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Abstract

This Chapter gives a survey of numerical methods for solving fully-nonlinear problems of wave
propagation in coastal and ocean engineering. While low-order theory may give insight, for accurate
answers fully-nonlinear methods are becoming the norm. Such methods are often simpler than
traditional methods, partly because the full equations are simpler than some of the approximations
which are widely used.

A lengthy description of the Fourier approximation method is given, which is the standard numeri-
cal method used to solve the problem of steadily-propagating waves. This may be used to provide
an approximate solution for waves in rather more general situations, or, as is often the case, to give
initial conditions for methods which go on to simulate the propagation of waves over more gen-
eral topography. The family of such propagation methods is then described, including Lagrangian
methods, marker-and-cell methods, finite difference methods – including some exciting recent de-
velopments, boundary integral equation methods, spectral methods, Green-Naghdi Theory, and local
polynomial approximation. Finally a review is given of methods for analysing laboratory and field
data and extracting wave information.
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1. Introduction
The first statement that should be made about the use of fully-nonlinear numerical methods for waves
is to emphasize just how powerful low-order theories have been in coastal and ocean engineering. They
can describe most of the physical phenomena associated with the propagation of waves. As they enable
analytical solutions in many cases, they have been able to provide much insight into the nature of wave
motion, such as the refraction, diffraction, reflection and dispersion of waves. The ability of mathemat-
ics to provide solutions to idealized problems and to provide explicit solution forms to less-idealized
problems has provided a huge corpus of knowledge which can be used in coastal and ocean engineering,
as can be gathered from a reading of Wehausen and Laitone (1960).

Possibly the real role of low-order theory is, to invert the motto of a popular book on numerical meth-
ods: The Purpose of Low-order Theory is Insight, Not Numbers. (We have mischievously replaced the
word ”Computing” in Hamming’s 1973 original by ”Low-order Theory” and turned its entire meaning
around). Linear and low-order theory provide insight and understanding of maritime problems and ap-
proximate answers where approximate answers are sufficient. However, the slightest geometrical com-
plication renders much theory unable to be applied in simple explicit terms. Real problems in coastal
and ocean engineering usually have to be solved numerically. If that is the case, it is a noteworthy fact
that a fully-nonlinear formulation of the computational problem is often simpler than lower-order formu-
lations, albeit less revealing. In the usual mathematical approximations of the nonlinear physical world
there are no derivatives higher than the second. Only when we start to approximate do higher derivatives
and other complications creep in.

So, we begin to have some feeling for the attractions of fully-nonlinear computational solutions to coastal
and ocean engineering problems – not only are low-order solutions often simply not accurate enough,
but also for non-trivial geometries the nonlinear formulation is usually simpler and less arbitrary. There
is another powerful psychological reason which spurs researchers in the area, exemplified by the famous
response from the mountaineer G. L. Mallory when asked why he wanted to climb Mt Everest: ”Because
it is there”. The goal of obtaining accurate solutions has attracted many people in the past, often because
of some spirit of personal achievement – and competition.

There is another cultural dialectic which is a microcosm of that described above. This arises in the differ-
ences between computational methods for nonlinear problems, and is possibly to be compared with the
contrasts between Classicism and Romanticism. Some methods are simple: simple to present, to learn,
and to program, but they are computationally expensive, maybe proportional to the cube of the number
of computational points; yet they have been implemented time after time after time. Other methods are
complicated; a great deal of intelligence and culture has gone into their development; remarkably, some
can solve the underlying elliptic problems with a computational effort proportional only to the number
of points and the level of approximation; and, hitherto, they have hardly been applied other than by their
progenitors.

Possibly in the choice of a method for nonlinear wave computation, people are instinctively attracted by
the Principle of Occam’s Razor as stated by the mediaeval logician and theologian,William of Ockham.
A commonly-accepted view of his Razor is that we should be concerned with simplicity of description.
However, what he was really saying was that we should be concerned with adequacy of explanation and
not necessarily mere simplicity. It is in this sense that we might appeal to the Razor to justify the use of
fully-nonlinear methods. In many cases, for an adequate explanation, or for a method which we know is
going to give uniformly valid results, we have to resort to a full nonlinear description. At the same time,
however, we should strive to keep things as simple as possible, and to be intolerant of methods which
unnecessarily complicate or writings which unnecessarily obfuscate.

Most importantly, for a moment turning against the tide of the preceding discussion, we should also
know when it is not necessary to use fully-nonlinear methods. That is because we should know when
not to waste human time and effort rather than from a fear of computational expense. Nonlinear methods
are more computationally expensive than low-order methods, but when compared with other engineering
costs, computer time is relatively cheap.
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In this Chapter we describe computational methods which are feasible for solving problems in coastal
and ocean engineering which generally require no essential analytical approximations, and which are
capable of providing results of high accuracy. Scant mention will be made of lower order theories or
computational methods. The most important exclusion in this case is that of Boussinesq models for
the propagation of waves. This is a large and thriving area of research and application, and a separate
Chapter in this volume deals with such methods. Although there have been many papers written on
the subject of computing the nonlinear wave motion of the sloshing of liquid in containers, because of
the often-idealized geometry and limited physical scale of such problems they form a different area of
research from the scope of this book and we have chosen not to include them. Similarly we will present
few methods most suited to problems of the generation of waves by ships or the scattering of waves by
bluff bodies.

An article of this nature will not have included some works it might have. If that is the case, there may
have been a good reason akin to the immediately-preceding ones. There are some recent review articles
in the field which play a similar role to this one, but in each case the approach is different from our own.
Interested readers might like to consult Peregrine (1990) and Tsai and Yue (1996).

2. The governing equations
Here we consider the equations as they are used in a wide variety of applications. A rather more detailed
and general presentation is given in Yeh (1995). Most applications in coastal and ocean engineering
are of such a large physical extent that detailed solution of the primitive equations of fluid mechanics
throughout the flow field has not been feasible. Sometimes this has been done, which will be described
below – see, for example, the recent papers by Lin and Liu (1998a, 1998b). However, in most methods
used two assumptions are made which enable the problem to be reduced to that of solving Laplace’s
equation. In this case several methods exist which solve the whole flow field by summary methods,
such as recognizing that the solution depends on values only around the boundary, or by eigenfunction
expansions. Here we describe the theory which enables that approach.

The first assumption made is that motion of the fluid is irrotational, which is typically a good approxi-
mation in maritime situations where the motion may be relatively quiescent and waves propagate over
a fluid which is essentially at rest, and where there are no dominant effects of viscosity or boundary
layers. Simple fluid dynamic theory shows that if a fluid is initially irrotational, such as one would be
if it were at rest, and if there is no viscosity, then the fluid remains irrotational (Batchelor, 1967, #5.3).
In this case, there exists a velocity potential φ (Batchelor, #2.7) such that the velocity vector u is given
by the gradient u = ∇φ, which identically satisfies the condition for irrotationality, ∇ × u = 0. In
cartesian co-ordinates (x, y, z) the gradient operator is ∇ = (∂/∂x, ∂/∂y, ∂/∂z), which gives the ve-
locity components u = ∂φ/∂x, v = ∂φ/∂y, and w = ∂φ/∂z. Throughout this work we will choose the
co-ordinates in the horizontal plane to be x and z, with y the vertical co-ordinate.

