
The Application of Computer-Assisted
Training Programs in Engineering Education

© 1996 USICEE

12. Teaching Engineering Using
Mathematical Packages

John D. Fenton
Department of Mechanical Engineering, Monash University, Clayton, VIC 3168, Australia

Objectives

This chapter demonstrates the use of two mathe­
matical packages which have extensive symbolic
manipulation and graphical capabilities. The two
packages described are:

• MAPLE

• MATLAB

At the end of the exercises, the reader should be
able to solve simple problems with these packages.

Introduction

Traditionally, engineering computations have in­
volved the use of high-level languages such as
FORTRAN, BASIC, PASCAL or C. These are
mainly numerical languages, and programming
them requires a lot of detailed fundamental work.
Modem specialist software may be of a considera­
bly higher level, with the provision of many sub­
routines, specialist software and graphics routines.
In this module we examine the use of the two pack­
ages described above, as an example of the use of
these higher-level languages. Such is the provision
of this software that many of the instructions and
assistance are best provided on-line. This manual
segment will describe some of the fundamental pro­
cedures and syntax so that the users can experiment
with the demonstration modules that are provided.

• MAPLE

About MAPLE

Maple is a language for symbolic mathematical cal­
culation. It does not need numerical information,

163

and is at its most powerful when it is dealing with
symbols. It has a large number of useful features,
and it is best explored live, possibly following the
Tutorial introduction, described as follows. These
notes are written in a way that allows the reader to
work through them to develop expertise with the
program.

Syntax

Maple operates very much like a word processor.
One can go back to previous statements, change
them, re-evaluate them etc. However, typing
<Enter> evaluates the block of commands; to insert
a new line it is necessary to type <Shift Enter>.

Tutorial - on-line introduction to Maple

Start Maple by double clicking on the Maple icon in
the Program Manager. Then type: tutorial(); (note
that Maple statements are terminated by a semi co­
lon(;), as in C and Pascal).

The function tutorial() takes the user through a be­
ginning level, on-line tutorial for Maple. This tuto­
rial is not meant to be a replacement for the on-line
help files, but is instead meant to offer a quick
method for getting started with Maple. There are 14
chapters in the on-line tutorial. The command tuto·
rial(n) skips the standard welcoming text for the
tutorial and starts the user at chapter n. Most chap­
ters have question and answer sections, and there
are quizzes included. There is a main menu, from
which the reader can begin any of the chapters,
which can be accessed from any break in the text.

Quick tour - an overview for engineers
and scientists

This takes the user through a tour of the capabilities
of MAPLE which includes functions that are of

164 J.D. Fenton

particular interest in more applied disciplines, in­
cluding special functions, transforms, and statistics.
To begin the tour, choose Open from the File menu
and make the appropriate selection. Instructions on
working through the tours are included in the work­
sheet.

The way to execute each of the statements is simply
to type <Enter> when the cursor is on that line. This
is true in all MAPLE sessions. Table 1 shows some
of the more useful commands.

Table 1: Fundamental MAPLE commands.

Command Description

help; General help menu

help 'topic'; Information on a specific

OR ?'topic'; topic, e.g. help step;

restart; Clears all the variables stored

on the stack

quit; Leave MAPLE

<Up/Down Ar- Moves to previous or later

rows> commands

<Enter> Evaluates commands

<Shift Enter> Inserts new line

Personal experience

Now it is time to experience the power of such a
program. Maple statements are input after the >
prompt. Every Maple statement must end with a
semicolon ; (or a colon : if the result is not to be
printed). If one has forgotten to type ; or : there will
be no response until the next command is typed.
Until Maple receives a (semi)colon it will neither
process the statement nor accept a new statement.

Maple can be used rather like a modem word proc­
essor. The cursor can be placed anywhere in the file
and material may be deleted, copied, or executed.

