbance, and
longer waves propagate more slowly than shorter waves. For practical values of physical
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parameters this effect will be small, but in long lines the effect may be finite, and in any
case, one should be aware of the existence of the phenomenon.

4. A numerical scheme has been developed, for both linear and nonlinear formulations of
the problem, which is based on a specified interval characteristic formulation. When
combined with spline interpolation along the line, the resulting physical space method is
fast, accurate and relatively simple, even for shock wave problems.
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WRITTEN DISCUSSION :

Subsea control systems - on the nature of wave propagation in long hydraulic
transmission lines

JD Fenton, JS Stecki

Question: KA Edge
University of Bath, UK

In section 4 of your paper you examine the large friction case and state that if the friction is
sufficiently high then “no waves propagate”. 1 have problems visualising this situation: could
you explain what would happen say in the case of a piston being used to pressurise a closed-
ended pipe of finite length, filled with a high viscosity fluid?

Answer:

This is an interesting question, which wouid be answered more completely by detailed
computations. In a spirit of brevity here, we note that in the case where no waves propagate
the behaviour of the solution will show decay and diffusive behaviour only. However, for most
problems this will be for the longer wavelengths with low frequencies, to satisfy the inequality
o > 2kc,. For a generalised disturbance in which there are many (Fourier) components
present, the longer wavelength components will show this decay/diffusive behaviour. The
shorter wavelengths will tend to violate the inequality and will show some travelling wave
behaviour. The more abrupt the driving behaviour of the piston mentioned in the question, the
greater the number of components necessary 10 describe the motion and the greater will be
the travelling wave effect.
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