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Introduction

Throughout coastal and ocean engineering the convenient model of a steadily-progressing periodic wave
train is used to give fluid velocities, pressures and surface elevations caused by waves, even in situations
where the wave is being slowly modified by effects of viscosity, current, topography and wind or where
the wave propagates past a structure with little effect on the wave itself. In these situations the waves
do seem to show a surprising coherence of form, and they can be modelled by assuming that they are
propagating steadily without change, giving rise to the so-called steady wave problem, which can be
uniquely specified and solved in terms of three physical length scales only: water depth, wave length
and wave height. In practice, the knowledge of the detailed flow structure under the wave is so important
that it is usually considered necessary to solve accurately this otherwise idealised model.

The main theories and methods for the steady wave problem which have been used are: Stokes theory,
an explicit theory based on an assumption that the waves are not very steep and which is best suited
to waves in deeper water; cnoidal theory, an explicit theory for waves in shallower water; and Fourier
approximation methods which are capable of high accuracy but which solve the problem numerically
and require computationally-expensive matrix techniques. A review and comparison of the methods is
given in Sobey, Goodwin, Thieke & Westberg (1987) and Fenton (1990). For relatively simple solution
methods that are explicit in nature, Stokes and cnoidal theories have important and complementary roles
to play, and indeed it has relatively recently been shown that they are more accurate than has been
realised (Fenton 1990).

This Chapter describes cnoidal theory and its application to practical problems. It has probably not
been applied as often as it might. One reason is the unfamiliarity of the Jacobian elliptic functions and
integrals and perceived difficulties in dealing with them. One possibility might be too that in the long
wave limit for which the cnoidal theory is meant to apply, almost all expressions for elliptic functions
and integrals given in standard texts are very slowly convergent, for example, those in Abramowitz &
Stegun (1965). Both of these factors need not be a disincentive; relatively recently some remarkable
formulae have been given ( Fenton & Gardiner-Garden 1982) which are simple, short, and converge
most quickly in the limit corresponding to cnoidal waves. These will be presented below.

It may be, however, that the author has inadvertently provided further reasons for not preferring cnoidal
theory. In Fenton (1979) he presented a fifth-order cnoidal theory which was both apparently compli-
cated, requiring the presentation of many coefficients as unattractive floating point numbers, and also
gave poor results for fluid velocities under high waves. In a later work ( Fenton 1990), however, the au-
thor showed that instead of fluid velocities being expressed as expansions in wave height, if the original
spirit of cnoidal theory were retained and they be written as series in shallowness, then the results are
considerably more accurate. Also in that work it was shown that, in the spirit of Iwagaki (1968), the
series can be considerably shortened and simplified by a good approximation.

There have been many presentations of cnoidal theory, most with essentially the same level of approxi-
mation, and with relatively little to distinguish the essential common nature of the different approaches.
However, there has been such a plethora of different notations, expansion parameters, definitions of
wave speed, and so on, that the practitioner could be excused for thinking that the whole field was very
complicated. The aim of this article is to review developments in cnoidal theory and to present the most
modern theory for practical use, together with a number of practical aids to implementation. My hope
is that this surprisingly simple and accurate theory becomes accessible to practitioners and regains its
rightful place in the study of long waves.

Initially a history of cnoidal theory is given, and various contributions are described and reviewed. Then,
the theory which can be used to generate high-order solutions is outlined and theoretical results from
that theory are presented. This chapter contains the first full presentation of those results in terms of
rational numbers, as previous versions have used some floating point numbers. Two forms of the theory
are presented: the first is a full third-order theory, the second is a fifth-order theory in which a coherent
approximation is introduced which, it is suggested, is accurate for most cases where cnoidal theory is
used. It is suggested that this be termed the ”Iwagaki Approximation”. Next a detailed procedure for the
application of the cnoidal theory is presented, allowing for cases where wavelength or period is specified.
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Some new simplifications are introduced here. A number of practical tools and hints for the application
of the theory are presented, including a numerical check on the coefficients used in this paper, a simple
test to check that the series are correct as programmed by the user, some simple approximations are
presented for the elliptic functions and integrals used, and techniques for convergence enhancement of
the series are described. A numerical cnoidal theory developed by the author is then presented, which is
a numerical method based on cnoidal theory. Finally, the accuracies of the methods are examined and
appropriate limits are suggested.

Background

There have been many books and articles written on the propagation of surface gravity waves. The
simplest theory is conventional long-wave theory, which assumes that pressure at every point is equal to
the hydrostatic head at that point, and which gives the result that any finite amplitude disturbance must
steepen until the assumptions of the theory break down. Unsettling evidence that this is not the case was
provided by the publication in 1845 by John Scott Russell of his observations on the ”great solitary wave
of translation” generated by a canal barge and seeming to travel some distance without modification.
This was derided by Airy (”We are not disposed to recognize this wave as deserving the epithets ’great’
or ’primary’ ...”, ( Rayleigh 1876)) who believed that it was nothing new and could be explained by
long-wave theory. This is one aspect of the long-wave paradox, later resolved by Ursell (1953), who
showed the importance of a parameter that incorporates the height and length of disturbance and the
water depth in determining the behaviour of waves. The value of the parameter determines whether they
are true long waves and show the steepening behaviour, or whether they are ”not-so-long” waves where
pressure and velocity variation over the depth is more complicated, as is their behaviour. The cnoidal
theory fits into this latter category.

Boussinesq (1871) and Rayleigh (1876) introduced an expansion based on the waves being long relative
to the water depth. They showed that a steady wave of translation with finite amplitude could be obtained
without making the linearising assumption, and that the waves were inherently nonlinear in nature. The
solutions they obtained assumed that the water far from the wave was undisturbed, so that the solution
was a solitary wave, theoretically of infinite length. Cnoidal theory obtained its name in 1895 when
Korteweg & de Vries (1895) obtained their eponymous equation for the propagation of waves over a
flat bed, using a similar approximation to Boussinesq and Rayleigh. However they obtained periodic
solutions which they termed ”cnoidal” because the surface elevation is proportional to the square of the
Jacobian elliptic function cn(). The cnoidal solution shows the familiar long flat troughs and narrow
crests of real waves in shallow water. In the limit of infinite wavelength, it describes a solitary wave.

Since Korteweg and de Vries there have been a number of presentations of cnoidal theory. Keulegan
& Patterson (1940), Keller (1948), and Benjamin & Lighthill (1954) have presented first-order theo-
ries. The latter is particularly interesting, in that it relates the wave dimensions to the volume flux,
energy and momentum of a flow in a rectangular channel (or per unit width over a flat bed) and showed
that waves of cnoidal form could approximate an undular hydraulic jump. Wiegel (1960, 1964) gave
a detailed presentation of first-order theory with a view to practical application, including details of
mathematical approximations to the elliptic integrals. A second-order cnoidal theory was presented in
a formal manner by Laitone (1960, 1962) who provided a number of results, re-casting the series in
terms of the wave height/depth. However, the second-order results are surprisingly inaccurate for high
waves (see, for example, Le Méhauté, Divoky & Lin (1968)). The next approximation was obtained
by Chappelear (1962), as one of a remarkable sequence of papers on nonlinear waves. He obtained the
third-order solution, and expressed the results as series in a parameter directly proportional to shallow-
ness: (depth/wavelength)2.

Iwagaki published his ”Hyperbolic theory” in 1967, with an English version appearing a year later,
Iwagaki (1968). This was an interesting development, for it was an attempt to make the computation of
the elliptic functions and integrals simpler by replacing all of them by their limiting behaviours in the
limit of solitary waves, except for quantities related to wavelength. In this case, the cn function becomes
the hyperbolic secant function sech, and other elliptic functions become other hyperbolic functions,
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giving rise to the name he proposed. This approach raises a number of interesting points, and further
below we will discuss it in some detail.

Tsuchiya and Yasuda in 1974, with an English version in 1985 (Tsuchiya & Yasuda 1985), obtained a
third-order solution with the introduction of another definition of wave celerity based on assumptions
concerning the Bernoulli constant. Nishimura, Isobe & Horikawa (1977) devised procedures for gen-
erating high-order theories for both Stokes and cnoidal theories, making extensive use of recurrence
relations. The authors concentrated on questions of the convergence of the series. They computed a
24th-order solution, however, few detailed formulae for application were given.

The author (Fenton 1979) produced a method in 1979 for the computer generation of high-order cnoidal
solutions for periodic waves. It had been observed that second-order solutions for fluid velocity were
quite inaccurate (Le Méhauté et al. 1968), and it was desired to produce more accurate results, as well
as trying to make the method more readily available for practical application. Like Laitone results
were expressed in terms of the relative wave height. The paper also raised some interesting points:
how it is rather simpler to use the trough depth as the depth scale in presenting results, and that the
effective expansion parameter is not simply the wave height but is actually the wave height divided
by the elliptic parameter m. For the expansion parameter to be small and for the series results to be
valid, the short wave limit is excluded. In this way the cnoidal theory breaks down in deep water (short
waves) in a manner complementary to that in which Stokes theory breaks down in shallow water (long
waves) (Fenton 1985). A solution was presented to fifth order in wave height, with a large number of
numerical coefficients in floating point form. For moderate waves, results were good when compared
with experiment, but for higher waves the velocity profile showed exaggerated oscillations and it was
found that ninth-order results were worse. These results were unexpectedly poor.

Isobe, Nishimura & Horikawa (1982) continued the work of Nishimura et al. (1977) and presented a
unified view of Stokes and cnoidal theories. They proposed a generalised double series expansion in
terms of Ursell parameter and shallowness, the square of the ratio of water depth to wavelength. They
also proposed a boundary between areas of application of Stokes and cnoidal theory of U = 25, where
U is the Ursell number,Hλ2/d3.

In a review article in 1990, the author (Fenton 1990) considered cnoidal theory as well as Stokes theory
and Fourier approximation methods such as the ”stream function method”. The approach to cnoidal
theory in Fenton (1979) was re-examined and some useful advances made. It was found that if the
series for velocity were expressed in terms of the shallowness rather than relative wave height, as done
by Chappelear (1962), then results were very much better, and justified the use of cnoidal theory even
for high waves. This would fit in with the fundamental approximation of the cnoidal theory being an
expansion in shallowness. That review article also incorporated the fact that the wave theory does not
determine the wave speed, and that neither Stokes’ first nor second definitions of velocity are necessarily
correct. In general it is necessary to incorporate the effects of current, as had been done using graphical
means in Jonsson, Skougaard & Wang (1970) and Hedges (1978), and analytically for numerical wave
theories in Rienecker & Fenton (1981) and for high-order Stokes theory in Fenton (1985).

