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Introduction

This paper obtains and examines the principal approximations for describing the movement of long
waves and floods in waterways. Traditionally the St Venant long wave equations have occupied a central
position in this area. They have been studied at great length and form the basis of many numerical
models. In this paper a new higher-order approximation is derived which does not make the traditional
hydrostatic approximation, which may be useful in practice. These so-called Boussinesq equations,
named after similar long wave equations in coastal engineering, contain a third derivative term. If
this term is deleted a form of the St Venant equations is obtained which uses cross-sectional area and
discharge as variables, rather than surface elevation and velocity. Subsequently both the Boussinesq and
St Venant equations are linearised about a uniform steady state, and it is shown that the behaviour of
solutions of these equations is rather more complicated than has generally been realised. As expected,
the solutions show wavelike behaviour, but they also show diffusive and dispersive behaviour, where the
decay and propagation behaviour of the solutions show dependence on wavelength. While dispersion
is to be expected for the Boussinesq form, it has not been associated with the St Venant equations. A
novel inference from this is that the velocity of propagation of waves in channels with friction is not the
widely-presumed long wave speed.

Exact equations

By considering a control volume based on a slice of an open channel of elemental length, (for example,
Cunge et al. (1980, p.14)) it can relatively easily be shown that the requirement that mass be conserved
is given by the mass conservation equation:

∂A

∂t
+

∂Q

∂x
= q, (1)

where A is the cross-sectional area of the flow, Q is the discharge in the channel, q is the volume rate
per unit length at which inflow from rain groundwater or tributaries enters the channel, x is the distance
along the channel and t is time. This equation is something of a rarity in hydraulics, as it is exact. No
analytical approximations have been introduced in the derivation, other than that the channel is straight.
(For curved channels the corresponding equation has been obtained by Fenton and Nalder (1995)). Some
previous derivations have obtained the ∂Q/∂x term by assuming that the streamwise velocity component
is constant over the section, which is not necessary. The simplicity of equation (1) and the fact that it is
exact strongly suggest that in the mass-conservation equation at least, discharge and cross-sectional area
are more fundamental than velocity and surface elevation, which have been the quantities often used in
the past.

Now if we consider the integral form of the momentum equation, it can be shown that (for example,



Fenton, 1999?):
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dA+ gASf = quq. (2)

where u is the streamwise velocity at any point, p is the pressure, ρ is the fluid density, g is the accel-
eration due to gravity, Sf is the friction slope with the usual convention that a positive friction slope
corresponds to a force directed upstream, and uq is the velocity of the inflow before mixing. The in-
tegrals are to be evaluated over the whole cross-section of the flow. This equation also contains no
essential analytical approximations, although the frictional term is usually approximated by a crude but
convenient empirical expression, either Chézy or Manning’s equation. The two equations (1) and (2)
are the fundamental equations governing the propagation of disturbances. They are both exact, although
the latter is in integral form, and to evaluate it for practical use it is necessary to insert expressions for
velocity u and pressure p, which we will now do.

Boussinesq equations

The appellation ”Boussinesq equations” is a generic one for long wave equations which contain the ef-
fects of wave height and length to first order, which are widely used in coastal engineering, (for example,
Peregrine, 1972). It is surprising that they have not been used more in hydraulics. Teng and Wu (1992)
have obtained channel Boussinesq equations for the case of irrotational flow and no friction. Here we
obtain Boussinesq equations for real rivers and channels with friction and which contain the effects of
non-uniformity of velocity distribution and non-hydrostatic pressure distribution to first order.

It has been shown (Fenton, 1999?) that the integrals in equation (2) may be approximated with more
accuracy than has generally been recognised. The approximationZ

A

u2 dA ≈ Q2

A
(3)

is actually exact for a velocity distribution which is linear both across the channel and vertically, which
would conveniently albeit roughly describe many flows in nature. If we are satisfied with that approxima-
tion there is no need to introduce any momentum coefficients. In the absence of any detailed knowledge
of the velocity distribution, this is about as far as can be gone.