Note that the Maple assignment operator is :=, not
just= (which is reserved for when an equation is set
up). Hence, a typical Maple command line might
look like:

> y := theta*x*(x+ 1)*(x-1);

The response to this is properly typeset mathemat­
ics:

y: = e x(x+ l)(x-1),
which can be copied and placed in a document, just
as was done here. Note that the names of Greek let­
ters are automatically converted to those symbols.

The ditto symbol " (double quotes) is used to indi­
cate the previous expression in a Maple session. For
example, typing

>2*";

gives

2 e x(x+ l)(x-1),
Some important Maple functions are expand, sim­
plify, and normal, which are useful for simplifying
expressions; evalf, for evaluating to floating-point;
solve, for solving equations; int and dijf, for integra­
tion and differentiation; series, for Taylor or Laurent
series; and plot, for plotting functions. Other useful
Maple functions are: array, coeff, collect, convert,
degree, denom, evalc, ifactor, limit, map, normal,
numer, op, product, simplify, subs, sum, table, and
type. These commands are the more commonly used
ones; this is by no means a complete list of Maple
functions. Maple also has many mathematical func­
tions built-in, such as sin, cos, tan, exp, In,
GAMMA, Zeta, and binomial.

For example,

>expand(");

gives

and then

> diff(",x);

2 e x3 -2 ex,

differentiates that with respect to x:

6 e x2 -2 8.

The command factor is useful:

> factor(");

gives
28(3x2 -1).

While these commands all seem simple enough,
Maple's real power is shown when it operates on
complicated expressions, including quantities like
series, matrices, systems of equations and so on,
which may already have been experienced in the
above demonstration programs.

Teaching Engineering Using ... 165

For engineering problem solving, Maple has a num­
ber of useful capabilities. The plot command needs
a minimum of information to be provided. The
software provides all necessary scalings etc, which
can of course, be over-ridden. For example, the
command

> plot(xA2,x);

creates a separate screen, which can be copied if
necessary, and which looks like Figure 1.

100

80

20

·10 .5 5 10 .
Figure 1: Typical screen output from plot command.

The command solve can be used to solve a simple
equation or a number of simultaneous equations.
For example, remembering that y has been defined
previously, the command

> solve(y=O,x);

(note the '=' sign, defining an equation), gives all
three solutions of the cubic:

0, -1, 1 .

The syntax x = a .. b is very common, requiring that
the variable x take values between a and b. If x is an
integer they will be integer values. For example, to
generate a sum:

> sum(A[k]*zAk,k=0 .. 5);

gives

Ai +A z +Ai z2 +A, Z
3 +Ai t' +As z5

•

Note that A[k] is printed as A with a subscript the
numerical value of k.

A useful command is subs, which enables substitu­
tions as specified. For example:

> subs(A=B,z=Z,");

gives

~+Biz +Bi z2 +Bi z3 +B4 z
4 +Bs z5

•

Series operations are very powerful in Maple. For
example, to generate a Taylor series for tan(x) about
x=O with neglected terms of order 6:

> f:=series(tan(x),x=0,6);

gives

f: =x+fx3+ 125xs+o(x6).

An often better form of approximation is the use of
Pade approximants, using a rational function with
series in numerator and denominator. For example
the Pade approximant to tan(x) with cubics top and
bottom is obtained by (note the package numapprox
has to be loaded first):

> with(numapprox): g := pade(tan(x), x, [3,3]);

which gives

- 1 3 15x+x

1-2x2
5

The various approximations can be compared by
first converting f to a polynomial and setting up the
plot:

> f:=convert(f,polynom);
>pl := plot(f,x=O .. Pi/2,y=0 .. 10,linestyle=O):

Then with similar commands for p2 for the plot of
the function itself and p3 for the plot of g:

> with(plots):
> plots[display]({pl,p2,p3}, title=

'Approximations to tan(x)', axes=BOXED);

10'~~~~~~~~~~~~~~~~~~~~~

8

6

2

Do 0.2

J
//

--~/
---- - -- - _...- ~
0.4 0.6 0.8 1.2 1.4

x

Figure 2: Approximations to tan x.

