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Abstract 

The problem of computing upstream gate motions to bring about desired downstream 
flows at a regulator is considered. We introduce a method based on linear systems theory 
that can use an accurate direct numerical simulation program to solve the problem. 
However, results show that the very idea of computing all the details of the upstream gate 
motions is flawed and that it is more reasonable just to use the upstream gate motions to 
satisfy approximately the downstream flow requirements. The detailed satisfaction of 
those requirements is done better by implementing control measures at the regulator 
concerned. 

INTRODUCTION 

The concept of gate stroking was introduced by Wylie (1969), with the aim of calculating the 
movements of an upstream gate in a canal so as to bring about a desired variation in discharge at a 
downstream gate with the aim of minimising surface disturbances.  In more recent years the concept 
has often been described more as one of “feedforward” control, where control measures are applied in 
anticipation of an expected event in order, for example, to avoid unacceptable changes in downstream 
water levels.  The movements of the upstream gate are designed so as to supply as much as possible 
the desired flow history at the downstream gate with a minimum of operation of the downstream gate 
and subsequent wave generation. 

There have been many papers devoted to the subject since 1969, and although much has been claimed 
for the variety of methods developed, many of the results obtained have been unsatisfactory. Gate 
stroking as such seems to have been applied little in practice, although the American Society of Civil 
Engineers Task Committee on Canal Automation Algorithms has given some emphasis to feedforward 
control. 

As channel systems are progressively moving to real-time control, the opportunity now exists to take 
advantage of modelling and system identification techniques employed by the wider process control 
industries.  Rubicon Systems Australia is developing such control systems that are based on observed 
data and are less computationally demanding than physical models. This development is using "grey 
box" system identification where prior physical knowledge is incorporated into physical models. This 
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approach makes use of the best features of physical modelling and system identification in order to 
achieve optimal channel control.  As demand forecasting systems also become integrated with control 
systems, channel operations are not only taking advantage of pre-emptive distant upstream or 
downstream actions, but can also rely on future control strategies based on demand predictions. 
Rubicon is also extending the technique of system identification into the area of demand prediction as 
an integrated channel control technology. 

In this paper we examine the equations governing the motion of waves and flows in canals and we 
show that the technique for gate stroking proposed by all authors, of stepping backwards in space for 
all times of the motion desired to control, is in fact computationally defective.  It is equivalent to 
computing with negative friction such that any disturbance, however slight, will in many cases 
invariably require huge and unreasonable upstream gate motions.  We present a new means of 
computing the problem, which can make use of existing software without any modification to solve 
the reverse problem.  However, in general we warn against the detailed computation of gate stroking 
and suggest that more heuristic measures are adequate and justified, including the aid of established 
practice, the use of accurate numerical simulation, and most importantly, control measures at the 
downstream gate. 

LITERATURE SURVEY 

Wylie developed the approach on which all previous methods for gate stroking have been based. 
Starting from a specified time history at the downstream gate for both surface elevation and discharge, 
the equations are solved numerically backwards in space along the channel, finally yielding the time 
history required at the upstream gate. He used the method of characteristics and reported no problems.  
Bodley and Wylie (1978) extended Wylie's ideas on gate stroking to a system of three pools.  

Eli et al. (1974) used an implicit finite difference method instead of the method of characteristics.  
They found some good agreement.  However, they noted that (p599) “some problems were 
encountered, particularly at low flows.  When the actual discharge was routed backward the program 
failed to provide stable results.” 