We now present the theory and results. The theory is essentially that described in Fenton (1979) but
with the advances made in Fenton (1990) incorporated plus some more contributions introduced in this
chapter. A number of suggestions for practical use are made, and then the performance of the theory is
compared with other methods. One of those is a new numerical version of cnoidal theory. In general,
the theory as presented here is found to be surprisingly robust and accurate over a wide range of waves.

Cnoidal theory

The physical problem

Consider the wave as shown in Figure 1, with a stationary frame of reference (x, y), x in the direction
of propagation of the waves and y vertically upwards with the origin on the flat bed. The waves travel
in the x direction at speed c relative to this frame. It is this frame which is the usual one of interest for
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Figure 1. Wave train, showing important dimensions and coordinates

engineering and geophysical applications. Consider also a frame of reference (X,Y ) moving with the
waves at velocity c, such that x = X + ct, where t is time, and y = Y . The fluid velocity in the (x, y)
frame is (u, v), and that in the (X,Y ) frame is (U, V ). The velocities are related by u = U + c and
v = V .

In the (X,Y ) frame all fluid motion is steady, and consists of a flow in the negativeX direction, roughly
of the magnitude of the wave speed, underneath the stationary wave profile. The mean horizontal fluid
velocity in this frame, for a constant value of Y over one wavelength λ is denoted by −Ū . It is negative
because the apparent flow is in the −X direction. The velocities in this frame are usually not important,
but they are used to obtain the solution rather more simply.

Equations of motion in a frame moving with the wave

We proceed to develop higher-order solutions for the problem where waves progress steadily without
any change of form. Readers more interested in results than the details of the theory could proceed
straight to the next section ”Presentation of theoretical results”.

It is easier to consider the equations of motion in the (X,Y ) frame moving with the wave such that
all motion in this frame is steady. If it is assumed that the water is incompressible and the flow two-
dimensional, a stream function ψ (X,Y ) exists such that the velocity components (U,V ) are given by

U =
∂ψ

∂Y
and V = − ∂ψ

∂X
, (1)

and if the flow is irrotational, ψ satisfies Laplace’s equation throughout the flow:

∂2ψ

∂X2
+

∂2ψ

∂ Y 2
= 0. (2)

The boundary conditions are that the bottom Y = 0 is a streamline on which ψ is constant:

ψ (X, 0) = 0, (3)

and that the free surface Y = η(X) is also a streamline:

ψ (X, η (X)) = −Q, (4)

whereQ is the volume flux underneath the wave train per unit span. The negative sign is because the flow
relative to the wave is in the negativeX direction, such that relative to the water the waves will propagate
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in the positive x direction. The remaining boundary condition comes from Bernoulli’s equation:

1

2

¡
U2 + V 2

¢
+ gy +

p

ρ
= R, (5)

in which g is gravitational acceleration, p is pressure, ρ is density and R is the Bernoulli constant for
the flow, the energy per unit mass. If equation (5) is evaluated on the free surface Y = η(X), on which
pressure p = 0, we obtain

1

2

Ãµ
∂ψ

∂X

¶2
+

µ
∂ ψ

∂Y

¶2!¯̄̄̄¯
Y=η

+ gη = R, (6)

We assume a Taylor expansion for ψ about the bed of the form:

ψ = − sinY d

dX
. f (X) = −Y df

dX
+
Y 3

3!

d3f

dX3
− . . . , (7)

as in Fenton (1979), where df/dX is the horizontal velocity on the bed. We have introduced the infinite
differential operator sinY d/dX as a convenient way of representing the infinite Taylor series, which
has significance only as its power series expansion

sinY
d

dx
= Y

d

dx
− Y

3

3!

d3

dx3
+
Y 5

5!

d5

dx5
− . . . .

It can be shown that the velocity components anywhere in the fluid are

U =
∂ψ

∂Y
= − ∂

∂Y
sinY

d

dX
. f (X) = − cosY d

dX
. f 0(X),

V = − ∂ψ

∂X
=

∂

∂X
sinY

d

dX
. f (X) = sinY

d

dX
. f 0(X), (8)

Further differentiation shows that the assumption of equation (7) satisfies the field equation (2) and the
bottom boundary condition (3). The kinematic surface boundary condition (4) becomes

sin η
d

dX
. f (X) = Q, (9)

This equation is a nonlinear ordinary differential equation of infinite order for the local fluid depth η and
f 0 (X), the local fluid velocity on the bed, in terms of the horizontal coordinateX.

The remaining equation is the dynamic free surface condition, equation (6). Substituting equation (8)
evaluated on the free surface we obtain:

1

2

Ãµ
cos η

d

dX
.
df

dX

¶2
+

µ
sin η

d

dX
.
df

dX

¶2!
+ gη = R. (10)

One of the squares of the infinite order operators can be eliminated by differentiating (9):

sin η
d

dX
.
df

dX
+
dη

dX
cos η

d

dX
.
df

dX
=
dQ

dX
= 0,

as Q is constant along the channel, to give

1

2

Ã
1 +

µ
dη

dX

¶2!µ
cos η

d

dX
.
df

dX

¶2
+ gη = R. (11)

Equations (9) and (11) are two nonlinear ordinary differential equations in the unknowns η(X) and
f 0(X), the horizontal velocity on the bed. They are of infinite order, and will have to be approximated
in some way. It is possible that they could be solved as differential equations, but that would require an
infinite number of boundary conditions. In this and subsequent sections we use two methods, one using
power series solution methods, the traditional way, and another using a numerical spectral approach
based on assuming series of known functions.
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Series solution

The equations have the trivial solution of uniform flow with constant depth: η = h and f 0(X) = U . We
proceed to a series expansion about the state of a uniform critical flow. We will assume that all variation
in X is relatively slow and can be expressed in terms of a scaled dimensionless variable αX/h, where
α is a small quantity which expresses the relative slowness of variation in the X direction, and h is the
minimum or trough depth of fluid. At this stage, while solving the equations, it is more convenient to
write them in terms of dimensionless variables. We let the scaled horizontal variable be θ = αX/h.
Writing η∗ = η/h and f∗ = f/Q, equation (9) can be written

1

α
sin η∗α

d

dθ
. f∗ − 1 = 0. (12)

The dynamic boundary condition (11) can be written in terms of these quantities as

1

2

Ã
1 + α2

µ
dη∗
dθ

¶2!µ
cos η∗α

d

dθ
. f 0∗(θ)

¶2
+ g∗η∗ = R∗, (13)

where g∗ = gh3/Q2 is a dimensionless gravity number (actually the inverse square of the Froude num-
ber) and R∗ = Rh2/Q2 is a dimensionless Bernoulli constant.

The form of equations (12) and (13) suggests that we use α2 as the expansion parameter. We write the
series expansions

η∗ = 1 +
NX
j=1

α2jYj (θ) , (14)

f 0∗ = 1 +
NX
j=1

α2jFj (θ) , (15)

g∗ = 1 +
NX
j=1

α2jgj , (16)

R∗ =
3

2
+

NX
j=1

α2jrj , (17)

where N is the order of solution required. Now, these are substituted into equations (12) and (13).
Grouping all the terms in α0, α2, α4, . . ., and requiring that the coefficient equation of each be satisfied
identically, a hierarchy of equations is obtained which can be solved sequentially. At α0 the equations
are satisfied identically; at α2 we obtain

F1 + Y1 = 0,

F1 + Y1 + g1 − r1 = 0,

with solution Y1 = −F1 and g1 = r1. At the next order α4 we obtain

F2 + Y2 + F1Y1 − 1
6
F 001 = 0,

F2 + Y2 + g2 − r2 − 1
2
F 001 +

1

2
F 21 + g1Y1 = 0,

and by subtracting one from the other, and using information from the previous order, we obtain

1

3
F 001 −

3

2
F 21 + r2 − g2 + g1F1 = 0. (18)

This is a differential equation of second order which is nonlinear because of the F 21 term. The usual
way of integrating such an equation (for example, #3.3.3of Shen 1993) is to write the F 001 term as
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d(F 021 /2)/dF1, integrate the equation with respect to F1, from which the solution for F1 in terms of
cn2(θ|m), a Jacobian elliptic function (see, for example, #16 of Abramowitz & Stegun 1965), can be
obtained. This is a rather complicated procedure. Here we prefer a rather simpler approach to solve the
nonlinear differential equation by presuming knowledge of the nature of the solution. We write

F1 = A1 cn
2(θ|m), (19)

where A1 is independent of θ, andm is the parameter of the elliptic function. Using the properties as set
out in Abramowitz & Stegun (1965), (#16.9 and #16.16), reproduced as equations (40) and (41) below,
it can be shown that

d2

dθ2
cn2 (θ|m) = 2− 2m+ (8m− 4) cn2 (θ|m)− 6m cn4 (θ|m) . (20)

Substituting into equation (18) and collecting coefficients of powers of cn2 (θ|m) we obtain:

A1 = −4
3
m, g1 =

4

3
(1− 2m) , r2 − g2 = 8

9
m (1−m) ,

such that the first-order cnoidal solution is

η∗ = 1 + α2
4

3
m cn2 (θ|m) ,

f 0∗ = 1− α2
4

3
m cn2 (θ|m) ,

g∗ = 1 + α2
4

3
(1− 2m) ,

R∗ =
3

2
+ α2

8

9
m (1−m) . (21)

These solutions should have been shown with order symbols O
¡
α4
¢

after them, showing that the ne-
glected terms are at least of the order of α4. As this is obvious anyway, we choose not to do that here or
elsewhere in this work, where the order of neglected terms is almost everywhere obvious.

The procedure described here can be repeated at all orders of α2, and at each higher order a differential
equation is obtained which is linear in the unknowns, and with increasingly complicated and lengthy
terms involving the already-known lower orders of solution. The procedure has been described in some
detail in Fenton (1979). At each order j, the solution for Fj and Yj involves polynomials in cn2 (θ|m)
of degree j. With increasing complexity, the operations quickly become too lengthy for hand calculation
and it is necessary to use computer software. In the 1979 paper floating point arithmetic and a conven-
tional language (FORTRAN) was used, however now, at the time of writing of this chapter, it is much
easier to use modern software which can perform mathematical manipulations. In the preparation of this
article the author used the symbolic manipulation software MAPLE.

