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Objectives 

This chapter demonstrates the use of two mathe­
matical packages which have extensive symbolic 
manipulation and graphical capabilities. The two 
packages described are: 

• MAPLE 

• MATLAB 

At the end of the exercises, the reader should be 
able to solve simple problems with these packages. 

Introduction 

Traditionally, engineering computations have in­
volved the use of high-level languages such as 
FORTRAN, BASIC, PASCAL or C. These are 
mainly numerical languages, and programming 
them requires a lot of detailed fundamental work. 
Modem specialist software may be of a considera­
bly higher level, with the provision of many sub­
routines, specialist software and graphics routines. 
In this module we examine the use of the two pack­
ages described above, as an example of the use of 
these higher-level languages. Such is the provision 
of this software that many of the instructions and 
assistance are best provided on-line. This manual 
segment will describe some of the fundamental pro­
cedures and syntax so that the users can experiment 
with the demonstration modules that are provided. 

• MAPLE 

About MAPLE 

Maple is a language for symbolic mathematical cal­
culation. It does not need numerical information, 
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and is at its most powerful when it is dealing with 
symbols. It has a large number of useful features, 
and it is best explored live, possibly following the 
Tutorial introduction, described as follows. These 
notes are written in a way that allows the reader to 
work through them to develop expertise with the 
program. 

Syntax 

Maple operates very much like a word processor. 
One can go back to previous statements, change 
them, re-evaluate them etc. However, typing 
<Enter> evaluates the block of commands; to insert 
a new line it is necessary to type <Shift Enter>. 

Tutorial - on-line introduction to Maple 

Start Maple by double clicking on the Maple icon in 
the Program Manager. Then type: tutorial(); (note 
that Maple statements are terminated by a semi co­
lon(;), as in C and Pascal). 

The function tutorial() takes the user through a be­
ginning level, on-line tutorial for Maple. This tuto­
rial is not meant to be a replacement for the on-line 
help files, but is instead meant to offer a quick 
method for getting started with Maple. There are 14 
chapters in the on-line tutorial. The command tuto· 
rial(n) skips the standard welcoming text for the 
tutorial and starts the user at chapter n. Most chap­
ters have question and answer sections, and there 
are quizzes included. There is a main menu, from 
which the reader can begin any of the chapters, 
which can be accessed from any break in the text. 

Quick tour - an overview for engineers 
and scientists 

This takes the user through a tour of the capabilities 
of MAPLE which includes functions that are of 
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particular interest in more applied disciplines, in­
cluding special functions, transforms, and statistics. 
To begin the tour, choose Open from the File menu 
and make the appropriate selection. Instructions on 
working through the tours are included in the work­
sheet. 

The way to execute each of the statements is simply 
to type <Enter> when the cursor is on that line. This 
is true in all MAPLE sessions. Table 1 shows some 
of the more useful commands. 

Table 1: Fundamental MAPLE commands. 

Command Description 

help; General help menu 

help 'topic'; Information on a specific 

OR ?'topic'; topic, e.g. help step; 

restart; Clears all the variables stored 

on the stack 

quit; Leave MAPLE 

<Up/Down Ar- Moves to previous or later 

rows> commands 

<Enter> Evaluates commands 

<Shift Enter> Inserts new line 

Personal experience 

Now it is time to experience the power of such a 
program. Maple statements are input after the > 
prompt. Every Maple statement must end with a 
semicolon ; (or a colon : if the result is not to be 
printed). If one has forgotten to type ; or : there will 
be no response until the next command is typed. 
Until Maple receives a (semi)colon it will neither 
process the statement nor accept a new statement. 

Maple can be used rather like a modem word proc­
essor. The cursor can be placed anywhere in the file 
and material may be deleted, copied, or executed. 

Note that the Maple assignment operator is :=, not 
just= (which is reserved for when an equation is set 
up). Hence, a typical Maple command line might 
look like: 

> y := theta*x*(x+ 1 )*(x-1 ); 

The response to this is properly typeset mathemat­
ics: 

y: = e x(x+ l)(x-1), 
which can be copied and placed in a document, just 
as was done here. Note that the names of Greek let­
ters are automatically converted to those symbols. 