We also assume that the fluid is incompressible, in which case mass conservation is satisfied by the
equation∇.u = 0, so that substituting the condition for irrotationality, we obtain

∇2φ = 0, (2.1)

showing that the velocity potential must satisfy Laplace’s equation throughout the flow domain. In
cartesian co-ordinates this becomes

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (2.2)

It might be thought that this is a remarkable result, that the Euler equations, the set of three nonlinear
dynamic equations of fluid dynamics can be reduced to a single partial differential equation, linear in the
dependent variable φ. The boundary conditions of the flow problem must be introduced so that it can
be solved. Solutions to equations such as this which are elliptic in nature possess no real characteristics
such as are encountered in hyperbolic systems such as the long wave equations. The potential at any
point depends continuously on the value of φ or its derivative normal to the boundary at all points around
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the boundary. While the linearity of this equation is crucial in the development of theoretical solutions to
wave problems, it is this mutually-dependent nature, and not the nonlinearity of the boundary conditions,
which is the main problem as far as the numerical calculation of the propagation of waves is concerned.

In two-dimensional problems and where the motion can be rendered steady by a Galilean transformation,
introducing a co-ordinate system travelling at the speed of the waves, it is more convenient to use a
stream functionψ, but this will be described below when the steady travelling wave problem is discussed.

2.0.1 Kinematic boundary conditions

The boundary conditions for solid boundaries and the free surface can be obtained in general terms.
If a material surface, one which consists always of the same fluid particles and moves with them, is
specified geometrically by F (x, t) = constant, where x is the position vector: x =(x, y, z) in cartesian
co-ordinates, then F is invariant for a fluid particle on the surface, and so the material derivativeDF/Dt,
the rate of change of F at a fluid particle is zero (Batchelor, 1967, #2.1). As D/Dt = ∂/∂t+ u.∇, the
general boundary condition for any surface bounding the fluid is

DF

Dt
=

∂F

∂t
+ u.∇F = 0 on the surface F (x, t) = constant.

Substituting u = ∇φ we have the general kinematic condition

∂F

∂t
+∇φ.∇F = 0 on the surface F (x, t) = constant. (2.3)

The quantity ∇F can be found simply in terms of the geometry and velocity of the local boundary,
as follows for solid boundaries. However, it is in this form (2.3) that is most suitable for practical
application and for the sea surface. On solid boundaries such as the sea-bed or sea-walls or structures,
under the irrotational assumption used, this expresses the fact that fluid particles may move along the
boundary but never across it.

Solid boundaries: In the case of the sea bed or sloping structures which are stationary solid boundaries
where the local elevation of the boundary can be given as a function of the horizontal co-ordinates such
as y = h(x, z), then we let F = y − h(x, z), which is identically zero on the boundary. In cartesian
co-ordinates,∇F = (−∂h/∂x, 1,−∂h/∂z), and (2.3) gives

∂φ

∂x

∂h

∂x
− ∂φ

∂y
+

∂φ

∂z

∂h

∂z
= 0 on any solid boundary y = h(x, z). (2.4)

The general statement of the boundary condition in the form of (2.3) can be related to the velocity of the
boundary as well. If the boundary is moving such that we can write

F (x, t) = f(x−Ut) = Constant, (2.5)

where U is the local velocity of the boundary and we have a local time t, then ∂F/∂t = −U.∇f and
∇F = ∇f in the limit t→ 0 or where the boundary is translating such thatU is independent of position,
then (2.3) becomes

∇φ.∇f = U.∇f. (2.6)

As a fundamental property of the gradient operator is that ∇f is normal to the surface on which f is
constant, the unit vector normal to the boundary n̂, is given by n̂ =∇f/ |∇f | and dividing (2.6) by the
scalar |∇F |, it can be written

∇φ.n̂ = U.n̂ , (2.7)

which, because taking a scalar product with a unit vector gives the component in that direction, can be
written

∂φ

∂n
= Un, (2.8)

i.e. the derivative of φ normal to the boundary is equal to Un, the velocity of the local boundary normal
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to itself. In the case of a stationary boundary, (2.8) becomes

∂φ

∂n
= 0. (2.9)

Even though this interpretation in terms of the velocity of the boundary and the normal derivative of
φ has a simple physical significance, and in the case of a vertical wall where (2.4) cannot be used we
simply obtain ∂φ/∂x = 0, in general it is easier to use the form of (2.4).

Free surface: The above procedure can also be used to obtain simply the kinematic free surface
boundary condition, where, because fluid particles on the free surface remain on the free surface, then
there is also some quantity F which is constant for all particles on that surface. The free surface elevation
is denoted by y = η(x, z, t), and we let F = y − η(x, z, t) so that (2.3) gives

∂η

∂t
+

∂φ

∂x

∂η

∂x
− ∂φ

∂y
+

∂φ

∂z

∂η

∂z
= 0 on the free surface y = η(x, z, t), (2.10)

which is the required boundary condition. There is an important difference between these superficially-
similar conditions: equation (2.4) for a fixed solid boundary is linear in the dependent variable φ, while
in this equation (2.10) we have introduced another dependent variable η and products of the dependent
variables (or their derivatives) η and φ occur, so that the equation is nonlinear and the location of the free
surface is also an unknown. Immediately one of the great complications of water wave theory has been
introduced, that many of the simple techniques of mathematics, such as the superposition of solutions,
are no longer available to us.

Lagrangian description of surface using material marker particles: For computational purposes,
many methods allow the surface, and possibly solid boundaries, to be defined by hypothetical marker
particles that are material points on the boundary and free to move. The computational process must
include some means of treating this, although this is not usually the most demanding part of the process,
either theoretically or computationally. Even though the surface equations contain products of dependent
variables, they are really classified more as quasilinear rather than nonlinear, as all terms involving values
of φ and η and their spatial derivatives can be evaluated, giving numerical values of the time derivatives,
which can then be incorporated into a time-stepping procedure using standard methods for ordinary
differential equations following a quite linear process.

Equation (2.10) is not useful in this context. Rather, the simple differential equations equating the rate of
change of position of a body to the fluid velocity at that point may be used. For a particle denoted bym,
the three differential equations governing its position xm = (xm, ym,zm) are given by the components
of the vector equation

dxm
dt

= ∇φ(xm). (2.11)

In some methods the values of the normal derivative ∂φ/∂n and tangential derivatives are calculated
where otherwise cartesian co-ordinates are used, in which case simple geometry can be used to calculate
the derivatives in that frame.

2.0.2 Dynamic boundary condition on the free surface

The pressure equation or unsteady Bernoulli equation for unsteady irrotational flow of an incompressible
fluid, such as we have postulated here, can be obtained simply from the governing Euler’s equation (Yeh,
1995, #3.4). The result is that, throughout the fluid,

∂φ

∂t
+
1

2
|∇φ|2 + p

ρ
+ gy = C(t), (2.12)

where p is the fluid pressure, ρ is the fluid density, and C(t) is a function of time only which can be
brought to zero by a redefinition of φ. On the free surface y = η(x, z, t), for the problems in which we
are interested in where there is no generation of waves or surface tension effects, the pressure can be
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taken to be a constant which we set to zero, giving the dynamic boundary condition

∂φ

∂t
+
1

2

Ãµ
∂φ

∂x

¶2
+

µ
∂φ

∂y

¶2
+

µ
∂φ

∂z

¶2!
+ gη = C(t), on the free surface y = η(x, z, t), (2.13)

where we have shown explicitly the components of the |∇φ|2 term, whose presence here means that this
boundary condition too is a nonlinear equation.