After the operations have been completed, the solutions which are to hand are power series in α2, up to
the order desired, for η∗, f 0∗, g∗ and R∗. It is convenient to obtain the series for Q/

p
gh3 by taking the

power series of g−1/2∗ and the series for R/gh by taking the power series of R∗/g∗, and the series for
ψ/
p
gh3 by taking the power series of ψ∗ ×Q/

p
gh3, where ψ∗ is evaluated from

ψ∗ = −
1

α
sin η∗α

d

dθ
. f∗. (22)

Expressions for velocity components follow by differentiation.

So far, all series have been in terms of α2. It is simpler to express the series in terms of δ, where

δ = 4α2/3, (23)

as suggested by the results of equation (21). Physical solutions could be presented in terms of these
power series, and they do reflect the nature of the theory, that the essential nature of the approximation
is that the waves be long (α small). However the majority of presentations have converted to expansions
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in terms of ε = H/h, the ratio of wave height to trough depth. This can be done by expressing a series
for ε in terms of δ or α2 by evaluating η∗ − 1 with cn = 1. The series can then be reverted to express δ
or α2 in terms of ε, which can then be substituted.

The parameterm is determined by the geometry of the wave. As the function cn (θ|m) has a real period
of 4K(m), where K is the complete elliptic integral of the first kind, ( Abramowitz & Stegun 1965),
it is easily shown that cn2 (θ|m) has a period of 2K(m), and as the wave has a wavelength of λ the
elementary geometric relation holds:

α
λ

h
= 2K(m). (24)

The mean depth d is known in physical problems, but it has not entered the calculations yet. The ratio
d/h can be obtained from the series for η∗ = η/h, by replacing each cn2j by Ij where Ij is the mean
value of cn2j (θ|m):

Ij = cn2j (θ|m), (25)

then, (#5.13 of Gradshteyn & Ryzhik 1965): I0 = 1, I1 = (−1 + m + e(m))/m, where e(m) =
E(m)/K(m), and E(m) is the complete elliptic integral of the second kind, and the other values may
be computed from

Ij+2 =

µ
2j + 2

2j + 3

¶µ
2− 1

m

¶
Ij+1 +

µ
2j + 1

2j + 3

¶µ
1

m
− 1
¶
Ij , for all j. (26)

This allows all quantities to be calculated with d as the non-dimensionalising depth scale. Similarly the
mean fluid speed: Ū/

√
gh,which is related to wave speed, can be obtained from the series for horizontal

velocity U/
√
gh, by replacing each cn2j by Ij .

Presentation of theoretical results

Two sets of results are presented here. For the first time a complete solution is given in terms of rational
numbers, whereas in Fenton (1990) at least some floating-point numbers were used. Firstly, a full
solution is presented to third-order, which is a reasonable limit for space reasons. Next, a fifth-order
solution is presented, but in which the approximation is made of setting the parameter m to 1 wherever
it explicitly occurs in the coefficients of the series expansions. This makes feasible the presentation of the
theory to two higher orders. Here we present the solutions; the application and use of these theoretical
results will be described in the subsequent section.

Features of solutions

Although the underlying method relies on an expansion in shallowness, it is often convenient to present
results in terms of expansions in wave height. It was found in Fenton (1979) that the best parameter for
this was the wave height relative to the trough depth, H/h, which we denote by ε. If the mean depth
had been used, to give a series inH/d, many more terms would be involved, because, as equation (A.8)
shows, the expression for h/d involves a double polynomial inm and e = E/K of degree n at order n,
such that, for example, equation (A.1) for η/h is a triple series in ε/m,m and cn2, but the corresponding
expression for η/d would be a quadruple series in terms of e as well. It is, of course, a simple matter to
evaluate η/h from the results given and then to obtain η/d by multiplying by h/d.

The expression of the series as power series in ε/m rather than ε was suggested in Fenton (1979), when
it was observed that asm could be less than 1 it was better to monitor the magnitude of ε/m than to have
a power series in ε with coefficients which are polynomials in 1/m, which could become large without
it being obvious.

The author has experimented with presenting all the series in terms of α2, which relates much more
closely to the theory being based on an expansion in shallowness, however for all the quantities of
cnoidal theory but one, series in ε/m gave more rapid convergence and better accuracy. The only
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exception is a very notable one, however, and that is the series for the velocity components. The author
in Fenton (1979) presented results for fluid velocity which fluctuated wildly and were not accurate for
high waves, and this has given cnoidal theory something of a bad name. However, in Fenton (1990) the
series were expressed in terms of α2 (actually δ = 4α2/3). Much better results were obtained, and were
found to be surprisingly accurate even for high waves, and that approach has been retained here.

In the presentation of results, the order of neglected terms such as O
¡
(ε/m)6

¢
has not been shown, as it

is obvious throughout.

A. Third-order solution

Here the full solution to third order is presented. This will be more applicable to shorter and not-so-high
waves, where the parameterm might be less than, say, 0.96.

The symbol cn is used to denote cn(αX/h|m) = cn(α(x − ct)/h|m). Equation numbers are shown
prefixed with A. Subsequently below, in Table 1 a number is presented corresponding to each equation
number. This is meant to provide a check if anybody uses these expressions, to indicate whether a
typographical or transcription error might have been made: if the series expression is evaluated with all
mathematical symbols on the right set to 1 (a meaningless operation in the context of the theory), then
the result should be the number shown in Table 1.

Surface elevation
η

h
= 1 +

³ ε

m

´
m cn2+

³ ε

m

´2µ−3
4
m2 cn2+

3

4
m2 cn4

¶
+
³ ε

m

´3µµ−61
80
m2 +

111

80
m3

¶
cn2+

µ
61

80
m2 − 53

20
m3
¶
cn4+

101

80
m3 cn6

¶
(A.1)

Coefficient α

α =

r
3ε

4m

µ
1 +

³ ε

m

´µ1
4
− 7
8
m

¶
+
³ ε

m

´2µ 1
32
− 11
32
m+

111

128
m2

¶¶
(A.2)

Horizontal fluid velocity in the frame of the wave

U√
gh
= −1 + δ

µ
1

2
−m+m cn2

¶
+δ2

µ −1940 + 79
40m− 79

40m
2 + cn2

¡−32m+ 3m2
¢−m2 cn4

+
¡
Y
h

¢2 ¡−34m+ 3
4m

2 + cn2
¡
3
2m− 3m2

¢
+ 9

4m
2 cn4

¢ ¶

+δ3



55
112 − 3471

1120m+
7113
1120m

2 − 2371
560 m

3 + cn2
¡
71
40m− 339

40 m
2 + 339

40 m
3
¢

+cn4
¡
27
10m

2 − 27
5 m

3
¢
+ 6
5m

3 cn6

+
¡
Y
h

¢2µ 9
8m− 27

8 m
2 + 9

4m
3 + cn2

¡−94m+ 27
2 m

2 − 27
2 m

3
¢

+cn4
¡−758 m2 + 75

4 m
3
¢− 15

2 m
3 cn6

¶
+
¡
Y
h

¢4µ − 3
16m+

9
16m

2 − 3
8m

3 + cn2
¡
3
8m− 51

16m
2 + 51

16m
3
¢

+cn4
¡
45
16m

2 − 45
8 m

3
¢
+ 45

16m
3 cn6

¶

 (A.3.1)

The leading term -1 should not cause concern, for if the wave is considered to be travelling in the positive
x direction, then relative to the wave the fluid is flowing under the wave in the negative x direction with
velocities of the order of the wave speed.

Vertical fluid velocity This can be obtained from equation (A.3.1) by using the mass conser-
vation equation ∂U/∂X + ∂V/∂Y = 0, and the result from equation (40) that d(cn(θ|m))/dθ =
− sn(θ|m) dn(θ|m), with the result that each term in (A.3.1) containing (Y/h)i cnj (αX/h|m), for
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j > 0, is replaced by α sn() dn()
³

j
i+1

´
× (Y/h)i+1 cnj−1(). Hence if we write equation (A.3.1) as

U√
gh
= −1 +

5X
i=1

δi
i−1X
j=0

µ
Y

h

¶2j iX
k=0

cn2k()Φijk,

where each coefficient Φijk is a polynomial of degree i in the parameterm, the vertical velocity compo-
nent follows:

V√
gh
= 2α cn() sn() dn()

5X
i=1

δi
i−1X
j=0

µ
Y

h

¶2j+1 iX
k=1

cn2(k−1)()
k

2j + 1
Φijk. (A.3.2)

Discharge

Qp
gh3

= 1 +
³ ε

m

´µ
−1
2
+m

¶
+
³ ε

m

´2µ 9
40
− 7

20
m− 1

40
m2
¶

+
³ ε

m

´3µ− 11
140

+
69

1120
m+

11

224
m2 +

3

140
m3
¶

(A.4)

Bernoulli constant
R

gh
=

3

2
+
³ ε

m

´µ
−1
2
+m

¶
+
³ ε

m

´2µ 7
20
− 7

20
m− 1

40
m2

¶
+
³ ε

m

´3µ−107
560

+
25

224
m+

13

1120
m2 +

13

280
m3
¶

(A.5)

Mean fluid speed in frame of wave

Ū√
gh

= 1 +
³ ε

m

´µ1
2
− e
¶
+
³ ε

m

´2µ− 13
120
− 1

60
m− 1

40
m2 +

µ
1

3
+
1

12
m

¶
e

¶
+
³ ε

m

´3µ− 361
2100

+
1899

5600
m− 2689

16800
m2 +

13

280
m3 +

µ
7

75
− 103
300

m+
131

600
m2
¶
e

¶
(A.6)

Wavelength in terms ofH/d

λ

d
= 4K (m)

µ
3
H

md

¶−1/2µ
1 +

µ
H

md

¶µ
5

4
− 5
8
m− 3

2
e

¶
+

µ
H

md

¶2µ
−15
32
+
15

32
m− 21

128
m2 +

µ
1

8
− 1

16
m

¶
e+

3

8
e2
¶!

(A.7)

Trough depth in terms of H/d

h

d
= 1 +

µ
H

md

¶
(1−m− e) +

µ
H

md

¶2µ
−1
2
+
1

2
m+

µ
1

2
− 1
4
m

¶
e

¶
+

µ
H

md

¶3µ133
200
− 399
400

m+
133

400
m2 +

µ
−233
200

+
233

200
m− 1

25
m2

¶
e+

µ
1

2
− 1
4
m

¶
e2
¶

(A.8)
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B. Fifth-order solution with Iwagaki approximation

A simplification which can be made is suggested by the fact that for waves which are not low and/or
short, the values of the parameter m used in practice are very close to unity indeed. This suggests the
simplification that, in all the formulae, wherever m appears as a coefficient, it be replaced by m = 1,
which results in much shorter formulae. In honor of the originator of this approach (Iwagaki 1968), we
suggest that this be termed the ”Iwagaki approximation”. Here, this is implemented (but in a manner
different from Iwagaki’s original suggestion) that wherever m appears as the argument of an elliptic in-
tegral or function, such as the elliptic functions cn(θ|m), sn(θ|m) and dn(θ|m), and the elliptic integrals
K(m), E(m) and their ratio e(m), the approximation is not made, as the quantities can be evaluated by
methods which do not need to make the approximation.