Now we consider the pressure term
1

ρ

Z
A

∂p

∂x
dA. (4)

The conventional approach in hydraulics is to use the hydrostatic approximation, that the pressure at a
point is given by the equivalent static head of fluid above. Here we consider a higher level of approxi-
mation. If we consider the equations of motion of an inviscid fluid where the wave motion is long then
it can be shown (Peregrine, 1972) that the pressure gradients in the fluid in directions y and z, transverse
to the channel and vertically upwards respectively, are given approximately by:

1

ρ

∂p

∂y
= −∂v

∂t
and

1

ρ

∂p

∂z
= −g − ∂w

∂t
, (5)

where (v, w) are the velocity components in directions (y, z). The significance of these equations is
that the pressure gradients are given by the local fluid acceleration, modified by g in the case of the
vertical component. The hydrostatic approximation includes only the latter term and neglects the fluid
acceleration terms. If it is assumed that the vertical acceleration term varies linearly between the surface
and the bed, it can be shown after some manipulations, including equation (3) substituted into equation
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(2), that the momentum equation with A and Q as dependent variables is:
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¢
= quq, (6)

where B is the width of the surface at any section, d̄ is the depth of the centroid of the cross-section
below the surface, which could well be assumed to be a representative constant value, and S̄ is the mean
bed slope of the stream. Hence we have equations (1) and (6), a pair of partial differential equations
with area A and discharge Q as dependent variables and distance x and time t as independent variables.
They describe the propagation of long waves and flows in streams where the effects of non-uniformity
of velocity and pressure distributions are included to first order. In fact, those effects have manifested
themselves as a single third derivative term in equation (6), which we will refer to as the dispersive term
for reasons which will become obvious.

Behaviour of solutions of the Boussinesq equations

We consider a situation where disturbances are small perturbations about a uniform flow of velocity U0
and area A0. Here we wish to examine the effect of the dispersive term, and so for simplicity we will
ignore effects of inflow, friction and bed slope. It can be shown that equations (1) and (6) become

∂A

∂t
+

∂Q

∂x
= 0, (7)

∂Q

∂t
+ 2U0

∂Q
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+
¡
c20 − U20
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0
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∂3Q

∂x2∂t
= 0, (8)

where c0 =
p
gA0/B0, commonly referred to as the speed of propagation of long waves (which we will

see is not necessarily the case) and whereD2
0 = 2A0d̄0/B0, such that in a rectangular channelD0 is the

actual depth.

We assume that the wave can be Fourier decomposed into a number of sinusoidal waves, any one of
which may be considered to vary like exp (ik (x− ct)), where i =

√−1, corresponding to a sinusoidal
wave of length 2π/k travelling at speed c. It is simpler here to restrict attention to the case where there
is no underlying flow, such that U0 = 0. Letting A = A0 + A1e

ik(x−ct), and Q = Q1e
ik(x−ct), we can

show that there is a solution to the system of equations (7) and (8) only if the wave speed is given by

c2 =
c20

1 + 1
3k
2D2

0

. (9)

This shows the effects of dispersion: that, instead of the traditional result that the wave speed is inde-
pendent of length, such that c2 = c20 = gA0/B0, the wave speed now depends on the wavelength of
disturbances, as given by the wavenumber k.

The result (9) fits in with traditional linear water wave theory for two-dimensional disturbances moving
over stationary fluid whose motion remains irrotational, where the vertical distribution of velocity may
be incorporated exactly. In that case, where the water is of depth d, the well-known result is (see
Peregrine, 1972, for example):

c2

c20
=
tanh kd

kd
, (10)

and taking the power series approximation of this to second order we obtain

c2

c20
= 1− 1

3
k2d2 + . . . , (11)

which agrees with equation (9) when the power series expansion of that expression is calculated for the
case of a rectangular channel or a two-dimensional flow, whenD0 = d.
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The above work agrees with that of Teng and Wu (1992), who solved the case of waves in a channel
where there is no friction and where the flow is irrotational. In their case, using surface elevation and
supposed mean fluid velocity as dependent variables, it was necessary to solve an elliptic partial differ-
ential equation to obtain the dimensionless quantity κ in the coefficient of their dispersion term, which
they expressed as −13κ2 (A0/B0)2 ūxxt, where they obtained solutions for some elementary channel
cross-sections. In the present work the dispersion term is obtained explicitly in terms of the channel
cross-section: −23A0d̄0/B0Qxxt. To compare Teng and Wu’s result with the present work, it can be
seen that κ2 plays the same role as 2B0d̄0/A0, or, 2 × (depth of centroid / mean depth). In Table 1 we
show a comparison between the values for four elementary sections. It can be seen that disagreement is
not large, which is perhaps surprising considering the two very different approaches.