The ditto symbol " (double quotes) is used to indi­
cate the previous expression in a Maple session. For 
example, typing 

>2*"; 

gives 

2 e x(x+ l)(x-1), 
Some important Maple functions are expand, sim­
plify, and normal, which are useful for simplifying 
expressions; evalf, for evaluating to floating-point; 
solve, for solving equations; int and dijf, for integra­
tion and differentiation; series, for Taylor or Laurent 
series; and plot, for plotting functions. Other useful 
Maple functions are: array, coeff, collect, convert, 
degree, denom, evalc, ifactor, limit, map, normal, 
numer, op, product, simplify, subs, sum, table, and 
type. These commands are the more commonly used 
ones; this is by no means a complete list of Maple 
functions. Maple also has many mathematical func­
tions built-in, such as sin, cos, tan, exp, In, 
GAMMA, Zeta, and binomial. 

For example, 

>expand("); 

gives 

and then 

> diff(",x); 

2 e x3 -2 ex, 

differentiates that with respect to x: 

6 e x2 -2 8. 

The command factor is useful: 

> factor("); 

gives 
28(3x2 -1). 

While these commands all seem simple enough, 
Maple's real power is shown when it operates on 
complicated expressions, including quantities like 
series, matrices, systems of equations and so on, 
which may already have been experienced in the 
above demonstration programs. 
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For engineering problem solving, Maple has a num­
ber of useful capabilities. The plot command needs 
a minimum of information to be provided. The 
software provides all necessary scalings etc, which 
can of course, be over-ridden. For example, the 
command 

> plot(xA2,x); 

creates a separate screen, which can be copied if 
necessary, and which looks like Figure 1. 

100 

80 

20 

·10 .5 5 10 . 
Figure 1: Typical screen output from plot command. 

The command solve can be used to solve a simple 
equation or a number of simultaneous equations. 
For example, remembering that y has been defined 
previously, the command 

> solve(y=O,x); 

(note the '=' sign, defining an equation), gives all 
three solutions of the cubic: 

0, -1, 1 . 

The syntax x = a .. b is very common, requiring that 
the variable x take values between a and b. If x is an 
integer they will be integer values. For example, to 
generate a sum: 

> sum(A[k]*zAk,k=0 .. 5); 

gives 

Ai +A z +Ai z2 +A, Z
3 +Ai t' +As z5

• 

Note that A[k] is printed as A with a subscript the 
numerical value of k. 

A useful command is subs, which enables substitu­
tions as specified. For example: 

> subs(A=B,z=Z,"); 

gives 

~+Biz +Bi z2 +Bi z3 +B4 z
4 +Bs z5

• 

Series operations are very powerful in Maple. For 
example, to generate a Taylor series for tan(x) about 
x=O with neglected terms of order 6: 

> f:=series(tan(x),x=0,6); 

gives 

f: =x+fx3+ 125xs+o(x6). 

An often better form of approximation is the use of 
Pade approximants, using a rational function with 
series in numerator and denominator. For example 
the Pade approximant to tan(x) with cubics top and 
bottom is obtained by (note the package numapprox 
has to be loaded first): 

> with(numapprox): g := pade(tan(x), x, [3,3]); 

which gives 

- 1 3 15x+x 

1-2x2 
5 

The various approximations can be compared by 
first converting f to a polynomial and setting up the 
plot: 

> f:=convert(f,polynom); 
>pl := plot(f,x=O .. Pi/2,y=0 .. 10,linestyle=O): 

Then with similar commands for p2 for the plot of 
the function itself and p3 for the plot of g: 

> with(plots): 
> plots[display ]( {pl,p2,p3}, title= 

'Approximations to tan(x)', axes=BOXED); 

10'~~~~~~~~~~~~~~~~~~~~~ 

8 

6 

2 

Do 0.2 

J 
// 

--~/ 
---- - -- - _...- ~ 
0.4 0.6 0.8 1.2 1.4 

x 

Figure 2: Approximations to tan x. 