This theory will be applicable for longer waves, where m ≥ 0.96. Iwagaki (1968) observed that in
many applications of cnoidal theory m can be set to 1 with no loss of practical accuracy. He presented
results to second order and termed the resulting waves ”hyperbolic waves” because the Jacobian elliptic
functions approach hyperbolic functions in that limit. In Fenton (1990) theoretical results to fifth order
were presented with this approximation, and it was shown that it was accurate for longer and higher
waves. The present author, however, prefers not to use the term ”hyperbolic waves” as in this work we
will present a number of useful approximations to the elliptic functions which have a wider range of
validity than merely replacing cn() by the hyperbolic function sech(). The version of the theory which
we present is a simple modification of the full theory: that whereverm appears explicitly as a coefficient,
not as an argument of an elliptic integral or function, it is replaced by 1, but is retained in all elliptic
integrals and functions.

The use of the Iwagaki approximation for typical values of m in the cnoidal theory is rather more
accurate than the conventional approximations on which the theory is based, namely the neglect of
higher powers of the wave height or the shallowness. For example, m = 0.9997 for a wave of height
40% of the depth and a length 15 times the depth; in this case the error introduced by neglecting the
difference between m6 and 16 (0.002) in first-order terms is less than the neglect of sixth-order terms
not included in the theory (0.46 = 0.004).

All the results presented here agree with those presented in Fenton (1990) (where some coefficients were
presented as floating point numbers), except for two typographical errors in that work: in the equivalent
of equation (B.7) the term 3H/d should have appeared with a negative exponent, and in the equivalent
of (B.8) a third-order coefficient (−e/25) was shown with the sign reversed, (Poulin & Jonsson 1994).

Surface elevation
η

h
= 1 + ε cn2+ε2

µ
−3
4
cn2+

3

4
cn4
¶
+ ε3

µ
5

8
cn2−151

80
cn4+

101

80
cn6
¶

+ε4
µ
−8209
6000

cn2+
11641

3000
cn4−112393

24000
cn6+

17367

8000
cn8
¶

+ε5
µ
364671

196000
cn2−2920931

392000
cn4+

2001361

156800
cn6−17906339

1568000
cn8+

1331817

313600
cn10

¶
(B.1)

Coefficient α

α =

r
3ε

4

µ
1− 5 ε

8
+
71 ε2

128
− 100627 ε

3

179200
+
16259737 ε4

28672000

¶
(B.2)
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Horizontal fluid velocity in the frame of the wave:

U√
gh

= −1 + δ

µ
−1
2
+ cn2

¶
+ δ2

Ã
−19
40
+
3

2
cn2− cn4+

µ
Y

h

¶2µ
−3
2
cn2+

9

4
cn4
¶!

+δ3

Ã
− 55
112 +

71
40 cn

2−2710 cn4+6
5 cn

6+
¡
Y
h

¢2 ¡−94 cn2+75
8 cn

4−152 cn6
¢

+
¡
Y
h

¢4 ¡3
8 cn

2−4516 cn4+45
16 cn

6
¢ !

+δ4


−1181322400 +

53327
42000 cn

2−131093000 cn
4+1763

375 cn
6−197125 cn8

+
¡
Y
h

¢2 ¡−21380 cn2+3231
160 cn

4−72920 cn6+189
10 cn

8
¢

+
¡
Y
h

¢4 ¡ 9
16 cn

2−32732 cn4+915
32 cn

6−31516 cn8
¢

+
¡
Y
h

¢6 ¡− 3
80 cn

2+189
160 cn

4−6316 cn6+189
64 cn

8
¢



+δ5


−5715998560 − 144821

156800 cn
2−1131733294000 cn

4+757991
73500 cn

6−29848136750 cn
8+13438

6125 cn
10

+
¡
Y
h

¢2 ¡−5332728000 cn
2+1628189

56000 cn
4−1924812000 cn

6+11187
100 cn

8−5319125 cn
10
¢

+
¡
Y
h

¢4 ¡213
320 cn

2−13563640 cn
4+68643

640 cn
6−548132 cn8+1701

20 cn
10
¢

+
¡
Y
h

¢6 ¡− 9
160 cn

2+267
64 cn

4−98732 cn6+7875
128 cn

8−56716 cn10
¢

+
¡
Y
h

¢8 ¡ 9
4480 cn

2− 459
1792 cn

4+567
256 cn

6−1215256 cn
8+729

256 cn
10
¢


(B.3.1)

Vertical fluid velocity: In the same way as above, each term in (B.3.1) containing (Y/h)i cnj(),
for j > 0, is replaced by α sn() dn()

³
j
i+1

´
(Y/h)i+1 cnj−1(). Hence the expression for V/

√
gh can be

written

V√
gh
= 2α cn() sn() dn()

5X
i=1

δi
i−1X
j=0

µ
Y

h

¶2j+1 iX
k=1

cn2(k−1)()
k

2j + 1
Φijk, (B.3.2)

where the coefficients Φijk can be extracted from equation (B.3.1), or from Table III of Fenton (1990).

Discharge
Qp
gh3

= 1 +
ε

2
− 3 ε

2

20
+
3 ε3

56
− 309 ε4

5600
+
12237 ε5

616000
(B.4)

Bernoulli constant
R

gh
=
3

2
+

ε

2
− ε2

40
− 3 ε

3

140
− 3 ε4

175
− 2427 ε

5

154000
(B.5)

Mean fluid speed in frame of wave

Ū√
gh
= 1 +

µ
H

h

¶µ
1

2
− e
¶
+

µ
H

h

¶2µ
− 3
20
+
5

12
e

¶
+

µ
H

h

¶3µ 3
56
− 19

600
e

¶
+

µ
H

h

¶4µ
− 309
5600

+
3719

21000
e

¶
+

µ
H

h

¶5µ 12237
616000

− 997699

8820000
e

¶
(B.6)

Wavelength in terms ofH/d

λ

d
= 4K (m)

µ
3
H

d

¶−1/2 1 +
¡
H
d

¢ ¡
5
8 − 3

2e
¢
+
¡
H
d

¢2 ¡− 21
128 +

1
16e+

3
8e
2
¢

+
¡
H
d

¢3 ¡ 20127
179200 − 409

6400e+
7
64e

2 + 1
16e

3
¢

+
¡
H
d

¢4 ¡− 1575087
28672000 +

1086367
1792000e− 2679

25600e
2 + 13

128e
3 + 3

128e
4
¢

(B.7)
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Trough depth in terms of H/d

h

d
= 1 +

H

d
(−e) +

µ
H

d

¶2 e
4
+

µ
H

d

¶3µ
− 1
25
e+

1

4
e2
¶
+

µ
H

d

¶4µ 573
2000

e− 57

400
e2 +

1

4
e3
¶

+

µ
H

d

¶5µ
− 302159
1470000

e+
1779

2000
e2 − 123

400
e3 +

1

4
e4
¶

(B.8)

Practical application of cnoidal theory

Here the procedure for application of the above results is outlined. Firstly, the problem of obtaining
solutions in a frame through which the waves move will be outlined. We have not yet encountered this
problem for the high-order cnoidal theory, as all operations were performed in a frame (X,Y ) moving
with the wave such that all fluid motion was steady.

The first step: solving for parameter m

In practical problems, usually the water depth d and the wave height H are known, and either the wave
length λ or period τ is known. The problem is initially to solve for the parameter m. We now consider
the different ways to do that whether the wave length or period is known.

Wavelength known

Either of the transcendental equations (A.7) for the full third-order solution or (B.7) for the fifth-order
Iwagaki approximation can be used to solve for the parameterm. In the latter case one would of course
check that the value of m so obtained was sufficiently close to unity that the Iwagaki approximation
was justified. Both equations contain K(m) and e = e(m) = E(m)/K(m), for which convenient
expressions are given below. The variation of K(m) with m is very rapid in the limit as m → 1, as
it contains a singularity in that limit, hence, gradient methods such as the secant method for this might
break down. The author prefers to use the bisection method, for which reference can be made to any
introductory book on numerical methods, Conte & de Boor (1980) for example. This requires bracketing
the solution, for which the author uses the range m = 0.5 to m = 1 − 10−12, if 14 digit arithmetic is
being used.

As an aside, here we develop an approximation for m in terms of the Ursell number which gives some
insight into the nature of m. Consider equation (24):

α
λ

h
= 2K (m) .

If we introduce the first-order approximation from equation (A.2):

α =

r
3

4

H

mh
,

and as the lowest-order result from equation (A.8) is h/d = 1, we can write the lowest-order approxi-
mation to equation (24) as r

3

4

H

md

λ

d
= 2K (m) .

It is noteworthy that this can be written in terms of the Ursell parameterU =(H/d) / (d/λ)2 = Hλ2/d3,
giving r

3

16
U =

√
mK (m) . (27)

However, the limiting behaviour of K in the limit as m → 1 is K(m) ≈ 1
2 log

³
16
1−m

´
(#17.3.26 of

Abramowitz & Stegun 1965), which shows strong singular behaviour in that limit and we can replace
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√
m by 1 to give

√
mK (m) ≈ 1

2
log

16

1−m. (28)

Substituting this into equation (27) and solving gives an explicit first-order approximation for m in the
limitm→ 1:

m ≈ 1− 16 e−
√
3U/4. (29)

This has some theoretical as well as practical interest, in that we have shown that the parameter m is
related to the Ursell number, and as such it might be interpreted as a measure of the relative importance
of nonlinearity to dispersion, which is a common interpretation of the Ursell number. (Hedges 1995) has
suggested that the boundary between the application of Stokes and cnoidal theory is U = 40, in which
case, equation (29) gives m ≈ 0.933. This is an indication that, roughly speaking, m is always greater
than 0.93 when cnoidal theory is used within its recommended limits.