The graphs are shown in Figure 2, which demon­
strates the ability of the Pade approximant to handle
the singular behaviour of the tan function.

The equation solving properties are very useful. As a
small example, consider the set of two simultaneous
equations set up and solved by:

166 J.D. Fenton

> Equations:={x+y=2,x-y=O}:
> Unknowns:={x,y}:
> Solution:=solve(Equations,Unknowns);

gives

Solution : = { y = 1, x = 1} .

Exam.pie packages

There are a number of sample work sheets which
the user can work through to explore the use of
MAPLE. Some of these are set out below. Use
FilelOpen to load each of them in tum.

INTRO.MS -An Introduction Worksheet

This is a very useful introduction to some of the
commands which can be used automatically to gen­
erate series, to expand, to factorise and to simplify.

ODE.MS - Solving Differential Equations with
Maple

This worksheet demonstrates Maple's sophisticated
differential equation solver. Here are some more
examples of equations that would appear in a first
course on differential equations. Maple can also
solve systems of differential equations. In some
cases, we can specify an algorithm to be used in
solving the equation. For example, Maple can be
asked to use an algorithm to solve the equation,
such as Laplace transforms. Maple also has an op­
tion for finding numerical solutions. Maple returns a
procedure that, when evaluated at a point, yields the
solution's value, and the value of all derivatives up
to one less than the order of the ODE. The default
algorithm used is a Fehlberg fourth-fifth order
Runge-Kutta method. We can plot the result using
the function odeplot. For example, to solve the or­
dinary differential equation

d2y -
dt2 + y- 0,

subject to the boundary conditions y(O) = 0 and
dy/dt(O) = 1 , the commands are

> DE:=diff(y(t),t$2)+y(t);

> Soln:=dsolve({DE,y(O)=O,D(y)(O)=l}, y(t));

and the result is the analytical solution:

y(t) = sin(t) .

If the right hand side is then assigned to the left by

> assign(Soln);

then the solution can be plotted by the command

> plot(y(t),t=0 .. 6);

which gives the graph shown in Figure 3.

0.5

0 3 5 6

-0.5

-1

Figure 3: Plot of solution of differential equation.

If the equation does not have an analytical solution,
then it can be solved numerically. For example, con­
sider the solution of the nonlinear equation

subject to the same initial conditions. The commands
are:

> DE:=diff(y(t),t$2)+y(t)"2;

> Solution :=
dsolve({ DE,y(O)=O,D(y)(O)= 1} ,y(t),numeric):

> with(plots): odeplot(Solution, { t,y} ,0 .. 6);

which gives as output the plot shown in Figure 4.

1--2 3 6

-5

-10

-15

-20

-25

-30

Figure 4: Plot of numerical solution.

The program generates internal functions so that the
numerical solution can be used. For example, typing

>Solution(!);

gives the result for the procedure we have just de­
fined as "Solution" at the point t = 1 :

Teaching Engineering Using ... 167

lt=l, y(t)=.9204757302791347,~ty(t) = .6928700976193584].

Graphics.MS - Graphics with Maple

This worksheet is a demonstration of Maple's
graphics capabilities. Place the cursor on the first
input line, and step through the examples in order,
by pressing <Enter> at each Maple command.

Warning: This worksheet is quite computationally
intensive. After each plot, close the plot window
before executing the next command by double
clicking on the left comer.

Some of the results are quite spectacular. Consider
the power of representing the function

f : = x el- x
2
- Y

2
) ,

as shown by Figure 5.

Other useful engineering worksheets include:

INT.MS - Shows the power of Maple's integration
capabilities. For example, consider the function:

x3 - x
x5 + x4 + x3 - x2 - x - 1 ·

The command int(f,x) gives the integral:

- 1 2x + 1 + 213 arctaj .l(2x + 1) 13) .
3 x2 + x + 1 9 '\ 3

Maple is also capable of computing improper inte­
grals - often symbolically. For example:

>Int(exp(-t"2), !=-infinity . .infinity);

gives

i>"dt,
then:

>value(");

gives: In. Note the use of the ditto symbol, which
always means the result of the previous calculation.