Equation (2.13) is not useful by itself in the context of time-stepping calculations, as it gives ∂φ/∂t at a
point in space which the surface momentarily occupies. Two different representations of the free surface
have to be allowed for here:

1. Surface marker particles move vertically only: In some methods where the description of
overturning is excluded it is convenient to define the surface by particles which do not move horizontally.
We introduce the symbol φs for the velocity potential on the free surface:

φs (x, z, t) = φ (x, η (x, t) , z, t) . (2.14)

Use of elementary calculus shows that (2.13) is simply modified here to compute the rate of change of
φs at a vertically-sliding surface marker:

∂φs
∂t

= C(t)− gη − 1
2
|∇φ|2 + ∂φ

∂y

∂η

∂t
on y = η(x, z, t), (2.15)

where ∂η/∂t is obtained from (2.10).

2. Material (Lagrangian) marker particles Again, elementary partial differential calculus tells us
that φm, the value of φ at the marker particle is given by

dφm
dt

=
∂φ

∂t
+ u ·∇φ = ∂φ

∂t
+ |∇φ|2 at (xm, ηm, zm), (2.16)

so that (2.13) becomes
dφm
dt

= C(t)− gη + 1
2
|∇φ|2 at x = xm(t), (2.17)

such that (2.11) and (2.17) provide the necessary ordinary differential equations to track the movement
and the change of potential at the particle.

2.0.3 Lateral boundary conditions

There remains one type of boundary condition to describe, and this is the type at lateral boundaries,
where we have both open boundary conditions, allowing for waves to enter and/or leave the field of
interest, as well as wavemaker-type boundary conditions, where the motion of a boundary might be
specified. For the moment we will keep the description more general and will allow these to be specified
by the horizontal velocity condition

∂φ

∂x
= G(x, y, z, t) on lateral boundaries, (2.18)

where G(x, y, z, t) is some specifiable velocity field. In many cases, allowing for the entry and exit of
waves from the computational domain is a demanding task, and we will defer discussion of this until
later specific examples.

3. Periodic waves
In many wave computations in coastal and ocean engineering the motion is periodic in time, correspond-
ing to the cyclic input of waves of constant height and period. There is a large family of problems where
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the motion is also periodic in space. This periodicity is assumed at the outset and the waves are often
taken to be models of more complicated flow situations. Usually this means assuming a relatively simple
geometry such as a horizontal bed. Waves of this type include those which propagate steadily without
change, and standing waves. In such cases of space and time periodicity a spectral approach is adopted,
so that a series solution may be assumed, each term of which satisfies the field equation such as (2.2)
and the coefficients of the series may be found analytically by a succession of linear problems, which is
the traditional approach, or numerically by solving a set of nonlinear equations. For problems of a more
general nature, where motion is not periodic, or the geometry is not trivial, the problems are quasilinear,
as the nonlinear terms are such that they are able to be evaluated at a point in time, and the process of
calculating the evolution in time can proceed by linear methods. These problems will be described in
Section 4 and all subsequent Sections.

3.1 The steady travelling wave problem
In many problems of the propagation of highly nonlinear waves it is necessary to have initial or boundary
conditions which correspond to a solution of the full nonlinear equations such as the steady propaga-
tion of waves over a horizontal bed, before they encounter shoaling topography, or where it might be
necessary to simulate that motion by using the steady propagating waves as a boundary condition, spec-
ifying the fluid motions at one open boundary as the waves enter. In this case a useful model is that
of the steady propagation of waves, satisfying the full nonlinear boundary conditions, but within the
irrotational approximation.

In many other more practical situations it is convenient to overlook the possibly-complicated nature of a
wave propagation problem, such as where the waves might be propagating over water of possible non-
uniform density which might be flowing on a shear current and over varying permeable or deformable
topography. Uncertainties of the full problem render its solution too difficult. A convenient set of
approximations is to assume that locally at least the bed is impermeable and flat, that the propagation
of disturbances is collinear and they are of infinite length transverse to the direction of propagation
such that the flow is two-dimensional, that the fluid is homogeneous and incompressible, and that the
boundary layer is small such that inviscid flow theory can be used. Under these approximations it is still
desirable to obtain solutions which correspond to a single periodic wave train which propagates steadily
without change of form. This is the steady wave problem, and a great deal of attention has been given to
it as it has been considered to be an important and convenient model for more general wave propagation
problems. The common analytical theories applied to the problem are (1) Stokes theory, most suitable
for waves which are not very long relative to the water depth, and (2) Cnoidal theory, suitable for the
other limit where the waves are long. In the case of high waves, those theories lose their accuracy,
although Fenton (1990) showed that their accuracy was greater than realized, and fifth-order versions of
both theories were accurate enough for practical problems.

3.1.1 Literature survey

The search for a method to solve the problem of steadily-progressing waves seems to have been some-
thing similar to the search for the Holy Grail. It has attracted the attention of many mathematicians and
engineers over the last 150 years. In the era before computers it was remarkable that some very good
approximate solutions were obtained even for the highest waves. There are many works which could
be referred to. Some of the methods are very sophisticated, such as those which treat the singularity
near the crest of waves approaching the highest. However we will not describe them specifically here
as most of them could not be classified as providing a consistent computational method for nonlinear
waves which is the general thrust of this review. A review article which does describe such approaches
has been given by Schwartz and Fenton (1982). Those two authors came together after having worked
independently on the problem at the same time, both devising computer-assisted algebra manipulation
methods, but from different ends of the wavelength/depth ratio.

Waves in deeper water – Stokes theory: The more general approach was that of Schwartz (1974),
who used Stokes’ original method for waves in water of finite depth, well-known to best suited to waves
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which are not too long. All variation in the horizontal is represented by Fourier series and the coefficients
in these series can be written as perturbation expansions in terms of a parameter which increases with the
ratio of wave height to length. Substitution of the high order perturbation expansions into the governing
equations and manipulation of the series yields the solution. This had been carried (incorrectly) to fifth-
order by hand computation, but Schwartz used computer manipulation of the expansions to generate very
high-order results. This method was used by Cokelet (1977) to produce a number of results for physical
quantities and by Williams (1981), who gained extra accuracy by incorporating the crest singularity
analytically. However, the results from all these programs based on Stokes’ expansions were produced
using an inverse plane, so that substantial modifications would be necessary to calculate engineering
quantities such as the fluid velocity at a particular point.

Waves in shallower water – cnoidal theory: At the other end of the length scale, for waves which
are much longer than the water depth, the fundamental solution is obtained from cnoidal theory, an
appellation given by Korteweg and de Vries in 1895 from the name of the Jacobian elliptic function
which is the basis of the solution for those waves. Fenton (1979) produced an explicit higher-order
cnoidal theory. This was calculated to ninth-order but the complexity of the solution meant it could be
presented to fifth-order only. Subsequently, that approach was reviewed (Fenton, 1990), and when the
series were recast in terms of shallowness rather than wave height, much better results for engineering
quantities were obtained. A useful approximation was introduced by recognizing that the so-called
”hyperbolic” approach of Iwagaki (1968) could be systematized and made presentation and use of the
theory rather simpler. It was proposed that this be called the ”Iwagaki approximation”. This presentation
has been improved and presented in a review and presentation of all cnoidal theory in Fenton (1998?).

Theory for the solitary wave: The limiting case of cnoidal theory for waves of infinite length is
the solitary wave, theoretically of infinite length, but where almost all of the disturbance is confined
to a finite length. Fenton (1972) obtained a high-order theory using computer manipulation of high-
order expansions, but in terms of the ratio of water depth to wavelength. The same method, but adding
computer-enhancement of the series, was used by Longuet-Higgins and Fenton (1974) to produce a
number of results for physical quantities. Although Witting (1975) and Witting and Bergin (1981) were
critical of the series approach of Fenton, Pennell and Su (1984) took the method, with some mathemat-
ical enhancements, to 17th order. However, their results did not agree with Hunter and Vanden-Broeck
(1983), who recast the problem as an integro-differential equation which they could solve numerically
accurately, and whose results were close to, but more accurate than, Witting and Bergin’s. A similar
method was used by Tanaka (1986) who then went on to examine the linear stability about that solution.
For the case of water in infinite depth, Tanaka (1983, 1985) solved the steady wave problem accurately
and then examined the linear stability.