The graphs are shown in Figure 2, which demon­
strates the ability of the Pade approximant to handle 
the singular behaviour of the tan function. 

The equation solving properties are very useful. As a 
small example, consider the set of two simultaneous 
equations set up and solved by: 
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> Equations:={x+y=2,x-y=O}: 
> Unknowns:={x,y}: 
> Solution:=solve(Equations,Unknowns); 

gives 

Solution : = { y = 1, x = 1} . 

Exam.pie packages 

There are a number of sample work sheets which 
the user can work through to explore the use of 
MAPLE. Some of these are set out below. Use 
FilelOpen to load each of them in tum. 

INTRO.MS -An Introduction Worksheet 

This is a very useful introduction to some of the 
commands which can be used automatically to gen­
erate series, to expand, to factorise and to simplify. 

ODE.MS - Solving Differential Equations with 
Maple 

This worksheet demonstrates Maple's sophisticated 
differential equation solver. Here are some more 
examples of equations that would appear in a first 
course on differential equations. Maple can also 
solve systems of differential equations. In some 
cases, we can specify an algorithm to be used in 
solving the equation. For example, Maple can be 
asked to use an algorithm to solve the equation, 
such as Laplace transforms. Maple also has an op­
tion for finding numerical solutions. Maple returns a 
procedure that, when evaluated at a point, yields the 
solution's value, and the value of all derivatives up 
to one less than the order of the ODE. The default 
algorithm used is a Fehlberg fourth-fifth order 
Runge-Kutta method. We can plot the result using 
the function odeplot. For example, to solve the or­
dinary differential equation 

d2y -
dt2 + y- 0, 

subject to the boundary conditions y(O) = 0 and 
dy/dt(O) = 1 , the commands are 

> DE:=diff(y(t),t$2)+y(t); 

> Soln:=dsolve({DE,y(O)=O,D(y)(O)=l}, y(t)); 

and the result is the analytical solution: 

y(t) = sin(t) . 

If the right hand side is then assigned to the left by 

> assign(Soln); 

then the solution can be plotted by the command 

> plot(y(t),t=0 .. 6); 

which gives the graph shown in Figure 3. 

0.5 

0 3 5 6 

-0.5 

-1 

Figure 3: Plot of solution of differential equation. 

If the equation does not have an analytical solution, 
then it can be solved numerically. For example, con­
sider the solution of the nonlinear equation 

subject to the same initial conditions. The commands 
are: 

> DE:=diff(y(t),t$2)+y(t)"2; 

> Solution := 
dsolve( { DE,y(O)=O,D(y)(O)= 1} ,y(t),numeric ): 

> with(plots): odeplot(Solution, { t,y} ,0 .. 6); 

which gives as output the plot shown in Figure 4. 

1--2 3 6 

-5 

-10 

-15 

-20 

-25 

-30 

Figure 4: Plot of numerical solution. 

The program generates internal functions so that the 
numerical solution can be used. For example, typing 

>Solution(!); 

gives the result for the procedure we have just de­
fined as "Solution" at the point t = 1 : 
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lt=l, y(t)=.9204757302791347,~ty(t) = .6928700976193584]. 

Graphics.MS - Graphics with Maple 

This worksheet is a demonstration of Maple's 
graphics capabilities. Place the cursor on the first 
input line, and step through the examples in order, 
by pressing <Enter> at each Maple command. 

Warning: This worksheet is quite computationally 
intensive. After each plot, close the plot window 
before executing the next command by double 
clicking on the left comer. 

Some of the results are quite spectacular. Consider 
the power of representing the function 

f : = x el- x
2
- Y

2
) , 

as shown by Figure 5. 

Other useful engineering worksheets include: 

INT.MS - Shows the power of Maple's integration 
capabilities. For example, consider the function: 

x3 - x 
x5 + x4 + x3 - x2 - x - 1 · 

The command int(f,x) gives the integral: 

- 1 2x + 1 + 213 arctaj .l(2x + 1) 13) . 
3 x2 + x + 1 9 '\ 3 

Maple is also capable of computing improper inte­
grals - often symbolically. For example: 

>Int( exp(-t"2), !=-infinity . .infinity ); 

gives 

i>"dt, 
then: 

>value("); 

gives: In. Note the use of the ditto symbol, which 
always means the result of the previous calculation. 