Ll:"JALG.MS - Linear Algebra with Maple

Maple has a library package for linear algebra. With
it, we can compute eigenvalues and eigenvectors,
determinants of matrices, perform row and column
operations. Many of these functions can be used on
symbolic matrices. For example, define matrix A:

·2

Y a·.

·1

(a)

·1
'2

.,-"'-~--"". /-------,,

,,~>::::::~=~~, ,~:~===~=:::~·:'"' t1 f I / ./ .,..-·····--....,_ '·\, 'I/ ...-··-, ·-.._ ·, · .. '
I / i//-""','.\\ (f/j,..----,,_'..'-., \ \

((\(\((_(~=>))))~ ((((((c~)~)))_)) l) • ,
\ ,_\ \,, --"/_;// \xl '· '----::./· •I, I /

,-'-...,---//!/, \'"'-"'--·" ///;• , -......... ''~ ____ ,.... } I \ \ '"' --~ ._.,- /. / ,.
·-,,, '--~::=:::::::: / j \ '~::-:::::::~::: . ..--/ /

"· ------ / " ------- ./ ~---·---- ~-~,.,,--

(b)

, , - ~,,, _____,

I-.,----,>' I

·2c_~2~~~~~~~~~~~~~~~~~-,-' ·1 0 2
x

(c)

Figure 5: Graphs of f = x e-(x2
+ Y

2
): (a) surface plot,

(b) contour plot, (c) gradient vector plot.

1 x y
A:=IOlz

0 0 I

'

> A:=matrix([[l ,x,y],[O, 1,z],[0,0, 1]]);

Maple uses its &* operator to denote non­
commutative matrix multiplication. We must use the
function evalm to evaluate a matrix expression:

168 J.D. Fenton

> evalm(A&* A);

1
0
0

2x 2y+ xzj
1 2z .
0 1

Maple can compute determinants, e.g. det(A); or,
compute the inverse of a matrix:

> inverse(A);

I
0
0

-x
1
0

xz- yj
-z .
I

OUTPUT.MS - Language Output with Maple

Maple has several particularly useful commands for
converting Maple output into other languages and
forms. This worksheet highlights transformations to
Fortran, C, LaTeX, and Troff Eqn printing. Of
course, the output from ordinary Maple commands
can be simply copied to a Windows word processor.

Consider the Maple expression

>el :=exp(-x"2) * (a*cos(y+t)+b*sin(y-t));

which gives

el :=e(-x2l(acos(y+t) +bsin(y-t)).

Now,
> fortran(e 1);

gives the text:

tO = exp(-x**2)*(a*cos(y+t)+b*sin(y-t))

or, for the C language, "C(el)" gives

tO = exp(-x*x)*(a*cos(y+t)+b*sin(y-t));

These can be directly copied into the necessary pro­
grams. In this case, the advantage did not seem
huge. Consider, however, the instructions necessary
for, say, the inverse of a 4x4 matrix! For word­
processing of equations, the Maple library LaTeX
and eqn conversion routines serve two useful pur­
poses. They provide foremost a way of

presenting the results of a Maple session, but they
also work well as general purpose math interpreters
for making documents. For example:

> latex(el);

gives the text

{ e"{ -{ x }" { 2} } } \left (a\cos(y+t)+b\sin(y-t)\right),

which can be read into a TeX document.

Other useful worksheets include SERIES.MS,
SOL VE.MS, SOL VE2.MS, SPECFUNC.MS, and
SYMBOLIC.MS. The student should work his or
her way through these.

Overall, the use of symbolic manipulation and the
power of a number of inbuilt mathematical opera­
tions means that less attention has to be paid to
mathematical detail and more can be spent on the
physical interpretation of the results obtained.