The effects of current on wave period and fluid velocities

A steadily-progressing wave train is uniquely defined by three physical dimensions: the mean depth
d, the wave crest-to-trough height H , and wavelength λ, such that it can be expressed in terms of two
dimensionless quantities, usually H/d and λ/d for shallow waves. In many situations the wave period
is known, rather than the wave length. In most marine situations waves travel on a finite current, and
the wave speed and hence the measured wave period depends on the current, because waves travel faster
with the current than against it. Most presentations of steady wave theory have used either one of two
particular definitions of wave speed, such that (1) the wave moves such that the mean fluid speed at any
point is the mean current observed, or, (2) that the depth-integrated mean fluid speed is the mean current
observed. These are known as Stokes’ first and second definitions of wave speed respectively. However,
in general, the speed depends on the current, which cannot be predicted by theory, as it is determined by
other topographic or oceanographic factors. What the theories do predict, however, is the speed of the
waves relative to the current, and this is the quantity Ū introduced above.

The existence of a current has two main implications for the application of a steady wave theory. Firstly,
the apparent period measured by an observer depends on the actual wave speed and hence on the current
such that the apparent period is Doppler-shifted. This means that without explicit allowance for the
current, if the period is known instead of the wave length it is not possible to solve the problem uniquely.
This will have a relatively small effect, of the order of the ratio of fluid speed to wave speed. The second
main effect of current is more important if fluid velocities are to be calculated, and this is the additive
effect it has on the horizontal fluid velocities, which will be of the order of the current relative to wave-
induced fluid velocities. To determine these velocities it is necessary to know the current. If the current
is not known, then the problem is under-specified, and the error in fluid velocities thus computed will be
of the order of the currents possible.

In the stationary frame of reference the time-mean horizontal fluid velocity at any point is denoted by
ū1, the mean current which a stationary meter would measure. It can be shown that if the fluid flow is
irrotational, on which the above theory has been based, that this is constant throughout the fluid. Relating
the velocities in the two co-ordinate systems gives

ū1 = c− Ū . (30)

If there is no current, ū1 = 0, and hence c = Ū , so that in this special case the wave speed is equal to Ū ,
introduced above as the mean fluid speed in the frame of the wave. This is Stokes’ first approximation to
the wave speed, usually incorrectly referred to as his ”first definition of wave speed”, and is that relative
to a frame in which the current is zero. Most wave theories have presented an expression for Ū , obtained
from its definition as a mean fluid speed, and it has often been referred to, incorrectly, as the ”wave
speed”.

A second type of mean fluid speed is the depth-integrated mean speed of the fluid under the waves in
the frame in which motion is steady. If Q is the volume flow rate per unit span underneath the waves
in the (X,Y ) frame, the depth-averaged mean fluid velocity is −Q/d, where d is the mean depth. In
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the physical (x, y) frame, the depth-averaged mean fluid velocity, the ”mass-transport velocity”, is ū2,
given by

ū2 = c−Q/d. (31)

If there is no mass transport, ū2 = 0, then Stokes’ second approximation to the wave speed is obtained:
c = Q/d. This would be the condition in a closed wave tank in a laboratory.

In general, neither of Stokes’ first or second approximations is the actual wave speed, and in fact the
waves can travel at any speed. Usually the overall physical problem will impose a certain value of
current on the wave field, thus determining the wave speed.

Wave period known and current at a point known

In many applications, instead of knowing the wavelength, it is the wave period and current which are
known, in which case formulae based on equations (30) or (31) can be used. In this case it is simpler to
present separate expansions for the quantities which appear in the equations.

Equation (30) can be shown to give

ū1 + Ū − λ

τ
= 0,

where τ is the wave period, as c = λ/τ by definition. We can substitute this and re-arrange the equation
to give

ū1√
gd
+

Ū√
gh

µ
h

d

¶1/2
− λ/d

τ
p
g/d

= 0. (32)

In the case that water depth d, wave heightH , gravitational acceleration g, period τ , and mean Eulerian
current ū1 are known, the quantities ū1/

√
gd and τ

p
g/d can be calculated. The dimensionless trough

depth h/d and dimensionless wavelength λ/d are known as functions of the known wave height H/d
and the as-yet-unknown m, as given by equations (A or B.7) and (A or B.8). The quantity Ū/

√
gh is

given by equation (A.6 or B.6), which can be calculated also in terms of m and the known physical
dimensions from

ε =
H

h
=
H/d

h/d
. (33)

With these quantities substituted, equation (32) is now an equation in the single unknownm, and meth-
ods such as bisection can be applied to obtain a solution.

Equation (32) is simpler than that given by the author as equation (20) in Fenton (1990), where he did
not realise that the series for the wavelength itself could be used so simply.

Wave period known and mean current over the depth known

In the other case, where the depth-integrated mean current ū2 is known, the equation to solve form is

ū2√
gd
+

Qp
gh3

µ
h

d

¶3/2
− λ/d

τ
p
g/d

= 0, (34)

where the procedure is the same as before but the dimensionless dischargeQ/
p
gh3, known as a function

of ε andm from (A.4) and (B.4), appears instead of the mean fluid speed Ū /
√
gh. This is also a simpler

formulation than the author’s equation (25) in Fenton (1990).

Wave period known, current not known

In this case, the problem is not uniquely defined, and an assumption will have to be made for the current,
and one of the above two approaches adopted. It will have to be recognised that any horizontal fluid
velocities calculated have an error of the magnitude of the real current relative to the assumed current.
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An alternative approach

Poulin & Jonsson (1994) have expressed products of two series in equations (32) and (34) as single
power series. Thus, they provided a power series for Ū/

√
gd and one for Q/

p
gd3 in terms of the

known H/d. Hence, in equation (32), if one were to work to the full fifth-order accuracy of the current
theory (the series was presented to fourth order only in Poulin & Jonsson (1994) ), then the series for
Ū/
√
gd contains 21 terms, compared with the procedure adopted here, of evaluating the product of two

series, that for Ū/
√
gh with a total of 11 terms in the series and that for h/d with 12 terms, a total

of 23 terms. (Similarly they expressed a term in h/d/α as a single power series, which has now been
superseded by the author’s realisation above that the expression is simply related to the wavelength).

Equivalently considering equation (34), the series for Q/
p
gd3 in Poulin & Jonsson (1994) (which is

actually wrong at third and fourth orders as presented therein), would contain 21 terms at fifth order,
compared with 6 terms for Q/

p
gh3 plus 12 terms for h/d, a total of 18 terms using the present ap-

proach.

The current author, who originated the formulation of equations (32) and (34), deliberately chose the
sequential evaluation of series (not ”simultaneous” or ”coupled” as stated in Poulin & Jonsson (1994)
) rather than combining the series, as to him it seemed that the necessity of providing more series
expansions as part of the theory was not justified.

Application of the theory

Having solved form iteratively, the cnoidal theory can now be applied.

Trough depth h: Equation (A or B.8) can be used to calculate h/d. This will probably already
have been calculated as part of the converged solution process form.

Wavelength λ: This follows easily from equation (A or B.7), and also will probably already have
been calculated.

Dimensionless wave height ε = H/h: Equation (33).

Coefficient α: Equation (A or B.2). This is used as an argument of the elliptic functions in all
quantities which vary with position and is used to calculate δ.

Shallowness parameter δ: It has been found by the author (Fenton 1990) that it is more accurate
to present results for fluid velocity in terms of α rather than ε = H/h, and it is more convenient to
present the results in terms of δ, rather than in terms of α, where

δ =
4

3
α2. (35)

Mean fluid speed in frame moving with wave Ū : Equation (A or B.6) is used to calculate
Ū/
√
gh.

Discharge Q: Equation (A or B.4) is used to calculate Q/
p
gh3.

Wave speed c: follows from equation (30) if the current at a point is known: c = ū1 + Ū , or from
equation (31) if the depth-integrated mean current is known: c = ū2 +Q/d.

Surface elevation: For a particular point and time (x, t) the elliptic function cn(α (x− ct) /h|m)
can be computed using the approximation in Table 2 and equation (A or B.1) used.
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Fluid velocity components (u, v): Fluid velocities in the physical (x, y) frame are given by

u(x, y, t) = c+ U(x− ct, y), (36)

where U(X,Y ) is given by equation (A or B.3). These equations can be written

u(x, y, t)√
gh

=
c√
gh
− 1 +

5X
i=1

δi
i−1X
j=0

³y
h

´2j iX
k=0

cn2k(α(x− ct)/h|m)Φijk, (37)

where the coefficientsΦijk can be extracted from equation (A.3.1), where each is a polynomial of degree
i in the parameter m, or in the Iwagaki approximation where they are rational numbers, from equation
(B.3.1), or from Table III of Fenton (1990). The vertical velocity components follow, using the mass
conservation equation, differentiating with respect to x and integrating with respect to y to give:

v(x, y, t)√
gh

= 2α cn() sn() dn()
5X
i=1

δi
i−1X
j=0

³y
h

´2j+1 iX
k=1

cn2(k−1)(α(x− ct)/h|m) k

2j + 1
Φijk, (38)

It will be seen below that this theory predicts velocities accurately over a wide range of wave conditions.

Derivatives of fluid velocity: In some applications it is necessary to know the spatial and time
derivatives of the velocity. These follow from differentiation of equations (37) and (38) and the use of
elementary properties of elliptic functions, and application of the mass conservation and irrotationality
equations:

∂u

∂x
= 2α

r
g

h
cn() sn() dn()

5X
i=1

δi
i−1X
j=0

³y
h

´2j iX
k=1

cn2(k−1)(α(x− ct)/h|m) kΦijk,

∂u

∂y
= 2

r
g

h

5X
i=1

δi
i−1X
j=1

³y
h

´2j−1 iX
k=0

cn2k(α(x− ct)/h|m) jΦijk,

∂u

∂t
= −c∂u

∂x
,

∂v

∂t
= −c∂v

∂x
,

∂v

∂x
=

∂u

∂y
,

∂v

∂y
= −∂u

∂x
.

Bernoulli constant R: Equation (A or B.5) is used to calculate R/gh.

Fluid pressure p: By applying Bernoulli’s theorem in the frame in which motion is steady,
equation (5) can be used to give an expression for the fluid pressure at a point:

p(x, y, t)

ρ
= R− gy − 1

2

h
(u− c)2 + v2

i
.

Practical tools and hints for application

Here we provide some methods and results which may make the application of cnoidal theory somewhat
more accessible.