Cunge et al. (1980) have been the only writers to have criticised the very concept of computing gate 
stroking by proceeding backwards in time and space.  They observed: “Such a calculation would have 
to proceed backwards in time, which would be feasible if there were no energy losses.  But energy 
losses must of course be included, and in this case the so-called inverse calculation becomes virtually 
impossible.  Physically speaking, local perturbations in the flow are smoothed out as time advances 
due to friction effects; a forward-in-time calculation models this behaviour.  But to proceed backward 
in time implies the reconstruction of the particular perturbations which show up as smoothed flow 
features at a later time.” They go on to write: “Indeed, one would often like to be able to prescribe the 
opening of upstream gates in such a way as to obtain the desired downstream hydrograph.  Such a 
problem is, mathematically speaking, an 'inverse' problem and as such is ill-posed, at least for 
problems of the hyperbolic type.  Nevertheless some researchers have attempted to solve this inverse 
problem for practical applications (Bodley and Wylie, 1978).  It is possible to obtain reasonable 
upstream flow variables (stage and discharge hydrographs) using downstream ones if the following 
conditions are satisfied: friction must be very small (negligible); non-linearity of the convective 
velocity term must not be strong; the distance between the regulators must be small.  Even then the 
only method which can be used is the method of characteristics with all its complexity and 
unwieldiness.  In order to define upstream releases it is better to run several test cases using a model 
built with the aid of a standard, efficient modelling system instead of a specially written inverse 
problem program.  The celerities thus obtained for different volumes stored within the system of 
canals and for different discharges will be a sufficient guide for the planning of the release, whose 
propagation along the channel can then be checked using the same model.” They presented those 
comments without quantification.  We will attempt to do that below, but we will show that their 
qualitative comments are quite correct. 



-3- 

Falvey (1987) provided few details, but he noted (p177): “The gate motions determined by this 
method can be quite irregular if the flow changes are large”. His studies also showed a need for 
additional check gates since some pools were too long for adequate control of the transients. He 
advocated a hybrid system of control, where for ''discharge variations which are small relative to the 
capacity of the canal, the canal would be controlled with a local control algorithm ... large flow 
changes would be accomplished using gate stroking concepts''. 

Liu et al. (1992) solved the problem by a scheme that was ''explicit and numerically stable''.  They 
observed large spikes in the input necessary, but did not explain why they occurred. They noted that 
''Since the implicit schemes have the advantage of being unconditionally stable numerically, they are 
now applied more widely than the explicit schemes.” Interestingly they wrote that (p683):  ''… 
oscillations caused by smaller time interval do not indicate the instability of the Backward-Operation 
method but its superior accuracy''.  They found that ''the oscillations in the computed upstream 
discharge hydrograph are amplified with the distance from the downstream section.  However, the 
oscillations can cause the failure of the computation”. 

Szymkiewicz (1993) used an implicit four-point scheme. He computed disturbances in a pool 49km 
long, and observed that “These data show (that not all) remarks of Cunge et al. on the limitations of 
solution of the inverse flow routing are reasonable”, and went on to note “... the applied solution 
schemes are dissipative, and this also causes smoothing.  Dissipation is a disadvantage of the 
numerical scheme, but ensures a stable solution of the hyperbolic nonlinear equations.” However later 
(p118) “It can happen that for unrealistic imposed functions (of elevation and discharge at the 
downstream end) the corresponding functions (at the upstream end) do not exist.  For instance, it is not 
possible to require the hydrograph to have a sharp form at the end of the long river reach of large 
roughness. It is well known that under such conditions the hydrograph is strongly smoothed at a 
downstream end because of friction.” 

In 1995 the American Society of Civil Engineers (ASCE) held a specialty conference at which several 
papers on the automatic control of canals were presented.  One of the most relevant to this work was 
Bautista et al. (1995). They found that implicit methods perform better than explicit, but that when 
they computed forward again that the results are ''smeared out''.  This would arise from numerical 
diffusion in both directions. They presented results showing the methods in all sorts of trouble.  The 
explicit method performed particularly poorly.  This may well be because it has less numerical 
diffusion.  Some computational difficulties were experienced also with an implicit linearised model: 
“A loss of numerical accuracy with the linearised equations was identified as the source of the 
problem.  New calculations were performed with smaller space and time steps but round-off errors 
destroyed the solution before adequate results were obtained.” They noted that “... solutions computed 
with the implicit model reproduce the demand outflow hydrographs with great accuracy, when the 
prescribed changes were gradual. ... Better results can be expected with (the US Bureau of 
Reclamation) Gate Stroking Model with extreme transients, but in such cases neither model is entirely 
accurate and the solution may be altogether impractical ... with negative inflows required.” 