.MATLAB

The first version of MATLAB was written at the
University of New Mexico and Stanford University
in the late 1970s, intended for use in courses in ma­
trix theory, linear algebra and numerical analysis.
The authors had been involved in the development
of FORTRAN subroutine packages for matrix ma­
nipulation, and sought to enable students to use
such packages without writing FORTRAN pro­
grams.

Today, MATLAB has been extended far beyond the
original Matrix Laboratory. It is now an interactive
system and programming language for general sci­
entific and technical computation. Its basic data
element is a matrix that does not require dimension­
ing. This allows relatively simple solution of many
numeric problems.

The manufacturers of MATLAB offer a series of
Application Toolboxes that contain sets of
MATLAB functions designed for specific applica­
tions, including digital signal processing, automatic
control system design, nonlinear simulation,
parametric modelling, optimisation and spline
analysis.

The software has some good introductions and
demonstration modules. For example, typing intro
leads one through a series of demonstrations of ele­
mentary commands and their syntax. After doing
this it will be necessary to resize the windows of the
Matlab Command Window and the Figure Window,
so that the comments and the output can both be
read. (See the language intro demo obtained by
typing expo for a brief overview of the MATLAB
language and M-files.)

For more help on directory/topic, type help topic.
Commands to get started include : intro, demo, help
help. Commands for more information include:

Teaching Engineering Using ... 169

help, whatsnew, info, subscribe and others briefly
described in Table 2.

Table 2: Basic MATLAB commands.

General purpose commands.

help On-line documentation.

I
doc Load hypertext documentation.

/ what Directory listing of M-, MAT-
! and MEX-files.
I

I type List M-file.
i

: lookfor Keyword search through the
I HELP entries.
:

i
which Locate functions and files.

path Control MATLAB's search path.

' :'\lanaging variables and the workspace.

I who List current variables.

whos List current variables, long
' form.

load Retrieve variables from disk.

save Save workspace variables to
disk.

clear Clear variables and functions
from memory.

Quitting MATLAB.

quit Terminate MATLAB.

The results from typing intro include a demonstra­
tion of how, unless advised otherwise, everything is
interpreted as an array. MATLAB requires no spe­
cial handling of vector or matrix math.

For example
» a = [1 2 3 4 6 4 3 4 5)
>> b = a+2
adds 2 to each element of our vector, with the result
lines:

a=
b = 3

2
4

3
5

4
6

6 4 3
8 6 5

4 5
6 7

Creating graphs in MATLAB is made simple. Here
we plot the result of the vector addition with grid
lines, shown in Figure 6.

» plot(b)

>>grid

Creating a matrix is as easy as making a vector, us­
ing semicolons (;)to separate the rows of a matrix.

»A= [120; 2 5 -1; 4 10 -1)

a..-~...,-~~~~-.-~-....~~...-~...,...~~~----,

7. - - - - - - - - - - - -

6

5• - - - - - l

4

31 2 3 4 5 6 7 8 9

Figure 6: Typical screen output from plot command.

[
1 2 OJ

A= 2 5 -1

4 10 -1

Now we calculate the inverse of the matrix:

» X=inv(A)

l s 2 -2J
A= -2 -1 1

0 -2 1

and then illustrate the fact that a matrix times its in­
verse is the identity matrix.

» A*X

ll 0 OJ
0 1 0

0 0 1

MATLAB has functions for nearly every type of
common matrix calculation. There are functions to
obtain eigenvalues:

» eig(A)

l3.7321J
ans= 0.2679

1.0000

Or, one can obtain the characteristic polynomial of a
matrix A, det(lambda*I - A), for which one types

» p=round(poly(A))

giving: p = I -5 5 -1

170 J.D. Fenton

The poly function generates a vector containing the
coefficients of the characteristic polynomial. We can
easily find the roots of a polynomial using the roots
function:

Table 3: Specialised MATLAB function directories.