Ll:"JALG.MS - Linear Algebra with Maple 

Maple has a library package for linear algebra. With 
it, we can compute eigenvalues and eigenvectors, 
determinants of matrices, perform row and column 
operations. Many of these functions can be used on 
symbolic matrices. For example, define matrix A: 

·2 

Y a·. 

·1 

(a) 

·1 
'2 

.,-"'-~--"". /-------,, 

,,~>::::::~=~~, ,~:~===~=:::~·:'"' t1 f I / ./ .,..-·····--....,_ '·\, 'I/ ...-··-, ·-.._ ·, · .. ' 
I / i//-""','.\\ (f/j,..----,,_'..'-., \ \ 

( (\(\((_(~=>))))~ ((((((c~)~)) )_)) l) • , 
\ ,_\ \,, --"/_;// \xl '· '----::./· •I, I / 

,-'-...,---//!/, \'"'-"'--·" ///;• , -......... ''~ ...... ____ ,.... } I \ \ '"' --~ ._.,- /. / ,. 
·-,,, '--~::=:::::::: / j \ '~::-:::::::~::: . ..--/ / 

"· ------ / " ------- ./ ~---·---- ~-~,.,,--

(b) 

, , ............ - ......... ~,,, ____ ...._, 

I-.,----,>' I 

·2c_~2~~~~~~~~~~~~~~~~~-,-' ·1 0 2 
x 

(c) 

Figure 5: Graphs of f = x e-(x2
+ Y

2
): (a) surface plot, 

(b) contour plot, (c) gradient vector plot. 

1 x y 
A:=IOlz 

0 0 I 

' 

> A:=matrix([[ l ,x,y ],[O, 1,z],[0,0, 1 ]]); 

Maple uses its &* operator to denote non­
commutative matrix multiplication. We must use the 
function evalm to evaluate a matrix expression: 
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> evalm(A&* A); 

1 
0 
0 

2x 2y+ xzj 
1 2z . 
0 1 

Maple can compute determinants, e.g. det(A); or, 
compute the inverse of a matrix: 

> inverse(A); 

I 
0 
0 

-x 
1 
0 

xz- yj 
-z . 
I 

OUTPUT.MS - Language Output with Maple 

Maple has several particularly useful commands for 
converting Maple output into other languages and 
forms. This worksheet highlights transformations to 
Fortran, C, LaTeX, and Troff Eqn printing. Of 
course, the output from ordinary Maple commands 
can be simply copied to a Windows word processor. 

Consider the Maple expression 

>el :=exp(-x"2) * (a*cos(y+t)+b*sin(y-t)); 

which gives 

el :=e(-x2l(acos(y+t) +bsin(y-t)). 

Now, 
> fortran(e 1 ); 

gives the text: 

tO = exp(-x**2)*(a*cos(y+t)+b*sin(y-t)) 

or, for the C language, "C(el)" gives 

tO = exp(-x*x)*(a*cos(y+t)+b*sin(y-t)); 

These can be directly copied into the necessary pro­
grams. In this case, the advantage did not seem 
huge. Consider, however, the instructions necessary 
for, say, the inverse of a 4x4 matrix! For word­
processing of equations, the Maple library LaTeX 
and eqn conversion routines serve two useful pur­
poses. They provide foremost a way of 

presenting the results of a Maple session, but they 
also work well as general purpose math interpreters 
for making documents. For example: 

> latex(el); 

gives the text 

{ e"{ -{ x }" { 2} } } \left (a\cos(y+t)+b\sin(y-t)\right ), 

which can be read into a TeX document. 

Other useful worksheets include SERIES.MS, 
SOL VE.MS, SOL VE2.MS, SPECFUNC.MS, and 
SYMBOLIC.MS. The student should work his or 
her way through these. 