Numerical check for coefficients

In the presentation of high-order series results it is very easy to make errors, whether the author preparing
the work for publication or a reader transcribing the results for application. To provide a check on
this, Table 1 provides a list of numbers, one for each of the equations (A.1-8) and (B.1-8) which have
been obtained by evaluating each of the expressions with all mathematical symbols set to 1. This is a
meaningless operation physically, and the fact that the numbers from the full third-order theory and fifth
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order theory disagree does not imply that something is wrong. If a user checks their own calculations
and does not obtain the values shown here, an error has been made by someone, either the author or
themselves, and checking should be carried out. As a possible extra check, it should be mentioned
that the fifth-order Iwagaki approximation as presented in (Fenton 1990) is believed to be correct as
printed but for two sign errors: the exponent −1/2 of 3H/d in equation (19) (cf. B.7 above) and in the
coefficient −e/25 in the third-order term of equation (21), (cf. B.8 above).

Table 1. Values of expressions evaluated with all symbols set to 1

Quantity Third-order full solution Fifth-order Iwagaki approximation

Equation Check value Equation Check value
η
h (A.1) 2 (B.1) 2

α (A.2) 119
256

√
3 ≈ 0.80513 (B.2) 26815417

57344000

√
3 ≈ 0.80995

U√
gh

(A.3) 33
560 ≈ 0.05893 (B.3) −45728632464000 ≈ −1.85587

Q√
gh3

(A.4) 393
280 ≈ 1.40357 (B.4) 842847

616000 ≈ 1.36826
R
gh (A.5) 547

280 ≈ 1.95357 (B.5) 295783
154000 ≈ 1.92067

Ū√
gh

(A.6) 138
175 ≈ 0.78857 (B.6) 158576387

194040000 ≈ 0.81724
λ
d (A.7) 17

32

√
3 ≈ 0.92015 (B.7) 6826061

4300800

√
3 ≈ 2.74904

h
d (A.8) 23

50 = 0.46 (B.8) 2176261
1470000 ≈ 1.48045

Numerical Richardson test for the series results

There is one method which is very simple to apply which can test whether or not a series solution to
a problem is correct, and if not, at which order of accuracy it is wrong. It gives a simple answer as
to whether all the series used in the computation are correct, but it does not reveal where any errors
might be. The method, in the context of this work might prove helpful to a practitioner having written
a program based on the theoretical results above who might want to check the accuracy of the series as
programmed.

The method, proposed in Fenton (1985), is based on Richardson extrapolation to the limit. It can be used
almost anywhere, but a simple test for some of the most important quantities presented above would be
to calculate the pressure at an arbitrary point on the free surface, where the method would test whether
or not all of the expressions were correct: the elevation of the surface from (A or B.1), the coefficient α
from (A or B.2), the velocity components from (A or B.3.1) and (A or B.3.2), the mean fluid speed from
(A or B.6) and the Bernoulli constant from (A or B.5)!

If one has a series approximation to a quantity which should be zero, such as pressure, or testing the
series by evaluating an identity such as H/h − (H/d)/(h/d), then evaluating it will not give zero in
general, but a finite error, such as non-zero pressure at a point on the surface. We denote this error by∆,
and suppose it to be a function only of an expansion parameter ² (probablyH/d in the present context),
for all other quantities given numerical values. For example we might take a wave of length λ/d = 20
and calculate the pressure on the surface at (x − ct)/h = 0.5. Now, if we assume that the error is
proportional to the nth power of ², then we can write, where ² is the expansion quantity, whether ε, δ, or
H/d:

∆ = a²n,

where a is independent of ². Now if we evaluate the error numerically for two different values of ε: ²1
and ²2, to give∆1 and∆2, then we can eliminate a such that

∆1
∆2

=

µ
²1
²2

¶n
,
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and this can be solved to give

n =
log (∆1/∆2)

log (²1/²2)
, (39)

thus giving a numerical estimate of the error. The error of this expression can be shown to be O(²), so
to provide convincing evidence of the order of the theory it is necessary to use a small value of ². In
practice it is very reassuring to obtain a value of n = 5.98, for example, providing strong evidence that
all series that have gone into the calculation are correct to fifth order.

Formulae and methods for elliptic integrals and functions
Elementary properties of elliptic functions and integrals

For elementary properties, reference can be made to Abramowitz & Stegun (1965), Gradshteyn &
Ryzhik (1965) and Spanier & Oldham (1987), for example. Those sources contain a number of ap-
proximations, but the expressions given usually do not have the same remarkable accuracy as those
given in Fenton & Gardiner-Garden (1982) for the limit required for cnoidal theory of waves, m → 1.
If a reader were interested enough to investigate the theory, Eagle (1958) contains a refreshing differ-
ent approach to the subject which inspired the work described below, originally obtained in Fenton &
Gardiner-Garden (1982).

Approximations to functions and integrals

One perceived practical problem with the application of cnoidal theory has been that the theory makes
use of Jacobian elliptic functions and integrals, seen as being difficult to calculate. This has some justi-
fication, as conventional formulae such as in Abramowitz & Stegun (1965) are very poorly convergent,
if convergent at all, in the limit m→ 1, precisely the limit in which cnoidal theory is most appropriate.
However, alternative formulae can be obtained which are most accurate and remarkably quickly conver-
gent in the limit of m → 1. This has been done in (Fenton & Gardiner-Garden 1982), which provide
a number of useful expressions for both elliptic functions and integrals. The formulae are dramatically
convergent, even for values of m not in the m→ 1 limit. Convenient approximations to these formulae
can be obtained and are given here in Table 2. For values of m likely to be encountered using cnoidal
wave theory the formulae are probably accurate to machine accuracy. It is remarkable that even for
m = 1/2, the simple approximations given in the table are accurate to five significant figures. For the
casem < 1/2, when cnoidal theory becomes less valid, conventional approximations could be used, for
which reference can be made to Fenton & Gardiner-Garden (1982) or to standard references. However,
cnoidal theory should probably be avoided in this case.

Derivatives

∂

∂θ
cn(θ|m) = − sn(θ|m) dn(θ|m),

∂

∂θ
sn(θ|m) = cn(θ|m) dn(θ|m), (40)

∂

∂θ
dn(θ|m) = −m sn(θ|m) cn(θ|m)

Relations between squares

dn2 (θ|m) = 1−m ¡1− cn2 (θ|m)¢ ,
sn2 (θ|m) = 1− cn2 (θ|m) (41)

Fourier series for cn2

Although not necessary for the application of the above theory, there is an apparently little-known
Fourier series for the cn2 function which might prove useful in certain applications. It is presented
here, partly because in some fundamental references – (#911.01 of Byrd & Friedman 1954), (#8.146,
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Table 2. Approximations for elliptic functions and integrals in the case most appro-
priate for cnoidal theory,m ≥ 1/2.

Elliptic integrals
Complete elliptic integral of the first kindK(m)

K(m) ≈ 2

(1+m1/4)
2 log

2(1+m1/4)
1−m1/4

Complementary elliptic integral of the first kindK0(m)
K0(m) ≈ 2π

(1+m1/4)2

Complete elliptic integral of the second kind E(m)
E(m) = K(m) e(m), where

e(m) ≈ 2−m
3 + π

2KK0 + 2
¡
π
K0
¢2µ− 1

24 +
q21

(1−q21)
2

¶
,

where q1(m) is the complementary nome q1 = e−πK/K
0
.

Jacobian elliptic functions
sn(z|m) ≈ m−1/4 sinhw−q21 sinh 3w

coshw+q21 cosh 3w
,

cn(z|m) ≈ 1
2

³
m1

mq1

´1/4
1−2q1 cosh 2w

coshw+q21 cosh 3w
,

dn(z|m) ≈ 1
2

³
m1

q1

´1/4
1+2q1 cosh 2w

coshw+q21 cosh 3w
,

in which w = πz/2K0.

26 of Gradshteyn & Ryzhik 1965) – an incorrect expression (an odd function) is given. The correct
expression is given in #2.23 of(Oberhettinger 1973) as a Fourier series for dn2() which can be used to
convert to a Fourier Series for cn2(), which can be written

cn2 (θ|m) = 1 + e− 1
m

+
π2

mK2

∞X
j=1

j

sinh (jπK 0/K)
cos

µ
jπθ

K

¶
. (42)

For typical shallow water waves,m→ 1, andK →∞, such that the series would be slowly convergent,
as would be expected for a wave which is so non-sinusoidal as a long wave with its long trough and
short crest. The series could be re-cast to give a complementary rapidly-convergent formula which
would involve a series of hyperbolic functions.

Convergence enhancement of series

The series above have been presented to third order for the full theory and to fifth order for the Iwagaki
approximation. There are several techniques available for obtaining more accurate results by taking the
series results and attempting to extract more information from the series than is apparently there.

The Shanks transform

One simple way of doing this is to use Shanks transforms, which are delightfully introduced in Shanks
(1955), and used in the context of water wave theory to enhance the convergence of series in Fenton
(1972). They take the first few terms of a series and attempt to mimic the behaviour of the series as
if it had an infinite number of terms. The method takes three successive terms in a sequence (such as
the first, second and third order solutions for a wave property), and extrapolates the behaviour of the
sequence to infinity, hopefully mimicking the behaviour of the series if there were an infinite number of
terms. There is little theoretical justification for the procedure, but it can work surprisingly well. It is
easily implemented: if the last three terms in a sequence of n terms are Sn−2, Sn−1, and Sn, an estimate
of the value of S∞ is given by

S∞ ≈ Sn − (Sn − Sn−1)2
(Sn − Sn−1)− (Sn−1 − Sn−2) . (43)

This is not the form which is usually presented, but it is that which is most suitable for computations,
when in the possible case that the sums have nearly converged and both numerator and denominator of

21



the second term on the right go to zero the result is less liable to round-off error. The transform does
indeed possess some remarkable properties. For example, it gives the exact sum to infinity for geometric
series, which can be verified by substituting Sn =

Pn
j=0 r

j , then equation (43) gives 1/ (1− r), the
exact result for the sum to infinity.

The transform is simply applied and can be used in many areas of numerical computations. It gives
surprisingly good results, but its theoretical justification is limited and sometimes it does not work well.

Padé approximants

A form of approximation of the series which has more justification is that of Padé approximation, where
a rational function of the expansion variable is chosen such as to match the series expansion as much
as possible, Baker (1975), which was introduced to water wave theory by Schwartz (1974). The cal-
culations for Padé approximants are not as trivial as for Shanks transforms, however the properties are
usually more powerful. The [i, j] Padé approximation is defined to be the rational function p(²)/q(²),
where p(²) is a polynomial of degree ≤ m and q(²) is a polynomial of degree ≤ n, such that the se-
ries expansion of p(²)/q(²) has maximal initial agreement with the series expansion of the function. In
normal cases, the series expansion agrees through the term of degree m + n, and it is this way that the
coefficients in the two polynomials are computed. An example is (1 + x/2)/(1− x/2) as the [1, 1] ap-
proximation to ex, which for small values of x is more accurate than the equivalent series with quadratic
terms 1 + x + x2/2. Another example is where the function 1 + x + x2 has as its [1, 1] approximant
the function 1/ (1− x), and this too has ascertained that the first three terms of the series look like a
geometric series.