» roots(p)

ans= 3.7321
0.2679
1.0000

which are the eigenvalues of the original matrix.

MATLAB has many applications beyond just matrix
computation. At any time, we can get a listing of the
variables we have stored in memory using the who or
whos command. The value of a particular variable
can be had by typing its name. More than one state­
ment may be placed on a single line by separating
each statement with commas or semicolons:

» sqrt(-1), log(O)
ans= 0 + 1.0000i
W aming: Log of zero
ans= -Inf

If a variable is not assigned to store the result of an
operation, the result is stored in a temporary variable
called ans. In this case, since we separated the state­
ments with commas, the result of each operation was
echoed to the screen. As can be seen, MATLAB eas­
ily deals with complex and infinite numbers in calcu­
lations.

MATLAB has functions which make it ideal as a
signal processing tool. For more details, see the Expo
demos of the Signal Processing Toolbox.

The directories shown in Table 3 contain specialised
functions which can be used. A guide or summary to
them can be obtained by typing eg help datafun,
without bothering to specify the directory.

An overview of the language

Complex numbers and matrices

Complex numbers are allowed in all operations and
functions in Matlab. They are entered using the spe­
cial functions i or j, for example

>> z = 3 + 4*i

Functions

Matlab has well over 200 functions and many more
in specialist Toolboxes.

Directory

datafun

elfun

elm at

funfun

general

color

graphics

lang

matfun

ops

plotxy

plotxyz

polyfun

sounds

specfun

specmat

demos

simulink\
simulink

simulink\
simdemos

Topic

Data analysis and Fourier trans-
form functions.

Elementary math functions.

Elementary matrices and matrix
manipulation.

Function functions-nonlinear nu-
merical methods.

General purpose commands.

Color control and lighting model
functions.

General purpose graphics func-
tions.

Language constructs and debug-
ging.

Matrix functions - numerical linear
algebra.

Operators and special characters

Two dimensional graphics.

Three dimensional graphics.

Polynomial and interpolation func-
tions.

Sound processing functions.

Specialized math functions.

Specialized matrices.

The MATLAB Expo and other
demonstrations.

SIMULINK model analysis and
construction functions.

SIMULINK demonstrations and
samples.

Teaching Engineering Using ... 171

Quitting and saving the workspace

To quit, type quit or exit. Termination of a Matlab
session causes the variables to be lost. Before quit­
ting, the workspace may be saved for later use by
typing save filename, which saves to a file file­
name.mat. Similarly, load filename loads that file.

Matrix operations

We have seen something of these above. Addition
and subtraction are performed simply by typing "+"
or"-", Multiplication by "*".Of course, the dimen­
sions of the matrix must be such that the operation
has significance. There are two matrix division
symbols in Matlab, I and\, corresponding to left and
right multiplication. Thus, X=A\B is a solution to
A*X=B, while X=B/A is a solution to X*A=B.
Other elementary matrix functions include: poly, det
for determinant.

Mathematical functions

The usual trigonometric and hyperbolic functions are
included, but in addition there are bessel, gamma, rat
(for rational approximation), erf, inverf, ellipk for
the elliptic integral of the first kind and ellipj for Ja­
cobian elliptic functions.

Vectors and matrix manipulation

Matlab allows manipulation of rows, columns and
individual elements of matrices. There are a number
of special matrices.

Data analysis

There are a number of elementary statistical tools.
More powerful techniques are available for linear
algebra and signal processing functions.

Polynomials and signal processing

As we have seen already, polynomials are repre­
sented in Matlab as row vectors containing the coef­
ficients ordered by descending powers. Vectors are
used to hold sequences for data processing. Some
signal processing functions include: conv for convo­
lution, cov for covariance, deconv for deconvolution,
fft for a fast Fourier transform, ifft for an inverse.
Some of these have two-dimensional counterparts
which can be applied to matrices, such as jft2, ifft2,
conv2.

The function y=filter(b,a,x) filters the data in vector
x with the filter described by vectors a and b.