Overall, the use of symbolic manipulation and the 
power of a number of inbuilt mathematical opera­
tions means that less attention has to be paid to 
mathematical detail and more can be spent on the 
physical interpretation of the results obtained. 

.MATLAB 

The first version of MATLAB was written at the 
University of New Mexico and Stanford University 
in the late 1970s, intended for use in courses in ma­
trix theory, linear algebra and numerical analysis. 
The authors had been involved in the development 
of FORTRAN subroutine packages for matrix ma­
nipulation, and sought to enable students to use 
such packages without writing FORTRAN pro­
grams. 

Today, MATLAB has been extended far beyond the 
original Matrix Laboratory. It is now an interactive 
system and programming language for general sci­
entific and technical computation. Its basic data 
element is a matrix that does not require dimension­
ing. This allows relatively simple solution of many 
numeric problems. 

The manufacturers of MATLAB offer a series of 
Application Toolboxes that contain sets of 
MATLAB functions designed for specific applica­
tions, including digital signal processing, automatic 
control system design, nonlinear simulation, 
parametric modelling, optimisation and spline 
analysis. 

The software has some good introductions and 
demonstration modules. For example, typing intro 
leads one through a series of demonstrations of ele­
mentary commands and their syntax. After doing 
this it will be necessary to resize the windows of the 
Matlab Command Window and the Figure Window, 
so that the comments and the output can both be 
read. (See the language intro demo obtained by 
typing expo for a brief overview of the MATLAB 
language and M-files.) 

For more help on directory/topic, type help topic. 
Commands to get started include : intro, demo, help 
help. Commands for more information include: 
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help, whatsnew, info, subscribe and others briefly 
described in Table 2. 

Table 2: Basic MATLAB commands. 

General purpose commands. 

help On-line documentation. 

I 
doc Load hypertext documentation. 

/ what Directory listing of M-, MAT-
! and MEX-files. 
I 

I type List M-file. 
i 

: lookfor Keyword search through the 
I HELP entries. 
: 

i 
which Locate functions and files. 

path Control MATLAB's search path. 

' :'\lanaging variables and the workspace. 

I who List current variables. 

whos List current variables, long 
' form. 

load Retrieve variables from disk. 

save Save workspace variables to 
disk. 

clear Clear variables and functions 
from memory. 

Quitting MATLAB. 

quit Terminate MATLAB. 

The results from typing intro include a demonstra­
tion of how, unless advised otherwise, everything is 
interpreted as an array. MATLAB requires no spe­
cial handling of vector or matrix math. 

For example 
» a = [ 1 2 3 4 6 4 3 4 5) 
>> b = a+2 
adds 2 to each element of our vector, with the result 
lines: 

a= 
b = 3 

2 
4 

3 
5 

4 
6 

6 4 3 
8 6 5 

4 5 
6 7 

Creating graphs in MATLAB is made simple. Here 
we plot the result of the vector addition with grid 
lines, shown in Figure 6. 

» plot(b) 

>>grid 

Creating a matrix is as easy as making a vector, us­
ing semicolons (;)to separate the rows of a matrix. 

»A= [ 120; 2 5 -1; 4 10 -1) 

a..-~...,-~~~~-.-~-....~~...-~...,...~~~----, 

7. - - - - - - - - - - - -

6 

5• - - - - - l 

4 

31 2 3 4 5 6 7 8 9 

Figure 6: Typical screen output from plot command. 

[
1 2 OJ 

A= 2 5 -1 

4 10 -1 

Now we calculate the inverse of the matrix: 

» X=inv(A) 

l s 2 -2J 
A= -2 -1 1 

0 -2 1 

and then illustrate the fact that a matrix times its in­
verse is the identity matrix. 

» A*X 

ll 0 OJ 
0 1 0 

0 0 1 

MATLAB has functions for nearly every type of 
common matrix calculation. There are functions to 
obtain eigenvalues: 

» eig(A) 

l3.7321J 
ans= 0.2679 

1.0000 

Or, one can obtain the characteristic polynomial of a 
matrix A, det(lambda*I - A), for which one types 

» p=round(poly(A)) 

giving: p = I -5 5 -1 
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The poly function generates a vector containing the 
coefficients of the characteristic polynomial. We can 
easily find the roots of a polynomial using the roots 
function: 

Table 3: Specialised MATLAB function directories. 