Burt et al. (1995) examined the influence of canal pool properties on the speed with which a canal 
could respond to unanticipated downstream withdrawals. This last study essentially determined the 
limitations on the ability of feedback control systems to achieve downstream control.  From them, one 
can quantify the amount of flow change that can be accommodated by feedback alone.  Greater flow 
changes require advance knowledge and feedforward routing, i.e. control measures applied in 
anticipation of an expected event in order, for example, to avoid unacceptable changes in downstream 
water levels.  These studies were independent of gate hydraulics and control-algorithm characteristics. 

In 1998 the ASCE Task Committee on Canal Automation Algorithms produced a report in the form of 
several papers. Strelkoff et al. (1998) provided a lot of evidence supporting the use of some sort of 
gate stroking.  They wrote “Over the past several decades much attention has been given to methods 
for (1) controlling canal downstream water levels or volume with feedback control; (2) routing flow 
changes through canals with open-loop or feedforward control; and (3) utilizing local structures for 
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controlling either water levels or flows.  However the success of any of these schemes is largely 
dependent upon the properties and characteristics of the canal itself, independent of the control method 
being used. However there is little in the literature examining the limitations that canal properties 
place on controllability.” 

Finally, at the end of the conclusion they observe “Our analyses suggest that not all flow changes in a 
canal pool can be accommodated by feedback alone.  The amount of flow change that can be handled 
just by feedback is dependent upon the pool properties, the amount of allowable depth or pool volume 
change, and the properties of the feedback controller.  This result emphasizes the need to include both 
feedback and feedforward components into canal control systems.” 

We will see below that all these reported phenomena can be explained as being simply due to friction 
in the canal. If the equations are solved backwards in space and time, then friction acts in a reverse 
sense and there is a marked tendency for all computational methods to blow up, unless they have an 
inbuilt numerical inaccuracy which leads to extra diffusion which causes artificial stability. Here we 
examine the application of a new method to solve a particular gate stroking problem. However it does 
not solve the problems of gate stroking, as we go on to identify that the problem is inherently full of 
difficulties, much as stated by Cunge et al (1980). 

THEORY FOR WAVES IN CANALS 

The flow of water and the propagation of waves in canals are described well by the St Venant long 
wave equations.  Here we present them in the form where the dependent variables are the cross-
sectional area A and discharge Q: 
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where x is the distance along the waterway, t is time, g is gravitational acceleration, B is the width of 
the surface, fS  is the friction slope, and 0S  is the bed slope. Usually fS  is approximated by 

Manning’s law 3/103/422 / APQnS f  , where n is Manning’s coefficient and P is the wetted perimeter 

of the cross-section.  It is possible to recast these two partial differential equations as four ordinary 
differential equations.  In the so-called Characteristic Formulation it is possible to deduce that 
information (in the form of the gradient of the characteristics) proceeds up and down the canal at a 

speed given by BgA / , which can be interpreted as depthMean g . The traditional interpretation 

of the St Venant equations is that it is the speed with which waves actually travel up and down the 
canal. While this is true if there is no friction, in general this is not correct. Also, the practical 
interpretation of the behaviour of waves in canals is that they travel without a great deal of diminution 
due to friction. In fact, for practical values of channel quantities, waves in a channel may be markedly 
diffused so that they arrive downstream considerably diminished in height and spread out much more 
in space and time. Insight into this process can be had if we consider approximations to equations (1) 
and (2). For small variations of flow and area about values 0Q  and 0A , corresponding to uniform flow 
down the channel, after some mathematical operations, making assumptions that friction is the 
dominant effect we find that we can represent conditions in the channel by the single equation 
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with a similar equation for A, where we now use Q and A for discharge and area relative to the base 
flow in the canal. The equation is of advection-diffusion type, where 000 / AQU   is the mean 
velocity along the channel, and where 
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where 0P  is the wetted perimeter corresponding to the reference flow of area 0A . The coefficient   is 
given by 
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Equation (3) is the basis of advection-diffusion flood routing, and is widely used in hydrology.  It 
shows more clearly the nature of wave propagation in a canal, and it is quite different from the usual 
interpretations based on the St Venant equations (1) and (2), which ignore the effects of friction.  
Solutions are waves that propagate downstream at a velocity 00 VU  .  In equation (4), for wide 

channels the term involving the derivative of perimeter is small, such that 00 3/2 UV   and 

000 3/5 UVU  .  This means that waves in channels with friction actually propagate at a speed of 
about 5/3 times the speed of the water in the canal, usually rather smaller than the value of 

depthMean g , the widely-accepted value.  The term on the right of equation (3) involving the 

second derivative is a diffusion term, which means that as the wave propagates it diffuses so that the 
wave which arrives at the downstream end is considerably lower and longer than that which entered 
upstream. 