Function functions

A class of functions in Matlab works not with nu­
merical matrices but with mathematical functions.
These include numerical integration, nonlinear equa­
tions and optimisation and differential equation solu­
tion. Mathematical functions are represented in
Matlab by function M-files. For example, the func­
tion

y- 1
-(x-.3)2+.0l

1 -6
(x- .9)2 + .04

can be made available to Matlab by creating an M­
file called humps.m:

>>function y = humps(x)
» y=l./ ((x-0.3).1'2+0.01)+ 1./ ((x-
0.9).A2+0.04)-6;

A graph of the function is then obtained by

>> x = -1: O.Ql : 2; plot(x,humps(x))

as shown in Figure 7.

100 .---~~~~~~~~~~~~~~.---~~~~~~~

80

60

40

20

o"--___ _

-20~~~~~~~~~~~~~~~~~~~~~~~

~ -0.5 0 0.5 1.5

Figure 7: Graph of function.

Numerical integration

Two Matlab functions for numerical integration are:

quad - adaptive recursive Simpson's rule
quad8 - Newton Cotes 8 panel rule

To integrate humps from 0 to 1:

» q = quad('humps',0,1)

which gives q = 29.8583, as does quad8.

Nonlinear equations and optimisation

The functions for this are shown in Table 4. The use
of help fmin, for example, shows how these are im­
plemented.

2

172 J.D. Fenton

Table 4: functions for nonlinear equations and opti­
misation.

fmin minimum of a function of one variable

fmins minimum of a multivariable function

fsolve solution to a system of nonlinear equa-
tions

fzero zero of a function of one variable

Differential equation solution

The standard functions for numerical solution are:
ode23, a 2nd/3rd order Runge Kutta method, and
ode45, a 4th/5th order Runge Kutta method. Con­
sider the second-order differential equation used
previously:

subject to the same initial conditions. In this case it is
necessary to write higher-order equations as systems
of first order equations. Hence introducing the vari­
able z = dy/dt, the system is

dy_z=O
dt
dz+ y2=0
dt

It is necessary to create a function M-file containing
these differential equations dydt.m:

-50

-100

-150

-200'--~~'---~~~~~~~---'-~~--'-~~-'

0 2 3 4 5 6

Figure 8: Plot of solution of differential equation.

function dydt = eqns(t,y)
dydt = zeros(2,l);
dydt(l) = +y(2);
dydt(2) = -y(l)."2;

and then to run the commands in Matlab:

» t0=0; tz=6; xO = [O 1]'; %range & initial conds.
» [t,y] = ode23('dydt',t0,tz,x0); %solve
» plot(t,y)

which gives as output Figure 8 containing both the
function and its derivative.

Comparison

The extensive built-in facilities of Matlab make it
also a very powerful tool for the routine analysis of
numerical data and the numerical solution of prob­
lems. Increasingly, around the world there are soft­
ware packages being written using Matlab, and it
may become, like Fortran, the de facto standard for
scientific computing.

The two packages described in this article are com­
plementary to a certain extent. Maple has consider­
able power, but it is necessary to have a certain
amount of experience to operate it most effectively.
Also, because it has the power of symbolic manipu­
lation, it usually will be slower than Matlab when
engaged upon routine computational tasks. Maple
is, however, the personal preference of the author
for the solution of research problems.

There are other symbolic manipulation packages,
which are similar to Maple in appearance and op­
eration. These include Mathematica, Macsyma, Re­
duce and Derive. The personal experience of the
user will usually be the most powerful determinant
of choice.

References

1. Char, B.W., et al, First Leaves: A Tutorial Intro­
duction to Maple V. Berlin: Springer (1992).

2. Etter, D.M., Engineering Problem Solving with
MATLAB. Englewood Cliffs: Prentice-Hall
(1993).

3. The Mathworks Inc., The Student Edition of
MATLAB. Englewood Cliffs: Prentice-Hall
(1992).