3.1.2 Fourier approximation methods

Both the high-order Stokes theories and cnoidal theories suffer from a similar problem, that in the in-
appropriate limits, shallower water for Stokes theory and deeper water for cnoidal theory, the series
become slowly convergent and ultimately do not converge. An approach which overcomes this is one
which abandons any attempt to produce series expansions based on a small parameter and obtains the
solution numerically, not by solving for the flow field numerically, but by using a spectral approach,
where a series is assumed, each term of which satisfies the field equation, and then the coefficients are
found numerically. The usual method, suggested by the basic form of the Stokes solution, is to use a
Fourier series which is capable of accurately approximating any periodic quantity, provided it is suf-
ficiently continuous. A reasonable procedure, then, instead of assuming perturbation expansions for
the coefficients in the series as is done in Stokes theory, is to calculate the coefficients numerically by
solving the full nonlinear equations. This approach would be expected to be more accurate than either
of the perturbation expansion approaches described above, because its only approximations would be
numerical ones, and not the essential analytical ones of the perturbation methods. Also, increasing the
order of approximation would be a relatively trivial numerical matter without the need to perform extra
mathematical operations.
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This Fourier approximation approach originated with Chappelear (1961). He assumed a Fourier series in
which each term identically satisfied the field equation throughout the fluid and the boundary condition
on the bottom. The values of the Fourier coefficients and other variables for a particular wave were then
found by numerical solution of the nonlinear equations obtained by substituting the Fourier series into
the nonlinear boundary conditions. He used the velocity potential φ for the field variable and instead
of using surface elevations directly he used a Fourier series for that too. By using instead the stream
function ψ for the field variable and point values of the surface elevations Dean (1965) obtained a rather
simpler set of equations and called his method ”stream function theory”. A more powerful method but
with less practical utility was developed by Vanden-Broeck and Schwartz (1979) who formulated the
problem as a pair of nonlinear integro-differential equations on an inverse plane with the spatial co-
ordinates as the unknowns. Chaplin (1980) put the earlier approaches on a more sound theoretical basis
by using Schmidt orthogonalization of the matrices used. In these approaches the solution of the equa-
tions proceeded by a method of successive corrections to an initial estimate such that the least-squares
errors in the surface boundary conditions were minimized. Rienecker and Fenton (1981) presented a
collocation method which gave slightly simpler equations, where the nonlinear equations were solved
by Newton’s method, such that the equations were satisfied identically at a number of points on the sur-
face rather than minimizing errors there. The presentation emphasized the importance of using methods
which maintain the full realizable accuracy throughout and the important practical detail that it is neces-
sary to know the current on which the waves travel if the wave period rather than length is specified as a
parameter, and whether that current was a current measured at a point or a depth-averaged value.

A simpler method and computer program have been given by Fenton (1988), where the necessary matrix
of partial derivatives necessary is obtained numerically. In application of the method to waves which
are high, in common with other versions of the Fourier approximation method, it was found that it is
sometimes necessary to solve a sequence of lower waves, extrapolating forward in height steps until the
desired height is reached. For very long waves these methods can occasionally converge to the wrong
solution, that of a wave one third of the length. This problem can be avoided by using a sequence of
height steps.

Results from these numerical methods show that accurate solutions can be obtained with Fourier series
of 10 to 20 terms, even for waves close to the highest, and they seem to be the best way of solving any
steady water wave problem where accuracy is important. Sobey (1989), made a comparison between
different versions of the numerical methods. He concluded that there was little to choose between
them, but that it was an advantage to include the possibility of using depth-averaged current, as in the
presentation of the theory below.

It is possible to obtain nonlinear solutions for waves on shear flows for special cases of the vorticity
distribution. For waves on a constant shear flow, Dalrymple (1974a), and a bi-linear shear distribution
(Dalrymple, 1974b) used a Fourier method based on the approach of Dean (1965). Dalrymple (1996)
has made available programs for these cases on the Internet, as well as the more general one of waves
on a piecewise-linear shear current. The ambiguity caused by the specification of wave period in the
absence of knowledge of the current seems not to have been emphasized, however.

Solution for more general shear flows is difficult. In many cases the details of the shear flow are not
known, and the irrotational model seems to be adequate for many situations in the absence of any other
information. An exception is the delightful paper by Peregrine (1974) who obtained first-order solutions
for so-called ”shear waves” where the flow field is a fast-moving thin sheet of fluid at the surface with
arbitrary shear and still water beneath it. Teles da Silva and Peregrine (1988) subsequently obtained
high-order solutions for steady progressing waves where the vorticity in the shear layer is constant.

Theory: Here we present an outline of the theory which has been widely used to provide solutions in
a number of practical and theoretical applications, giving fluid velocities and pressures for engineering
design. The presentation of the theory follows Fenton (1988). The method provides accurate solutions
for waves up to very close to the highest, and in the context of this Chapter its main application might be
to providing reliable input data at a boundary where a more general unsteady method might take over the
computations for a rather more general geometry. The problem considered is that of two-dimensional
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Figure 3-1. Wave train, showing important dimensions and co-ordinates

periodic waves propagating without change of form over a layer of fluid on a horizontal bed, as shown
in Figure 3-1. A co-ordinate system (x, y) has its origin on the bed, and waves pass through this frame
with a velocity c in the positive x direction. It is this stationary frame which is the usual one of interest
for engineering and geophysical applications. Consider also a frame of reference (X,Y ) moving with
the waves at velocity c, such that x = X + ct, where t is time, and y = Y . The fluid velocity in the
(x, y) frame is (u, v), and that in the (X,Y ) frame is (U, V ). The velocities are related by u = U + c
and v = V . It is easier to solve the problem in this moving frame in which all motion is steady and to
use the stream function formulation. If the fluid is incompressible, in two dimensions a stream function
ψ(X,Y ) exists such that the velocity components are given by

U = ∂ψ/∂Y, and V = −∂ψ/∂X.
If motion is irrotational and∇× u = 0, as established in Section 2, it follows that ψ satisfies Laplace’s
equation throughout the fluid:

∂2ψ

∂X2
+

∂2ψ

∂Y 2
= 0. (3.1)

The kinematic boundary conditions to be satisfied are

ψ(X, 0) = 0 on the bottom, and (3.2)
ψ(X, η(X)) = −Q on the free surface, (3.3)

where Y = η(X) on the free surface and Q is a positive constant denoting the volume rate of flow
per unit length normal to the flow underneath the stationary wave in the (X,Y ) co-ordinates. In these
co-ordinates the apparent flow is in the negative X direction. The dynamic boundary condition to be
satisfied is that pressure is zero on the surface so that Bernoulli’s equation (or, equation (2.13) for steady
flow) becomes

1

2

Ãµ
∂ψ

∂X

¶2
+

µ
∂ψ

∂Y

¶2!
+ gη = R on the free surface, (3.4)

where R is a constant.
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The basis of the method is to write the analytical solution for ψ in the spectral form

ψ(X,Y ) = −Ū Y +
r
g

k3

NX
j=1

Bj
sinh jkY

cosh jkd
cos jkX, (3.5)

where Ū is the mean fluid speed on any horizontal line underneath the stationary waves, the minus sign
showing that in this frame the apparent dominant flow is in the negative x direction. The B1, . . . , BN
are dimensionless constants for a particular wave, and N is a finite integer. The truncation of the series
for finite N is the only mathematical or numerical approximation in this formulation. The quantity k is
the wavenumber k = 2π/λ where λ is the wavelength, which may or may not be known initially, and d
is the mean depth as shown on Figure 3-1. Each term of this expression satisfies the field equation (3.1)
and the bottom boundary condition (3.2) identically. It might be thought that the use of the denominator
cosh jkd is redundant, but it serves the useful function that for large j the Bj do not have to decay
exponentially, thereby making solution rather more robust. Possibly more importantly, it also allows for
the treatment of deep water, such that if we introduce a vertical co-ordinate Y∗ with origin at the mean
water level such that Y = d+ Y∗, then in the limit as kd→∞,

sinh jkY

cosh jkd
~ ejkY∗ , (3.6)

which can be used as the basis for variation in the vertical.