A NEW METHOD FOR GATE STROKING 

In previous work on gate stroking suites of programs have been written which solve the St Venant 
equations backwards in space along the channel, given the complete desired flow and surface history 
at the downstream end.  As noted above there have been many difficulties encountered.  Here we 
attempt a different approach to the work, whereby we can use existing programs that solve the 
equations in the usual manner, forward in time along the channel. A simple modification based on 
linear systems theory, then not only gives us a method of simply performing flow routing 
computations without having to invoke the full solution techniques, but gives us a method which can 
solve the gate stroking problem at the same time. This method also demonstrates graphically how the 
latter is an operation that should often not be attempted. 

Fundamental ideas from linear systems theory have been extensively used in hydrology, for example 
in the form of the unit hydrograph (Chow et al., 1988).  Dooge (1973) and Keefer (1976) amongst 
others have used this approach in the study of flow in channels. Napiórkowski (1992) presented a 
summary article of several papers of Dooge and Napiórkowski and Strupczewski.  The output from a 
system, in this case the outflow at the downstream regulator, can be written in terms of the inflow at 
the other end, expressing it at a point in time as a weighted integral of the input. The weight function 
in that integral is the transfer or system function which expresses the effect downstream of a single 
unit of flow increase at the upstream end.  Here we write it in discrete form, replacing the integrals by 
sums.  There are J values of inflow to the channel at the upstream end, denoted by jI  for 

1,,1,0  Jj  . We suppose that the transfer function of the system is the sequence of K numbers kh  
for 1,,1,0  Kk  , such that if the input to the system were a single spike of flow at time 0, then the 

values of the kh  would be the resultant outflow hydrograph for times kt .  Then, at time step n , nO  is 
the output at the downstream end that we write as a convolution sum 
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This expresses the fact that the flow at time step n is simply that due to the sum of each of the flows 
which entered the system at step j multiplied by the influence function for the difference in time 
measured by jn  . As the inflow sequence is J points long and the effect of the inflow lasts for K 

points, the total length of the outflow sequence is KJN  .  Strictly speaking, this approach is for 
systems which are linear, where all changes and inputs to the system may be linearly combined, such 
as the advection-diffusion equation (3), and not as in the St Venant equations where products and 
nonlinear functions of the flow variables Q and A occur.  In many irrigation applications, however, 
changes about a base state of flow are quite small, and the system is very nearly linear. 

In the usual situation where one knows the inflows and outflows and wants to obtain the transfer 
function so that subsequent outflows can be computed simply for arbitrary inflows, the procedure is to 
write equation (6) as the matrix equation 

 OI H , (7) 

where H is the JN  matrix with columns made up of the sequence of K values of kh  (see Chow et 

al. #7.6, for example) and I is the J-vector made up of the jI  and O is the N-vector made up of the 

nO . The problem of obtaining the kh  is termed deconvolution, and simple and direct methods exist, 
however in hydrology a least-squares method has traditionally been used which we adopt here. We 

pre-multiply both sides of equation (7) by the transpose of H, TH , to give 

 OI TT HHH  , (8) 

which is a system of J equations in J unknowns and it can be shown that this gives a least-squares 
solution to the problem. There are some high quality programs for the solution of such a system and 
we prefer to use these. However the tradition in hydrology seems to have been to premultiply by the 
inverse of the matrix on the left to give an explicit matrix equation for I. 