» roots(p) 

ans= 3.7321 
0.2679 
1.0000 

which are the eigenvalues of the original matrix. 

MATLAB has many applications beyond just matrix 
computation. At any time, we can get a listing of the 
variables we have stored in memory using the who or 
whos command. The value of a particular variable 
can be had by typing its name. More than one state­
ment may be placed on a single line by separating 
each statement with commas or semicolons: 

» sqrt(-1), log(O) 
ans= 0 + 1.0000i 
W aming: Log of zero 
ans= -Inf 

If a variable is not assigned to store the result of an 
operation, the result is stored in a temporary variable 
called ans. In this case, since we separated the state­
ments with commas, the result of each operation was 
echoed to the screen. As can be seen, MATLAB eas­
ily deals with complex and infinite numbers in calcu­
lations. 

MATLAB has functions which make it ideal as a 
signal processing tool. For more details, see the Expo 
demos of the Signal Processing Toolbox. 

The directories shown in Table 3 contain specialised 
functions which can be used. A guide or summary to 
them can be obtained by typing eg help datafun, 
without bothering to specify the directory. 

An overview of the language 

Complex numbers and matrices 

Complex numbers are allowed in all operations and 
functions in Matlab. They are entered using the spe­
cial functions i or j, for example 

>> z = 3 + 4*i 

Functions 

Matlab has well over 200 functions and many more 
in specialist Toolboxes. 

Directory 

datafun 

elfun 

elm at 

funfun 

general 

color 

graphics 

lang 

matfun 

ops 

plotxy 

plotxyz 

polyfun 

sounds 

specfun 

specmat 

demos 

simulink\ 
simulink 

simulink\ 
simdemos 

Topic 

Data analysis and Fourier trans-
form functions. 

Elementary math functions. 

Elementary matrices and matrix 
manipulation. 

Function functions-nonlinear nu-
merical methods. 

General purpose commands. 

Color control and lighting model 
functions. 

General purpose graphics func-
tions. 

Language constructs and debug-
ging. 

Matrix functions - numerical linear 
algebra. 

Operators and special characters 

Two dimensional graphics. 

Three dimensional graphics. 

Polynomial and interpolation func-
tions. 

Sound processing functions. 

Specialized math functions. 

Specialized matrices. 

The MATLAB Expo and other 
demonstrations. 

SIMULINK model analysis and 
construction functions. 

SIMULINK demonstrations and 
samples. 
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Quitting and saving the workspace 

To quit, type quit or exit. Termination of a Matlab 
session causes the variables to be lost. Before quit­
ting, the workspace may be saved for later use by 
typing save filename, which saves to a file file­
name.mat. Similarly, load filename loads that file. 

Matrix operations 

We have seen something of these above. Addition 
and subtraction are performed simply by typing "+" 
or"-", Multiplication by "*".Of course, the dimen­
sions of the matrix must be such that the operation 
has significance. There are two matrix division 
symbols in Matlab, I and\, corresponding to left and 
right multiplication. Thus, X=A\B is a solution to 
A*X=B, while X=B/A is a solution to X*A=B. 
Other elementary matrix functions include: poly, det 
for determinant. 

Mathematical functions 

The usual trigonometric and hyperbolic functions are 
included, but in addition there are bessel, gamma, rat 
(for rational approximation), erf, inverf, ellipk for 
the elliptic integral of the first kind and ellipj for Ja­
cobian elliptic functions. 

Vectors and matrix manipulation 

Matlab allows manipulation of rows, columns and 
individual elements of matrices. There are a number 
of special matrices. 

Data analysis 

There are a number of elementary statistical tools. 
More powerful techniques are available for linear 
algebra and signal processing functions. 