If one were proceeding to an analytical solution, the coefficients Bj would be found by using a per-
turbation expansion in wave height. Here they are found numerically by satisfying the two nonlinear
equations (3.3) and (3.4) from the surface boundary conditions, which become, after dividing through to
make them dimensionless:

−Ū
p
k/g kη(X) +

NX
j=1

Bj
sinh jkη(X)

cosh jkd
cos jkX +Q

s
k3

g
= 0, and (3.7)

1

2

−Ūpk/g + NX
j=1

jBj
cosh jkη(X)

cosh jkd
cos jkX

2 + 1
2

 NX
j=1

jBj
sinh jkη(X)

cosh jkd
sin jkX

2
+kη(X)−Rk/g = 0, (3.8)

both to be satisfied for all x. To solve the problem numerically these two equations are to be satisfied at
a sufficient number of discrete points so that we have enough equations for solution. If we evaluate the
equations at N + 1 discrete points over one half wave from the crest to the trough for m = 0, 1, . . . , N ,
such that xm = mλ/2N and kxm = mπ/N , and where ηm = η(xm), then (3.7) and (3.8) provide
2N + 2 nonlinear equations in the 2N + 5 dimensionless variables: kηm for m = 0, 1, . . . ,N ; Bj for
j = 1, 2, . . . , N ; Ū

p
k/g; kd; Q

p
k3/g; and Rk/g. Three extra equations are necessary for solution.

One is the expression for the dimensionless mean depth kd in terms of the dimensionless depths kηm
evaluated using the trapezoidal rule:

1

N

Ã
1

2
(kη0 + kηN ) +

N−1X
m=1

kηm

!
− kd = 0. (3.9)

For quantities which are periodic such as here, the trapezoidal rule is very much more accurate than
usually believed. It can be shown that the error is of the order of the last (N th) coefficient of the Fourier
series of the function being integrated. As that is essentially the approximation used throughout this
work (where it is assumed that the series can be truncated at a finite value of N) this is in keeping with
the overall accuracy.

The remaining two equations necessary could be provided by specifying numerical values of any two
of the parameters introduced. However in practice it is often the physical dimensions of wavelength λ,
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mean water depth d and wave heightH which are known, giving a numerical value for the dimensionless
wave height kH for which an equation can be provided connecting the crest and trough heights kη0 and
kηN respectively: H = η0 − ηN ,which we write in terms of our dimensionless variables as

kη0 − kηN − kd
H

d
= 0, (3.10)

because in some problems we know the wave period rather than the wavelength and we do not know kd
initially. If we do know the wavelength, we have a trivial equation for kd:

kd− 2π d
λ
= 0. (3.11)

There are now 2N + 5 equations in the 2N + 5 dimensionless variables, and the system can be solved.
Some formulations of the problem (e.g. Dean, 1965) allow more surface collocation points and the
equations are solved in a least-squares sense. In general this would be thought to be desirable, but in
practice seems not to make much difference, and the system of equations appears quite robust.

Specification of wave period and current: In many problems it is not the wavelength λ which is
known but the wave period τ as measured in a stationary frame. The two are connected by the simple
relationship

c =
λ

τ
, (3.12)

where c is the wave speed, however it is not known a priori, and in fact depends on the current on which
the waves are travelling. In the frame travelling with the waves at velocity c the mean horizontal fluid
velocity at any level is −Ū , hence in the stationary frame the time-mean horizontal fluid velocity at any
point denoted by ū1, the mean current which a stationary meter would measure, is given by

ū1 = c− Ū . (3.13)

In the special case of no mean current at any point, ū1 = 0 and c = Ū , which is Stokes’ first approxima-
tion to the wave speed, usually incorrectly referred to as his ”first definition of wave speed”, and is that
relative to a frame in which the current is zero. Most wave theories have presented an expression for Ū ,
obtained from its definition as a mean fluid speed. It has often been referred to, incorrectly, as ”the wave
speed”.

A second type of mean fluid speed or current is the depth-integrated mean speed of the fluid under the
waves in the frame in which motion is steady. If Q is the volume flow rate per unit span underneath the
waves in the (X,Y ) frame, the depth-averaged mean fluid velocity is−Q/d, where d is the mean depth.
In the physical (x, y) frame, the depth-averaged mean fluid velocity, the ”mass-transport velocity”, is
ū2, given by

ū2 = c−Q/d. (3.14)

If there is no mass transport, such as in a closed wave tank, ū2 = 0, and Stokes’ second approximation
to the wave speed is obtained: c = Q/d. In general, neither of Stokes’ first or second approximations
is the actual wave speed, and the waves can travel at any speed. Usually the overall physical problem
will impose a certain value of current on the wave field, thus determining the wave speed. To apply the
methods of this section, where wave period is known, to obtain a unique solution it is also necessary to
specify the magnitude and nature of that current.

We now eliminate c between (3.12) and (3.13) or (3.14) so that they can be re-written in terms of the
physical variables τ

p
g/d and ū1/

√
gd or ū2/

√
gd which have to be specified. Equations (3.13) and
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(3.14) respectively become
√
kd Ū

p
k/g + kd

ū1√
gd
− 2π

τ
p
g/d

= 0 and (3.15)

Q
p
k3/g√
kd

+ kd
ū2√
gd
− 2π

τ
p
g/d

= 0. (3.16)

This discussion has shown how problem-specific are the ideas associated with current, wave speed and
wave period. In any general presentation of results it is better to use the physical dimensions of the wave
and recognize that the steady wave problem possesses a two-parameter family of solutions in terms of
kH and kd only, relative wave height and water depth respectively.

There are 2N+5 equations: two free surface equations (3.7) and (3.8) at each ofN+1 points, the mean
depth condition (3.9), the wave height condition (3.10), and either (3.11) if the relative wavelength is
known or (3.15) or (3.16) if the wave period and current are known. The 2N + 5 variables to be solved
for are the N + 1 values of surface elevation kηm, the N coefficients Bj , Ū

p
k/g, kd, Q

p
k3/g, and

Rk/g. The input data requires values of H/d and either λ/d or values of dimensionless period τ
p
g/d

and one of the known mean currents ū1/
√
gd or ū2/

√
gd.