In this work, however, as we are addressing the gate stroking problem, we are more interested in 
obtaining the inverse transfer function, the one which, when convoluted with the outflow desired, 
gives the inflow necessary to achieve that. Hence we consider a transfer function ku  for 

1,,1,0  Kk   such that we have the inverse of equation (6): 

 





Nn

j
jnjn uOI

0

,  for  1,,1,0  Nn  , (9) 

where now the output sequence jO  has J values and the input sequence nI  has N values. Instead of 

equation (8) we have 

 IO TT UUU  , (10) 

where U is the JN  matrix where the columns are made up of the sequence of K values of ku . 

One could use the advection-diffusion approximation to obtain a transfer function for the system, 
however here we prefer to obtain it directly from a solution of the full St Venant equations. We use the 
program developed by Rubicon Systems Australia (Rubicon, 1998), which solves the equations very 
accurately for channel systems. As an example of the application of the program – and a 
demonstration of the nature of wave motion in channels, consider Figure 1, which shows the surface 
elevation in the first three pools of the Pyramid Hill No 1 Channel plotted each two hours for the first 
24 hours.  The reach is 17.6km long, and contains one siphon, whose head loss is clearly shown, plus a 
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small arch bridge at Dingee.  A flow of 910 Ml/d at the upstream boundary was increased by 300 Ml/d 
but the gate at the downstream end was not moved, more clearly to demonstrate the nature of the wave 
motion. What happens is that a fast dynamic wave takes off and does travel the length of the channel 
relatively quickly, but the bulk of the motion is of a slow-moving kinematic-diffusion wave whose 
effect is to propagate slowly and to show a more diffusive nature.  

Tandarra

Myers Ck Siphon

Dingee Bridge

Sheepwalk

  

Figure 1: Water surface profiles in the first three pools of the Pyramid Hill No 1 Channel 

The conditions from that example are such as to render gate stroking not feasible, as will be shown. As 
an application of the method we consider a single pool of a channel with roughly the same physical 
characteristics as the above reach, but considerably shorter. The channel has a bottom width of 10m, 
batter slopes of 2:1, a slope of 0.0001, 5km long, a depth of 2m at the downstream regulator, and 
Manning’s 025.0n . To perform the simulation to yield the transfer function we considered a base 

flow of 864 Ml/d, s/m10 3 .  The inflow was increased smoothly (a Gaussian function of time) by 
25% up to a maximum of 1080 Ml/d and back down to the base flow over a period of about three 
hours. The program then simulated conditions in the channel for a total of 20 hours. 
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Figure 2: Specified inflow hydrograph and computed outflow hydrograph 

Results are shown in Figure 2.  What is immediately obvious from the figure and which may come as 
some surprise is that in this relatively short pool that the “wave” has diminished by a factor of about 
half, and the time over which the change in discharge is felt at the outlet is considerably greater.  In 



-8- 

fact, it is about eight or nine hours before the system has returned to steady state. Deductions based on 
conventional hydraulics would suggest that the wave that arrived at the outlet would be substantially 
the same as that which was imposed at the inlet. Interestingly, the travel speed of the peak, as 
measured by the time between the two peaks was about 2 m/s. According to the formula from 
conventional hydraulics, the speed would be about 4.4 m/s. 
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Figure 3: Transfer function kh  for computing outflow from inflow 

We took 32 data points from the outflow hydrograph, and with 16 KJ  we used equation (8) to 
compute the transfer function, as shown in Figure 3, scaling the values such that the sum was equal to 
unity so that there would be no loss of flow. The sequence of points shown (the lines between them 
have no significance) corresponds to the outflow due to a single inflow spike of magnitude unity at 
time zero. The maximum value is about 0.35.  The kind of behaviour we see in the figure seems to 
correspond with that observed in Figure 2, where the hump diffuses considerably and its influence is 
felt for a long time at the outlet. 