Channel section κ (Teng & Wu) 2B0d̄0/A0

rectangular 1 1
semicircular 1.06 1.04
parabolic 1.16 1.10
triangular 1.27 1.15

Table 1. Numerical coefficients in dispersion terms from Teng & Wu and the present work.

In considering the full equations, however, the system is nonlinear (as the coefficients are actually func-
tions of the dependent variables) in addition to being dispersive. This can be quantified roughly by
interpreting equation (9) in a nonlinear sense, replacing the reference uniform flow values by the actual
ones, and using a power series expansion consistent with the long wave approximation, giving

c2 =
gA/B

1 + 2
3k
2Ad̄/B

=
gA

B

µ
1− 2

3
k2

Ad̄

B
+ . . .

¶
. (12)

whose main effect is that higher disturbances travel faster, as the leading term A/B is the mean depth,
and increasing depth means a larger value of c which is familiar from hydraulic theory. The dispersive
term works such that longer waves (small k) are the fastest. In the propagation of arbitrary waves, the
two effects will interact.

The Saint-Venant equations

Now we consider the behaviour of the traditional hydraulic approximation, where there is no disper-
sive term. To do this we simply delete the dispersive term from equation (6) to give the Saint-Venant
equations in the form where the dependent variables are the cross-sectional area A and discharge Q, as
derived and presented by Fenton (1999?):

∂A

∂t
+

∂Q

∂x
− q = 0, and (13)

∂Q

∂t
+

µ
gA

B
− Q2

A2

¶
∂A

∂x
+
2Q

A

∂Q

∂x
+ gA

¡
Sf − S̄

¢− quq = 0. (14)

The traditional analysis of these equations, aided by use of the method of characteristics (see Stoker,
1957, for example) shows that the gradient of the characteristics is

dx

dt
=

Q

A
±
r

gA

B
, (15)

such that there is a current velocity Q/A, on which waves travel upstream and downstream at a rate
±pgA/B. The traditional interpretation is that waves also travel at these velocities at which information
travels up and down the channel. The role of the frictional terms has been assumed to be simply to
modify the magnitude of the waves, which are supposed to show no dispersive behaviour. In the next
section we will show that a proper analysis of the equations, incorporating the friction terms, shows that
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the solutions of the St Venant equations are in fact, not simply dissipative, but are in fact diffusive and
dispersive as well. To do this we will consider a linearisation of the equations, but not done as simply as
that for the Boussinesq equations without friction as shown above.

Behaviour of solutions of the Saint-Venant equations

We consider small perturbations about a uniform flow, with no inflow, q = 0. Let the friction slope be
written in the general form Sf = βU |U |n−1 /Rm, where β is a friction coefficient, U = Q/A is the
mean velocity in the channel, and R = A/P is the hydraulic radius, where P is the wetted perimeter. In
the case of Manning’s law,m = 4/3, for Chézy’s lawm = 1, and for both laws n = 2. We linearise the
friction term by expanding about a reference flow of area A0, discharge Q0, and wetted perimeter P0. It
is convenient to introduce S, the common slope corresponding to the bed slope and surface slope of the
reference flow. Substituting into the St Venant equations, taking only first order terms, and substituting
back for the perturbed quantities, the St Venant equations with the linearised forcing terms may be
written:

∂A

∂t
+

∂Q

∂x
= 0, and (16)

∂Q

∂t
+
¡
c20 − U20

¢ ∂A
∂x

+ 2U0
∂Q

∂x
+Θ1 (A−A0) +Θ2 (Q−Q0) = 0, (17)

where c0 and U0 are as previously. The coefficients Θ1 and Θ2 express the effects of friction as

Θ1 = −gS
µ
n+m

µ
1− A0P

0
0(A0)

P0

¶¶
, (18)

Θ2 = ngS/U. (19)

We now examine the nature of solutions of these equations, by seeking solutions which vary like
exp (ikx− µt), where k is the wavenumber such that the variation is periodic in x with a wavelength
2π/k and where variation in time is like e−µt. It is the nature of the coefficient µ which determines the
behaviour of the waves, whether they grow or decay, and how fast they travel. Let A = A0+A1e

ikx−µt
and Q = Q0 + Q1e

ikx−µt, where A1 and Q1 are constants, the Fourier coefficients of the wave of
wavenumber k. Substituting into equations it can be shown that for solutions to exist