Computational method: The system of nonlinear equations can be iteratively solved using Newton’s
method. If we write the system of equations as

Fi(x) = 0, for i = 1, . . . , 2N + 5, (3.17)

where Fi represents equation i and x = {xj , j = 1, . . . , 2N+5}, the vector of variables xj (there should
be no confusion with that same symbol as a space variable), then if we have an approximate solution x(n)
after n iterations, writing a multi-dimensional Taylor expansion for the left side of equation i obtained
by varying each of the x(n)j by some increment δx(n)j :

Fi (x(n+1)) ≈ Fi (x(n)) +
2N+5X
j=1

µ
∂Fi
∂xj

¶(n)
δx
(n)
j . (3.18)

If we choose the δx(n)j such that the equations would be satisfied by this procedure such thatFi (x(n+1)) =
0, then we have the set of linear equations for the δx(n)j :

2N+5X
j=1

µ
∂Fi
∂xj

¶(n)
δx
(n)
j = −Fi (x(n)) for i = 1, . . . , 2N + 5, (3.19)

which is a set of equations linear in the unknowns δx(n)j and can be solved by standard methods for
systems of linear equations. Having solved for the increments, the updated values of all the variables are
then computed for x(n+1)j = x

(n)
j + δx

(n)
j for all the j. As the original system is nonlinear, this will in

general not yet be the required solution and the procedure is repeated until it is.

It is possible to obtain the array of derivatives of every equation with respect to every variable, ∂Fi/∂xj
by performing the analytical differentiations, however as done in Fenton (1988) it is rather simpler
to obtain them numerically. That is, if variable xj is changed by an amount εj , then on numerical
evaluation of equation i before and after the increment (after which it is reset to its initial value), we
have the numerical derivative

∂Fi
∂xj
≈ F (x1, . . . , xj + εj , . . . , x2N+5)− F (x1, . . . , xj , . . . , x2N+5)

εj
. (3.20)

The complete array is found by repeating this for each of the 2N + 5 equations for each of the 2N + 5
variables. Compared with the solution procedure, which isO(N3), this is not time consuming, and gives
a rather simpler program.
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To begin this procedure it is necessary to have some initial estimate for each of the variables. It is
relatively simple to use linear wave theory assuming no current. If the wave period is known, it is
necessary to solve for the wavenumber. The solution from that simple theory is

σ2 = gk tanh kd, (3.21)

where the angular frequency σ = 2π/τ . This equation which is transcendental in kd could be solved
using standard methods for solution of a single nonlinear equation, however Fenton and McKee (1990)
have given an approximate explicit solution:

kd ≈ σ2d

g

µ
coth

³
σ
p
d/g

´3/2¶2/3
. (3.22)

This expression is an exact solution of (3.21) in the limits of long and short waves, and between those
limits its greatest error is 1.5%. Such accuracy is adequate for the present approximate purposes. Having
solved for kd linear theory can be applied:

kηm = kd+
1

2
kH cos

mπ

N
, form = 1, . . . , N,

Ū
p
k/g =

√
tanh kd,

B1 =
1

2

kH√
tanh kd

, Bj = 0 for j = 2, . . . , N,

Q
p
k3/g = kd

√
tanh kd,

Rk/g = kd+
1

2

Ū2k

g
.

In the limit of very long waves the spectrum of coefficients becomes broad-banded and more terms
have to be taken, as the region over which the effective wave is concentrated is but a small fraction
of the overall wavelength. Similarly, as the highest waves are approached the crest becomes more and
more sharp, causing the spectrum to become broader and convergence to solution more difficult. The
numerical cnoidal theory described below could be used, but for many applications, say for wavelengths
as long as 50 times the depth, the Fourier method provides good solutions. More of a problem is that
it is difficult to get the method to converge to the solution desired for high waves which are moderately
long. In many cases the tendency of the method is to converge to a solution with a wavelength 1/3 of
that desired. The results should be monitored, and if that has happened the problem is simply remedied
by solving for two lower waves and using the results to extrapolate upwards to provide better initial
conditions for the solution at the desired height.

Post-processing to obtain quantities for practical use: Once the solution has been obtained in these
dimensionless variables oriented towards then quantities rather more useful for physical calculations
can be evaluated. Often it is more convenient to present them in terms of the water depth as being the
fundamental length scale. Here we assume that all physical quantities are available, for example, having
solved for all the dimensionless variables kηm the numerical value of k has been used to calculate all
the ηm, and so on.

It can be shown from (3.5) and the Cauchy-Riemann equations, here considering the physical frame, the
now unsteady velocity potential φ(x, y, t) is given by

φ(x, y, t) =
¡
c− Ū ¢x+r g

k3

NX
j=1

Bj
cosh jky

cosh jkd
sin jk (x− ct) +C(t), (3.23)

where we have shown the additional function of time C(t) for purposes of generality. The velocity
components anywhere in the fluid are given by u = ∂φ/∂x, v = ∂φ/∂y: and the velocity components
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anywhere in the fluid are given by:

u(x, y, t) = c− Ū +
r
g

k

NX
j=1

jBj
cosh jky

cosh jkd
cos jk (x− ct) , (3.24)

v(x, y, t) =

r
g

k

NX
j=1

jBj
sinh jky

cosh jkd
sin jk (x− ct) . (3.25)

In some situations, such as simulating the propagation of a single wave of elevation as approximating a
solitary wave entering still water, it would be necessary to add a linear function of x so that the velocities
at the wave extremities were correct, so that they can be matched to the region of otherwise undisturbed
water.

Should they be needed, expressions for the acceleration components can be obtained simply from these
expressions.

To compute the free surface elevation at an arbitrary point requires more effort, as we only have it at
discrete points ηm. We take the cosine transform of the N + 1 surface elevations:

Ej =
NX
m=0

00 ηm cos
jmπ

N
for j = 1, . . . , N, (3.26)

where
P 00 means that it is a trapezoidal-type summation, with factors of 1/2 multiplying the first and

last contributions. This could be performed using fast Fourier methods, but as N is not large, simple
evaluation of the series is reasonable. It can be shown that the interpolating cosine series for the surface
elevation is

η(x, t) = 2
NX
j=0

00Ej cos jk (x− ct) , (3.27)

which can be evaluated for any x and t.

The pressure at any point can be evaluated using Bernoulli’s theorem, but most simply in the form from
the steady flow, but using the velocities as computed from (3.24) and (3.25):

p(x, y, t)

ρ
= R− gy − 1

2

³
(u(x, y, t)− c)2 + v2(x, y, t)

´
. (3.28)

3.1.3 Numerical cnoidal theory

To address the problem described above, where the Fourier spectrum becomes broad for long waves,
Fenton (1995) introduced a variant of the above methods, using cnoidal functions as the fundamental
means of approximation, so that very long waves could be treated without any special measures. It was
found that the method could be used for waves whose length is greater than eight times the water depth,
and gave accurate results for all waves longer than this. For physically-realizable wave heights it is very
accurate, but if the wave height is approaching that of the theoretical maximum, the accuracy is degraded
to approximate engineering accuracy. The method has not yet been extended to the case where the wave
period instead of wavelength is specified.

Similar to Fourier methods, a spectral approach is used, whereby series of functions are generated which
satisfy the field equations identically. Then the coefficients of those series are found numerically. In
this case all functions of X, the horizontal co-ordinate in the travelling frame, are approximated by
polynomials of degreeN in terms of the square of the Jacobian elliptic function cn2(θ|m) for the surface
elevation and bottom velocity of the form suggested by conventional cnoidal theory. The argument θ is
actually a scaledX co-ordinate: θ = αX/h, where α is a parameter which is related to the shallowness
(depth/wavelength)2 . The quantity m is the parameter of the elliptic functions. Conventional cnoidal
theory uses α as the expansion parameter in the same way that Stokes theory uses the wave steepness
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kH . The depth h is actually the water depth underneath the wave troughs (see Figure 3-1) and it is
simpler to work with this quantity rather than mean depth d in this method. The two series introduced
are

η

h
= 1 +

NX
j=1

Yj cn
2j (θ|m) , (3.29)

f 0

Q/h
=W0 +

NX
j=1

Wj cn
2j (θ|m) , (3.30)

where f 0 is the negative of the horizontal fluid velocity on the bed, and the Yj andWj are dimensionless
coefficients. The form of these series has been suggested by previous analytical cnoidal theories.