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  2  4  6  8 10 12 14 16

T
ra

ns
fe

r 
fu

nc
tio

n 
(d

im
en

si
on

le
ss

)

Index  

Figure 4: Inverse transfer function ku  for computing the gate stroking solution 



-9- 

Then, with a view to developing a method for gate stroking we took 32 points from the inflow 
hydrograph and used equation (10) to compute the inverse transfer function in a least-squares sense.  
The results are as shown in Figure 4, where the transfer function oscillates wildly with magnitudes 
between –7 and +5, very much greater than for the direct transfer function.  Some consideration of the 
mechanics, however, shows that this result might well be expected. The forward transfer function as 
shown in Figure 3 shows the outflow caused by a single inflow spike of magnitude unity, with the 
expected time shift and decay.  The inverse transfer function in Figure 4, however, shows the inflow 
that would cause a single outflow spike of magnitude unity for subsequent use in gate stroking 
calculations.  It can well be imagined, given the diffusive nature of the system as seen in the figures, 
that it would require a fairly remarkable input which would travel and diffuse such that all the 
variation combined to produce a single hump in the downstream hydrograph.  One can imagine that it 
would require the cancellation of opposite-signed contributions in large part, as the figure suggests. 

This does not mean that the solution is invalid, however. We tested it for some typical required 
outputs, consisting of a single smooth increase in flow from the base level, given by a tanh function.  
Firstly we used the function 

    65.1tanh1
2

1

0

 T
Q

Q
, (11) 

where T is the time in hours. This function increases from 0 to 1 continuously, with 90% of the change 
of flow occurring in a period of 1.5 hours, centred at 6 hours.  The results are shown in Figure 5, 
where the thin line shows the desired outflow (equation (11)), and the solid line shows the gate 
stroking solution.  Huge variations of flow upstream are required by the relatively rapid change 
downstream.  They tend to cancel each other as the wave propagates downstream so that the process of 
frictional diffusion ultimately leads to the single smooth increase over a short time.  These are the sort 
of oscillations noted by many other workers in the area of gate stroking, as noted above.  
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Figure 5: Outflow desired and the corresponding inflow required by the gate stroking solution where 90% of the 
flow increase occurs within an interval of 1.5 hours 

Figure 6 shows the same magnitude of increase but where it takes place over a period three times that 
of Figure 5 (the factor of 1.5 in the argument of the tanh function in equation (11) was reduced to 0.5).  
The situation for the upstream gate is now very different, for it can bring about the required 
downstream hydrograph with very little unnecessary motion. 



-10- 

 0.0

 0.5

 1.0

 1.5

 2.0

 0  4  8 12 16 20

D
im

en
si

on
le

ss
 d

is
ch

ar
ge

 in
cr

em
en

t

Time (hours)

Desired outflow
Calculated inflow

 

Figure 6: As for Figure 5 but where 90% of the flow increase occurs within an interval of 4.5 hours  

While it might be thought that this is a relatively satisfactory state of affairs, further computations 
soon dispel that illusion.  Simply by doubling the channel length to 10km gave an inverse transfer 
function which oscillated even more wildly than that shown in Figure 4, varying between values of 

40 ! 

These results suggest that the gate stroking problem is indeed flawed, and that it is unreasonable to 
require the satisfaction of precise flows at the downstream boundary by upstream gate movements. 
However, there is no reason not to use upstream movements to bring about a downstream hydrograph 
such as those shown in Figure 6, which is a reasonable approximation to a desired outflow 
hydrograph, such as that of Figure 5. 

CONCLUSIONS 

We have developed a method which can solve the gate stroking problem by techniques of linear 
systems theory combined with an accurate numerical simulation program, rather than having to write a 
suite of programs to solve the problem backwards in space and time. Use of the method shows that the 
problem is indeed fundamentally flawed, and that it is better to rely on traditional methods of canal 
operation combined with local control of the downstream regulator than to attempt to solve the gate 
stroking problem. 

In addition the use of the method proposed has explained the various phenomena found by previous 
writers in this field who have attempted to implement gate stroking programs. It has shown the nature 
of the propagation of disturbances in channels with friction. Disturbances do not travel at the speed 
they are traditionally supposed to, and waves can be damped considerably and their effects smeared 
out in time. The application of gate stroking measures can be undertaken for channels that are not too 
long, but in general the precise satisfaction of the downstream requirements by upstream gate 
operations alone seems to be not possible. Rather, what should be used is the use of upstream gate 
operations to satisfy approximately the downstream requirements and the use of control measures on 
the downstream gate so as to achieve easily all the flows required while minimising surface 
disturbances. 
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