Polynomials and signal processing 

As we have seen already, polynomials are repre­
sented in Matlab as row vectors containing the coef­
ficients ordered by descending powers. Vectors are 
used to hold sequences for data processing. Some 
signal processing functions include: conv for convo­
lution, cov for covariance, deconv for deconvolution, 
fft for a fast Fourier transform, ifft for an inverse. 
Some of these have two-dimensional counterparts 
which can be applied to matrices, such as jft2, ifft2, 
conv2. 

The function y=filter(b,a,x) filters the data in vector 
x with the filter described by vectors a and b. 

Function functions 

A class of functions in Matlab works not with nu­
merical matrices but with mathematical functions. 
These include numerical integration, nonlinear equa­
tions and optimisation and differential equation solu­
tion. Mathematical functions are represented in 
Matlab by function M-files. For example, the func­
tion 

y- 1 
-(x-.3)2+.0l 

1 -6 
(x- .9)2 + .04 

can be made available to Matlab by creating an M­
file called humps.m: 

>>function y = humps(x) 
» y=l./ ((x-0.3).1'2+0.01)+ 1./ ((x-
0.9).A2+0.04)-6; 

A graph of the function is then obtained by 

>> x = -1: O.Ql : 2; plot(x,humps(x)) 

as shown in Figure 7. 

100 .---~~~~~~~~~~~~~~.---~~~~~~~ 

80 

60 

40 

20 

o"--___ _ 

-20~~~~~~~~~~~~~~~~~~~~~~~ 

~ -0.5 0 0.5 1.5 

Figure 7: Graph of function. 

Numerical integration 

Two Matlab functions for numerical integration are: 

quad - adaptive recursive Simpson's rule 
quad8 - Newton Cotes 8 panel rule 

To integrate humps from 0 to 1: 

» q = quad('humps',0,1) 

which gives q = 29.8583, as does quad8. 

Nonlinear equations and optimisation 

The functions for this are shown in Table 4. The use 
of help fmin, for example, shows how these are im­
plemented. 

2 
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Table 4: functions for nonlinear equations and opti­
misation. 

fmin minimum of a function of one variable 

fmins minimum of a multivariable function 

fsolve solution to a system of nonlinear equa-
tions 

fzero zero of a function of one variable 

Differential equation solution 

The standard functions for numerical solution are: 
ode23, a 2nd/3rd order Runge Kutta method, and 
ode45, a 4th/5th order Runge Kutta method. Con­
sider the second-order differential equation used 
previously: 

subject to the same initial conditions. In this case it is 
necessary to write higher-order equations as systems 
of first order equations. Hence introducing the vari­
able z = dy/dt, the system is 

dy_z=O 
dt 
dz+ y2=0 
dt 

It is necessary to create a function M-file containing 
these differential equations dydt.m: 

-50 

-100 

-150 

-200'--~~'---~~~~~~~---'-~~--'-~~-' 

0 2 3 4 5 6 

Figure 8: Plot of solution of differential equation. 

function dydt = eqns(t,y) 
dydt = zeros(2,l); 
dydt(l) = +y(2); 
dydt(2) = -y(l)."2; 

and then to run the commands in Matlab: 

» t0=0; tz=6; xO = [O 1]'; %range & initial conds. 
» [t,y] = ode23('dydt',t0,tz,x0); %solve 
» plot(t,y) 

which gives as output Figure 8 containing both the 
function and its derivative. 

Comparison 

The extensive built-in facilities of Matlab make it 
also a very powerful tool for the routine analysis of 
numerical data and the numerical solution of prob­
lems. Increasingly, around the world there are soft­
ware packages being written using Matlab, and it 
may become, like Fortran, the de facto standard for 
scientific computing. 

The two packages described in this article are com­
plementary to a certain extent. Maple has consider­
able power, but it is necessary to have a certain 
amount of experience to operate it most effectively. 
Also, because it has the power of symbolic manipu­
lation, it usually will be slower than Matlab when 
engaged upon routine computational tasks. Maple 
is, however, the personal preference of the author 
for the solution of research problems. 

There are other symbolic manipulation packages, 
which are similar to Maple in appearance and op­
eration. These include Mathematica, Macsyma, Re­
duce and Derive. The personal experience of the 
user will usually be the most powerful determinant 
of choice. 
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