µ = α− s√
2

q
φ+ α2 − k2c20| {z }

DECAY RATE

+ ik

µ
U0 +

s

k
√
2

q
φ− α2 + k2c20

¶
| {z }

PROPAGATION VELOCITY

, (20)

where s is either +1 or −1 throughout any one equation, and where we use φ to denote the term

φ =

q¡
k2c20 − α2

¢2
+ 4α2k2V 2. (21)

As shown, the real part is the rate at which the amplitude of the wave decays, and the imaginary part
in brackets is proportional to the velocity of propagation. As solutions with both s = ±1 are possible,
we see that we have waves propagating both up and down the stream, each with different values of the
decay constant.

What is important is that both the decay rate and the propagation velocity, as shown in equation (20),
depend on the wavenumber k, such that the former is actually a diffusive process and the latter is one
of dispersion, as distinct from traditional interpretations of the St Venant equations. Taking that part of
the propagation velocity in equation (20) which is added on to the velocity of the stream U0, we can
interpret this as the speed of waves relative to the water, which can be written

c

c0
=

1√
2

vuut
1− α2

k2c20
+

sµ
1− α2

k2c20

¶2
+ 4

V 2

c20

α2

k2c20
, (22)
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having substituted for φ from equation (21). It is difficult to make deductions from this complicated
expression, but we can see that the wave speed depends on only two parameters, α/kc0 and V/c0. The
latter is the Vedernikov Number:

V =
V

c0
=

U

c0

m

n

µ
1− A0

P0

dP0
dA0

¶
. (23)

It is more revealing to examine the behaviour of equation (22) in each of two limits, for both large and
small values of α/kc0. We expand equation (22) as a power series in this quantity and we get

c

c0
= 1− 1

2
(1−V2)

µ
α

kc0

¶2
+O

Ãµ
α

kc0

¶4!
, (24)

showing that in the limit of no friction as α/kc0 → 0, then c→ c0, and we do have the traditional result
that waves propagate at c0 =

p
gA0/B0.

In the case where the flow is dominated by friction, we expand equation (22) as a power series in
kc0/α:

c = V

Ã
1 +

1

2

¡
1−V2

¢µkc0
α

¶2
+O

Ãµ
kc0
α

¶4!
+ . . .

!
. (25)

This result shows that to first order the waves travel at a speed of c = V , which is governed by the
velocity of the water in the channel as given by equation (23), rather than travelling at the speed of long
waves on still water, c0.

In general, the waves will be free to travel at the speed given by equation (22), which will be somewhere
between the two values given by equations (24) and (25) in the two limits of small and large friction.
Generally, if there is any friction, the speed depends on the wavelength of disturbances and the system
is dispersive. The results show that the nature of wave propagation in a waterway is more complicated
than conventional long wave theory suggests, and the speed of propagation of simple disturbances may
not be given by the traditional formula.

Conclusions

The principal equations for describing the movement of long waves and floods in waterways have been
derived. Throughout, the integrated quantities of cross-sectional area and discharge have been used as
variables rather than surface elevation and velocity, as they are more fundamental, and the equations
can be derived with surprisingly few assumptions. A new higher-order Boussinesq approximation has
been obtained which neither assumes constant streamwise velocity nor makes the traditional hydrostatic
approximation. This formulation may prove useful in practice for the computation of waves and surges.
Approximate solutions have been obtained which show that wave speed depends on wavelength, which
can lead to effects not predicted by the conventional long wave equations, such as the development of
an undular bore.

By deleting a single term corresponding to the non-hydrostatic contribution, a new form of the St Venant
long wave equations has been obtained. Traditional interpretations of these equations are that all dis-
turbances travel at a speed given only by the depth of flow. Here, it has been shown that the behaviour
of solutions of these equations is actually rather more complicated. Solutions show wavelike behaviour,
but they also show diffusive and dispersive behaviour, where the decay and propagation behaviour of
the solutions show dependence on wavelength. A novel inference from this is that the velocity of prop-
agation of waves in channels with friction is not the widely-presumed long wave speed given by the
local mean depth. These results suggest that the St Venant equations require more than the traditional
interpretations.
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