Use of convergence acceleration procedures in cnoidal theory

The author has tested the use of both Shanks transforms and Padé approximants in applying the cnoidal
theory described in this work. As Padé approximation is considered more powerful, some attention was
given to that, however, a limitation became quickly obvious, when at the first step in application, solving
equation (B.7) for the wavelength, approximating the quartic in H/d in the large brackets by a [2, 2]
Padé approximant, with a quadratic in numerator and denominator, the latter passed through zero for
an intermediate value of H/d, such that in the vicinity of that point very wildly varying results were
obtained. The author considered that this was sufficiently dangerous that generally [2, 2] or [3, 2] Padé
approximants could not be recommended for the approximation of fifth-order cnoidal theory. When
he examined Padé approximants with a linear function in the denominator, it was found that, given an
n-term series, the [n− 1, 1] Padé approximant is, in fact, exactly equal to the Shanks transform of the
last three sums in the series, as given in the equations above. As the Shanks transform is more simply
implemented, we will refer to the series convergence acceleration using this method by that name.

In practice, obtaining solutions for given values of wavelength and wave height, the use of the Shanks
transforms everywhere gave better results than just using the raw series in the case of global wave
quantities such asα, Q, etc. which are independent of position, and it is recommended that for both third-
order theory and the Iwagaki approximation that Shanks transforms be used to improve the accuracy of
all series computations for those quantities. They are of course trivially implemented, given say, three
numbers for the third, fourth and fifth solutions.

For the surface elevation and the fluid velocity components, however, because they are functions of po-
sition, then depending on that position the series could show rather irregular behaviour, and it was found
that the Shanks transform results could also be irregular. As in Fenton (1990), it is then recommended
that for quantities which are functions of position, that no attempts be made to improve the accuracy
by numerical transforming of the results, but that for all other quantities, characteristic of the wave as
a whole, the Shanks transform be applied to all numerical evaluations of series. This procedure was
adopted for all the results shown further below.
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A numerical cnoidal theory

Introduction

In Fenton (1990) the accuracies of various theories were examined by comparison with experimental
results and with results from high-order numerical methods. It was found that fifth-order Stokes and
cnoidal theory were of acceptable engineering accuracy almost everywhere within the range of validity
of each. For long waves which are very high however, even the high-order cnoidal theory presented
above becomes inaccurate. In such cases the most accurate method is to use a numerical method. The
usual method, suggested by the basic form of the Stokes solution, is to use a Fourier series which is
capable of accurately approximating any periodic quantity, provided the coefficients in that series can be
found. A reasonable procedure, then, instead of assuming perturbation expansions for the coefficients
in the series as is done in Stokes theory, is to calculate the coefficients numerically by solving the full
nonlinear equations. This approach began with Chappelear (1961), and has been often but inappropri-
ately known as ”stream function theory” (Dean 1965). Further developments include those of Rienecker
& Fenton (1981). A comparison of the various methods has been given in Sobey et al. (1987), where
the conclusion was drawn that there was little to choose between them. A more recent development has
been the simpler method and computer program given in Fenton (1988).

This Fourier approach breaks down in the limit of very long waves, when the spectrum of coefficients
becomes broad-banded and many terms have to be taken, as the Fourier approximation has to approx-
imate both the short rapidly-varying crest region and the long trough where very little changes. More
of a problem is that it is difficult to get the method to converge to the solution desired, (Dalrymple &
Solana 1986).

A new approach was suggested in Fenton (1995), which describes a numerical cnoidal theory, which is
to cnoidal theory what the various Fourier approximation methods are to Stokes theory, in that it solves
the problem numerically by assuming series of cnoidal-type functions, but rather than solving them by
analytical power series methods as above, the coefficients in the equations are found numerically and
there is no essential mathematical approximation introduced. The method will be described here briefly.

Theory

A spectral approach is used, in which all functions of x are approximated by polynomials of degree N
in terms of the square of the Jacobian elliptic function cn2(θ|m) for the surface elevation and bottom
velocity of the form suggested by conventional cnoidal theory:

η∗ = 1 +
NX
j=1

Yj cn
2j (θ|m) , (44)

f 0∗ = F0 +
NX
j=1

Fj cn
2j (θ|m) , (45)

where the Yj and Fj are numerical coefficients for a particular wave. Note that theN here is not the order
of approximation but the number of terms in the series. Conventional cnoidal theory expresses the coeffi-
cients as expansions in terms of the parameter αwhich is related to the shallowness (depth/wavelength)2,
equations (14) and (15), and produces a hierarchy of equations and solutions based on series expansions
in terms of α, which is required to be small. In this work there is no attempt to solve the equations by
making expansions in terms of physical quantities. The surface velocity components are then given by

u∗s =
ush

Q
= − cosαη∗

d

dθ
. f 0∗,

v∗s =
vsh

Q
= sinαη∗

d

dθ
. f 0∗. (46)

On substituting these into the nonlinear surface boundary conditions, equations (12) and (13) we have
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two nonlinear algebraic equations valid for all values of θ. The equations include the following un-
knowns: α, m, g∗, R∗, plus a total of N values of the Yj for i = 1 . . . N , and N + 1 values of the Fj
for i = 0 . . . N , making a total of 2N + 5 unknowns. For the boundary points at which both boundary
conditions are to be satisfied we choose M + 1 points equally spaced in the vertical between crest and
trough such that:

cn2 (θi|m) = 1− i/M, for i = 0 . . .M, (47)

where i = 0 corresponds to the crest and i = M to the trough. This has the effect of clustering points
near the wave crest, where variation is more rapid and the conditions at each point will be relatively
different from each other. If we had spaced uniformly in the horizontal, in the long trough where condi-
tions vary little the equations obtained would be similar to each other and the system would be poorly
conditioned. We now have a total of 2M + 2 equations but so far, none of the overall wave parameters
have been introduced. It is known that the steady wave problem is uniquely defined by two dimension-
less quantities: the wavelength λ/d and the wave height H/d. In many practical problems the wave
period is known, but Fenton (1995) considered only those where the dimensionless wavelength λ/d is
known. It can be shown that λ/d is related to α using the expression (24) which we term the Wavelength
Equation:

α
λ

d

d

h
− 2K(m) = 0, (48)

where K(m) is the complete elliptic integral of the first kind, and where the equation has introduced
another unknown d/h, the ratio of mean to trough depth.

The equation for this ratio is obtained by taking the mean of equation (44) over one wavelength or half
a wavelength from crest to trough:

d

h
= 1 +

NX
j=1

Yj cn2j (θ|m). (49)

The mean values of the powers of the cn function over a wavelength can be computed from the recur-
rence relations (26) for the Ij such that equation (49) can be written

1 +
NX
j=1

Yj Ij − d
h
= 0, (50)

thereby providing one more equation, the Mean Depth Equation.

Finally, another equation which can be used is that for the wave height:

H

h
=

η0
h
− ηM

h
, (51)

which, on substitution of equation (44) at x = x0 = 0 where cn(0|m) = 1 and, because cn(αxM |m) =
0 from equation (47), gives

H

d

d

h
−

NX
j=1

Yj = 0, (52)

the Wave Height Equation.

We write the system of equations as

e (z) = {ei (z) , i = 1 . . . 2M + 5} = 0, (53)

where ei is the equation with reference number i, the 2M + 2 equations described above plus the three
equations (48), (50), and (52), and where the variables which are used are the 2N+5 unknowns described
above plus d/h:

z = {zj , j = 1 . . . 2N + 6} , (54)
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Whereas the parameter m has been used in cnoidal theory, it has the unpleasant property that it has a
singularity in the limit as m → 1, which corresponds to the long wave limit, and as we will be using
gradient methods to solve the nonlinear equations this might make solution more difficult. It is more
convenient to use the ratio of the complete elliptic integrals as the actual unknown, which we choose to
be the first:

z1 =
K(m)

K(1−m) . (55)

The solution of the system of nonlinear equations follows that in Fenton (1988), using Newton’s method
in a number of dimensions, where it is simpler to obtain the derivatives by numerical differentiation.

As the number of equations and variables can never be the same (2M + 5 can never equal 2N + 6 for
integer M and N ), we have to solve this equation as a generalised inverse problem. Fortunately this
can be done very conveniently by the Singular Value Decomposition method (for example #2.6 of Press,
Teukolsky, Vetterling & Flannery 1992) so that if there are more equations than unknowns, M > N ,
the method obtains the least squares solution to the overdetermined system of equations. In practice this
was found to give a certain rugged robustness to the method, despite the equations being rather poorly
conditioned.

The set of functions
©
cn2j(θ|m), j = 0 . . . Nª used to describe spatial variation in the horizontal do not

form an orthogonal set, and they all tend to look like one another, which result, although apparently an
esoteric mathematical property, has the important effect that the system of equations is not particularly
well-conditioned, and numerical solutions show certain irregularities and a relatively slow convergence
with the number of terms taken in the series. It was difficult to obtain solutions for N > 10. The
Fourier methods, however, using the robustly orthogonal trigonometric functions, do not seem to have
these problems. Fortunately, however, in the case of the numerical cnoidal theory, good results could be
obtained with few terms.

For initial conditions in the iteration process, it was obvious to choose the fifth order Iwagaki theory
presented in equations (B.1-B.8). The first step is to compute an approximate value of m and hence z1
using the analytical expression for wavelength in terms of m from equation (B.7), combined with the
bisection method of finding the root of a single transcendental equation. After that the rest of the fifth
order expressions presented above can be used.

Accuracy of the methods

In this section we examine the applicability of the full third-order cnoidal theory, the fifth-order Iwagaki
approximation and the numerical cnoidal theory by considering several high waves and showing results
for the surface profile and possibly more importantly, for the velocity profile under the crest.