Following the pioneering work of Boussinesq and Rayleigh we assume an expansion for ψ of the form:

ψ = −Y df

dX
+
Y 3

3!

d3f

dX3
− . . . = −

µ
sinY

d

dX

¶
. f (X) , (3.31)

where the series can be easily shown by term-by-term differentiation to satisfy Laplace’s equation. The
series can be written as a formal summation, which has to be used for the detailed evaluation in computer
programs to high order, but using the trigonometric shorthand has a certain appeal - and several elemen-
tary operations of algebra and calculus go through (see Fenton, 1972). It can be shown by term-by-term
operations and writing down the results in terms of trigonometric operators that

U =
∂ψ

∂Y
= −

µ
cosY

d

dX

¶
. f 0 (X) , (3.32)

V = − ∂ψ

∂X
=

µ
sinY

d

dX

¶
. f 0 (X) , (3.33)

and further differentiation shows that the expansions satisfy the condition of irrotationality that ∂U/∂Y−
∂V/∂X = 0. Introducing the scaled variable θ = αX/h and substituting Y = η for the surface, the
velocity components there (Us, Vs) are then given by

Us
Q/h

= −
µ
cosα

η

h

d

dθ

¶
.
f 0

Q/h
,

Vs
Q/h

=

µ
sinα

η

h

d

dθ

¶
.
f 0

Q/h
. (3.34)

On substituting these into equations (3.3) and (3.4) we have two nonlinear algebraic equations valid for
all values of X. The equations include the following unknowns: α, m, gh3/Q2, Rh2/Q2, plus a total
of N values of the Yj for i = 1 . . . N , and N + 1 values of the Wj for i = 0 . . . N , making a total of
2N + 5 unknowns. For the boundary points at which both boundary conditions are to be satisfied we
chooseM + 1 points equally spaced in the vertical such that:

cn2
³
α
xi
h
|m
´
= 1− i/M, for i = 0 . . .M, (3.35)

where i = 0 corresponds to the crest and i = M to the trough. This has the effect of clustering points
near the wave crest, where variation is more rapid and the conditions at each point will be relatively dif-
ferent from each other. If we had spaced uniformly in the horizontal, in the long trough where conditions
vary little the equations obtained would be similar to each other and the system would be poorly condi-
tioned. We now have a total of 2M + 2 equations but so far, none of the overall wave parameters have
been introduced. It is known that the steady wave problem is uniquely defined by two dimensionless
quantities: the wavelength λ/d and the wave height H/d. As discussed above, in many practical prob-
lems the wave period is known, but here we consider only those where the dimensionless wavelength
λ/d is known. It can be shown that λ/d is related to α using the following expression from the theory
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of elliptic functions, which we term the Wavelength Equation:

α
λ

d

d

h
− 2K(m) = 0, (3.36)

where K(m) is the complete elliptic integral of the first kind, and where the equation has introduced
another unknown d/h, the ratio of mean to trough depth.

The equation for this ratio is obtained by taking the mean of equation (3.29) over one wavelength or half
a wavelength from crest to trough:

d

h
= 1 +

NX
j=1

Yj cn2j (θ|m). (3.37)

If we denote the mean value of the 2jth power of the cn function over a wavelength by Ij :

Ij = cn2j (θ|m), (3.38)

the Ij can be computed from the recurrence relations

Ij+2 =

µ
2j + 2

2j + 3

¶µ
2− 1

m

¶
Ij+1 +

µ
2j + 1

2j + 3

¶µ
1

m
− 1
¶
Ij , for all j. (3.39)

where, (Gradshteyn & Ryzhik, 1965, #5.13): I0 = 1, I1 = (−1 + m + e(m))/m, where e(m) =
E(m)/K(m), and E(m) is the complete elliptic integral of the second kind.

Equation (3.37) can be written

1 +
NX
j=1

Yj Ij − d
h
= 0, (3.40)

thereby providing one more equation, the Mean Depth Equation.

Finally, another equation which can be used is that for the wave height:

H

h
=

η0
h
− ηM

h
, (3.41)

which, on substitution of equation (3.29) at x = x0 = 0where cn(0|m) = 1 and, because cn(αxM |m) =
0 from equation (3.35), gives

H

d

d

h
−

NX
j=1

Yj = 0, (3.42)

the Wave Height Equation.

We write the system of equations, similar to the Fourier method, as

Fi(x) = 0, for i = 1, . . . , 2M + 5, (3.43)

where Fi is the equation with reference number i, the 2M + 2 equations described above plus the three
equations (3.36), (3.40), and (3.42), and where the variables which are used are the 2N + 5 unknowns
described above plus d/h:

x = {xj , j = 1 . . . 2N + 6} , (3.44)

Whereas the parameter m has been used in cnoidal theory, it has the unpleasant property that it has a
singularity in the limit as m → 1, which corresponds to the long wave limit, and as a gradient method
is used to solve the nonlinear equations this might make solution more difficult. It is more convenient to
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use the ratio of the complete elliptic integrals as the actual unknown, which we choose to be the first:

x1 =
K(m)

K(1−m) . (3.45)

The solution of the system of nonlinear equations follows that described previously, using Newton’s
method in a number of dimensions, where it is simpler to obtain the derivatives by numerical differenti-
ation.

As the number of equations and variables can never be the same (2M + 5 can never equal 2N + 6 for
integer M and N ), we have to solve this equation as a generalized inverse problem. Fortunately this
can be done conveniently by the Singular Value Decomposition method (for example, Press et al., 1992,
#2.6) so that if there are more equations than unknowns, M > N , the method obtains the least squares
solution to the overdetermined system of equations. In practice this was found to give a certain rugged
robustness to the method, despite the equations being rather poorly conditioned.

This poor conditioning comes about because the set of functions
©
cn2j(θ|m), j = 0 . . .Nª used to de-

scribe spatial variation in the horizontal do not form an orthogonal set, unlike terms in a Fourier series,
and they all tend to look like one another. That result, although apparently an esoteric mathematical
property, has the important effect that the system of equations is not particularly well-conditioned, and
numerical solutions show certain irregularities and a relatively slow convergence with the number of
terms taken in the series. This meant that it was difficult to obtain solutions for N > 10. The Fourier
methods, however, using the robustly orthogonal trigonometric functions, do not seem to have this prob-
lem. Fortunately, however, in the case of the numerical cnoidal theory, good results could be obtained
with few terms.

3.2 Other periodic wave systems
The two-dimensional steady travelling wave is a convenient approximation to the wave field in many
areas in coastal and ocean engineering, where relatively little might be known about the topography
or indeed the wave field; it provides a convenient approximation which at least models many waves
as they are observed – they are long-crested and apparently of permanent form, propagating without
much change. There are other solutions to the same idealized equations which are of more theoretical
interest, which should be mentioned here, as they constitute evidence that there are other solutions to the
governing equations.

3.2.1 Plane waves with period doubling and cyclic waves

The first such solution was by Chen and Saffman (1980) who found steadily travelling two-dimensional
waves in deep water such that only every second or third wave was exactly the same, such that the period
actually doubled or tripled. Bryant obtained a number of fully-nonlinear solutions for periodic waves,
both of a travelling and a standing nature. In Bryant (1983) he obtained solutions for unsteady periodic
gravity waves in deep water, whose shape changes cyclically as they propagate. He showed that they are
closer to breaking than are steady permanent waves of the same height and wavelength. Both families
are more of a mathematical curiosity than of great practical importance.