The region of possible waves and the validity of theories

The range over which periodic solutions for waves can occur is given in Figure 2, which shows limits
to the existence of waves determined by computational studies. The highest waves possible, H = Hm,
are shown by the thick line, which is the approximation to the results of Williams (1981), presented as
equation (32) in Fenton (1990) :

Hm
d
=

0.141063 λ
d + 0.0095721

¡
λ
d

¢2
+ 0.0077829

¡
λ
d

¢3
1 + 0.0788340 λ

d + 0.0317567
¡
λ
d

¢2
+ 0.0093407

¡
λ
d

¢3 . (56)

Nelson (1987, ) has shown from many experiments in laboratories and the field, that the maximum wave
height achievable in practice is actually only Hm/d = 0.55. Further evidence for this conclusion is
provided by the results of Le Méhauté et al. (1968), whose maximum wave height tested was H/d =
0.548, described as ”just below breaking”. It seems that there may be enough instabilities at work that
real waves propagating over a flat bed cannot approach the theoretical limit given by equation (56). This
is fundamental for the application of the present theories. If indeed the highest waves do have a height
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Figure 2. The region of possible steady wave, showing the theoretical highest waves (Williams), the highest long
waves in the field (Nelson) with cases reported on here, and Hedges’ proposed demarcation line between regions
of applicability of Stokes and cnoidal theories.

to depth ratio of only 0.55, it seems that both fifth-order Stokes theory and fifth-order cnoidal theory are
capable of giving accurate results over all possible waves (Fenton 1990).

In Fenton (1990) the author proposed a formula for the boundary between the use of Stokes theory and
cnoidal theory. It has been pointed out by Hedges (1995), however, that a simpler criterion, and one
agreeing more with the numerical evidence, is that cnoidal theory should be applied for

U =
Hλ2

d3
> 40, (57)

while forU < 40, for shorter waves, Stokes theory should be used. This line is plotted on Figure 2, and
it shows an interesting and important property for small waves, that cnoidal theory should not be used
below a certain wave height, even for very long waves! This was explained in Fenton (1979), where it
was shown that in the small amplitude limit, the waves tended to become sinusoidal and the parameter
m became small, such that the effective expansion parameter ε/m became large, even if ε itself was not,
and the series showed poor convergence.

Comparison of theories and numerical methods

Now we examine the accuracy of the various theories over the range of possible waves, considering
H/d = 0.55 and increasing the wave length from 8 to 64, doubling each time. One with a height of 0.7,
close to the theoretical maximum, will be considered.

Table 3. Wave trains for which results are presented here

H/d λ/d U m (3rd order) m (5th order)

0.55 8 35.2 0.9168 0.8964

0.55 16 141 0.9983 0.9980

0.7 32 717 1− 0.14× 10−6 1− 0.24× 10−6

0.55 64 2250 1− 0.75× 10−13 1− 0.11× 10−12
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These cases are summarised in Table 3, which shows the wave dimensions, the Ursell number, and the
value ofm obtained by solving equation (B.7).

3rd order 5th, m~1 Numerical Fourier

Figure 3. Surface profiles forH/d = 0.55, λ/d = 8.

Figure 3 shows the solution for the surface profiles obtained for a high wave of intermediate length,
when conventional cnoidal theory has been considered not valid, and which falls outside Hedges’ rec-
ommended boundary for cnoidal theory ofU ≥ 40, as can be seen on Figure 2. Four curves are plotted,
results from the full third-order method, the fifth-order Iwagaki approximation (shown as m~ 1), the
numerical cnoidal theory described above, and from the Fourier approximation method, which should
be highly accurate in this relatively short wave limit. It can be seen that most results are almost indis-
tinguishable at the scale of plotting, but that in this case of a relatively short wave, with m ≈ 0.9, the
Iwagaki approximation is not so accurate, as expected. Whereas conventional cnoidal theory should
not be particularly accurate in this shorter wave limit, as it depends on the waves being long for its
accuracy, there is nothing in the numerical cnoidal method which necessarily limits its accuracy to long
waves. In fact, for the initial conditions for the numerical method only cnoidal theory was used, and
it was not accurate enough for waves shorter than this example. If Stokes theory could be modified to
provide the initial conditions, there is no reason why the numerical cnoidal method could not be used
for considerably shorter waves.

Figure 4 shows the velocity profiles under the crest for the same wave. It is clear that the numerical
cnoidal method and the Fourier method agree closely, and possibly strangely, that the Iwagaki approx-
imation is accurate, even for this wave with m ≈ 0.9. The third-order theory predicts the mean fluid
speed under the wave poorly, but predicts the velocity variation in the vertical very well, so that the curve
is displaced relative to the accurate results.

Figure 5 shows the results for a longer wave, of λ/d = 16. In this case, m = 0.998, and it is expected
that the Iwagaki approximation would be accurate. It can be seen that even the third-order theory predicts
the surface very accurately. For all subsequent cases studied, even for the higher wave withH/d = 0.7,
the results for surface elevation were better even than this, and no more results for surface elevation will
be presented here.

Figure 6 shows the velocity profiles under the crest. It is clear that the fifth-order Iwagaki theory is
highly accurate for practical purposes, but that the third-order theory has a constant shift as before.

Figure 7 shows the behaviour of the numerical cnoidal method for very high and long waves, for a
wave of length λ/d = 32 and a height of H/d = 0.7, close to the maximum theoretical height of
Hm/d = 0.737, calculated from equation (56). There is evidence that no long wave in shallow water
can exist at this height, and that a maximum of H/d = 0.55 is more likely (Nelson 1994). This wave
is sufficiently long that the Fourier method is beginning to be tested considerably, yet it is capable of
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All results

Figure 5. Surface profiles forH/d = 0.55, λ/d = 16.
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Figure 6. Velocity profiles under crest for H/d = 0.55, λ/d = 16.
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giving results provided sufficient numbers of Fourier terms are taken and sufficient steps in wave height
are taken. It can be seen that the present numerical cnoidal theory is also capable of high accuracy,
as demonstrated by the close agreement between the two very different theories. It used much smaller
computing resources, typically using 9-10 spectral terms with the solution of systems of 25 equations
compared with the Fourier method with some 25 spectral terms and some 70 equations. However, it can
be seen that there are some irregularities in the solution, and the results for different values of N do not
agree to within plotting accuracy. Although the method shows difficulty with convergence, it does yield
results of engineering accuracy. It is still remarkable, however, that such a demanding problem can be
solved with so few ”spectral terms”.
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Figure 8. Velocity profile under crest forH/d = 0.55, λ/d = 64.

Figure 8 shows the velocity profile under the crest for a very long wave, λ/d = 64, with Nelson’s
maximum heightH/d = 0.55. The Fourier method took a large number of steps to converge that it was
considered not worth while. The numerical cnoidal method performed quite well, although there was
some variation between the solutions for N = 5 to N = 9. What is noteworthy, however, is that the
fifth-order Iwagaki theory gave a good engineering accuracy solution to this problem.

Conclusions from computational results

The numerical cnoidal method has been shown to be accurate for waves longer than some eight times the
water depth. It can treat very long waves rather more easily than Fourier methods can. As the theoretical
highest waves are approached, however, the accuracy decreases to an approximate engineering accuracy.
However there is strong evidence that these waves cannot be achieved in practice. Throughout, however,
for waves with an Ursell number greater than 40, and apparently even for high waves, the fifth-order
Iwagaki theory presented in this work gave satisfactory engineering solutions to the problems studied.

List of Symbols

Symbol Definition
Roman symbols
a Constant in numerical test of order of accuracy
c Wave speed
cn(θ|m)Elliptic function
D(²) polynomial in denominator of Padé approximant
d Mean water depth
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dn(θ|m)Elliptic function
E(m) Elliptic integral of the second kind
E Kinematic free surface equation
e(m) = E(m)/K(m), Ratio of elliptic integrals
ei Equation i in numerical cnoidal theory
e (z) Vector of errors in equations for numerical cnoidal theory
Fi Coefficients in expansion for f 0∗
Fij Coefficient in series for Fi
f 0 (X) Velocity on bed
f 0∗ Dimensionless velocity on bed
g Gravitational acceleration
g∗ = gh3/Q2, dimensionless number, inverse of square of Froude number
gj Coefficients in expansion for g∗
H Wave height (crest to trough)
Hm Maximum wave height possible for a given wavelength
h Water depth under wave trough
I(j) Mean value of cn2j (θ|m)
i Integer used in sums etc.
j Integer used in sums etc.
K(m) Elliptic integral of the first kind
K 0(m) = K(1−m), Complementary elliptic integral
k Integer used in sums etc.
M Number of computational points in numerical cnoidal theory
m Parameter of elliptic functions and integrals
m1 = 1−m, Complementary parameter
N Number of terms in series or polynomial in numerator of Padé approximant
n Order of errors or degree of polynomial or number of terms in series
p Pressure
Q Volume flux per unit span perpendicular to flow
q1 = exp(−K/K 0), Complementary nome of elliptic functions
R Bernoulli constant (energy per unit mass)
R∗ = Rh2/Q2, dimensionless energy per unit mass
Sn Sum to n terms of series
sn(θ|m)Elliptic function
t Time
U Velocity component inX co-ordinate
Ū Mean value of fluid speed over a line of constant elevation
U = Hλ2/d3, Ursell number
u Velocity component in x direction of frame fixed to bed
ū1 Current at a point: mean value of u, averaged over time at a fixed point
ū2 Depth-averaged current: mean value of u over depth, averaged over time
u∗ Dimensionless velocity
u∗s Value of u∗ on surface
V Velocity component in Y co-ordinate
v Velocity component in y co-ordinate
v∗ Dimensionless velocity
v∗s Value of v∗ on surface
w = πz/2K 0, dummy variable
X = x− ct, horizontal co-ordinate in frame moving with wave crest
X∗ = X/h
x Horizontal co-ordinate in frame fixed to bed
Y Vertical co-ordinate in frame moving with wave crest
Yj Coefficients in expansion for η∗
Y∗ = Y/h
y = Y , vertical co-ordinate in frame fixed to bed
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z Dummy argument used in elliptic function formulae
zj Variable j in numerical cnoidal theory, z1 = K(m)/K(1−m)
z = {zj , j = 1 . . . 2M + 6}, vector of variables
Greek symbols
α Coefficient ofX/h in elliptic functions and expression of shallowness
∆ Error in any equation
δ = 4

3α
2, quantity used in series for velocity components

² general symbol for expansion quantity of series: ε, δ orH/d
ε = H/h, dimensionless wave height
η Water depth
η∗ = η/h, dimensionless water depth
θ Argument of elliptic functions, often αX/h in this work
λ Wavelength
ρ Fluid density
τ Wave period
Φijl Velocity coefficients in cnoidal theory
ψ Stream function
ψ∗ = ψ ×

p
gh3/Q, dimensionless stream function

Mathematical symbols
O() Order symbol: ”neglected terms are at least of the order of”
[i, j] Padé approximant with ith and jth degree polynomials in numerator and denominator
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