3.2.2 Doubly-periodic (”short-crested”) waves

It is possible to obtain steadily propagating solutions corresponding to a doubly-periodic set of waves
which when viewed from above, form a diamond-shaped pattern, leading to the name ”short-crested
waves”. Meiron et al. (1982) obtained steadily propagating three-dimensional deep-water waves. For
waves in finite depth Roberts (1983) used a Stokes-type expansion in wave steepness with computer
manipulation, similar to Schwartz (1974) for progressing waves. He found some interesting mathemat-
ical phenomena in the solution coefficients. That these were merely a result of the solution technique
was verified by Roberts and Schwartz (1983) who obtained accurate numerical solutions by using the
same type of Fourier/Newton method described above for steady planar waves. Bryant (1985) solved
the problem for deep water, establishing existence boundaries for the system of waves.
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The diamond-shaped wave pattern problem can be considered to be the same as that of the reflection
of waves obliquely incident on a vertical wall. In one limit of angle of incidence where the waves
approach parallel to the wall these are steadily-progressing waves, and in the other limit, normal to the
wall, they are planar standing waves, which are treated below. Fenton (1985c) used the same method as
Roberts and Schwartz to solve the problem numerically, but his main aim was to calculate the forces and
moments on the wall, so as to verify some earlier interesting analytical results for that problem. This
was also studied by Marchant and Roberts (1987) using Roberts’ 1983 method. Tsai et al. (1994) also
used the Fourier/Newton method and presented results for the almost-highest waves.

It is worth noting that most of these papers solved the nonlinear equations using Newton’s method,
similar to that described above in detail for steady planar waves. Bryant showed and the experience of
the present author is that he was right, that a more robust set of equations is obtained if the equations
themselves are discrete Fourier transformed, so that each of the resulting set of equations is dominated
by a particular (unknown) Fourier component. This follows from the orthogonal nature of the basis
functions – for a linear system that procedure would eliminate all other variables but the particular
component. This procedure does not seem generally to have been used, but the author does recommend.

3.2.3 Standing waves

The problem of accurately computing the problem of two-dimensional standing waves in deep wa-
ter was solved by Schwartz and Whitney (1977, 1981) using a perturbation series method similar to
Schwartz (1974) where the coefficients were found numerically. A direct numerical approach similar to
the Fourier/Newton method described above was adopted by Saffman and Yuen (1979). Vanden-Broeck
and Schwartz (1981) used a numerical Fourier method, but it was relatively low order, while the later
work of Tsai and Jeng (1994) computed the solutions for higher waves rather more accurately and gave
results for the highest waves. They confirmed earlier hypotheses that the angle at the sharp-crested
highest wave is 90o.

Bryant went on to obtain some more interesting solutions, including progressive free waves in a circular
basin of finite depth (Bryant, 1989), and jointly with Stiassnie the problem of standing waves in a deep
square basin (Bryant and Stiassnie, 1995).

4. More general wave propagation problems
As can be observed particularly in shallower water, there is a notable tendency for waves to be more
coherent and permanent in their form than linear theory would predict, and the spatially-periodic models
of the previous Section 3 have been widely used in practice as convenient approximations to more gen-
eral problems. In general, however, problems of wave propagation are in more complicated geometries,
the waves are not spatially periodic, and one cannot assume simple analytic functions which satisfy the
field equation for all time and space. It would, however, be possible to build temporal periodicity into
models by assuming a Fourier series in time and solving a succession of nonlinear problems for the
spatial variation, in a manner similar to periodic problems above in Section 3. For more general prob-
lems the whole computational domain would have to be approximated and generally a potential problem
solved over the whole region, possibly for each computational instant over the wave period. This might
be computationally demanding, but it is still intriguing that it is a path which seems not to have been
followed at all.

The usual way in which more general problems have been solved is to compute the evolution in time,
even with a periodic input. Although the boundary conditions on the surface, (2.10) and (2.13) are
nonlinear, in that they contain products of quantities to be determined as part of the solution, in many
coastal and ocean engineering applications they are rather more quasilinear in their nature, such that
time derivative terms are linear. All nonlinear terms involving spatial derivatives can be evaluated at a
particular instant, leaving the time derivatives able to be computed and the solution advanced in time
using linear methods. This large Section 4 is devoted to the plethora of methods which have been used
to solve those important general problems.
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4.1 Methods which solve at points throughout the flow field
The slightly clumsy title to this section is an attempt to group a number of methods which otherwise
have little to do with each other. They include Lagrangian methods, Marker and Cell methods, finite
difference methods, which describe some remarkable recent work on modelling the whole flow field
with a turbulence-closure method, and finite element methods.

4.1.1 Lagrangian methods

The method of Brennen and Whitney (Brennen,1970) solved the Lagrangian equations of motion for the
inviscid planar flow of a homogeneous or inhomogeneous fluid. The fluid was divided up into cells in
true Lagrangian space, such that the location of the free surface is known, and solution of the resulting
equations was by successive over-relaxation. They simulated the generation of a wave by a wall and its
running up over a sloping beach. This avenue seems not to have been followed.

A rather different approach is that of particle methods. Smoothed Particle Hydrodynamics (Monaghan,
1994), is Lagrangian in that it follows particles and does not require a grid. It is an unusual and phe-
nomenological method which is a technique modified from astrophysics applications. The real fluid is
approximated by an artificial fluid which is more compressible. The article referred to here shows how it
can be applied to wave shoaling and dam-break problems, where there is a free surface and where there
are solid boundaries. Another moving particle method has been developed by Koshizuka et al. (1998).
In both these papers the results presented seem to be qualitative rather than quantitative, but they are
both interesting to read.

4.1.2 Marker and Cell methods

Chan and Street (1970) modified the original Marker and Cell technique so that it could be applied to
free surface problems more successfully. In this method, the flow domain is divided up into rectangles
(cells) while the surface is defined by massless marker particles which are free to move. The Navier-
Stokes equations are satisfied by finite difference equations throughout the field of flow. In the vicinity
of the surface some quite irregularly-dimensioned computational modules arise. The propagation of a
solitary wave and its reflection by a vertical wall was successfully simulated. This problem was also
modelled by Funakoshi and Oikawa (1982) using a Marker and Cell method, and they presented some
interesting results for the phase shift, the amount of time delay caused by the wave travelling up the wall
and down again.

Miyata (1986) described the further development of a Marker and Cell technique where the treatment
of the free surface and especially regions of high curvature were more carefully treated. A number of
problems of the interaction between waves and bluff bodies were described, where the interactions led
to wave breaking.

Chen et al. (1997) describe the development of the ”surface marker and micro cell method” for the solu-
tion of two-dimensional problems with a free surface. Considerable effort has gone into the formulation
so that multi-valued free surfaces, the impact of free surfaces with solid obstacles and converging fluid
fronts may be studied. The method may be able to simulate wave slam problems, but no such results are
presented.

4.1.3 Finite difference methods

Laplace’s equation: The above Marker and Cell methods could be described as finite difference
methods, as such expressions are used on rectangular cells throughout the flow, and even the irregular
computational stars on the free surface make use of finite difference expressions. Given the traditional
success of finite difference methods in solving Laplace’s equation in many areas, it is noteworthy that
they seem to have been seldom applied to wave propagation problems. This may be because the method
has to describe the flow on the length scale of the crest of a wave and also the length scale of its region
of propagation. This leads to huge numbers of points necessary and then if one uses Laplace’s equation,
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a large computational cost.

Finite difference methods have been used rather more for problems of a rather more compact nature.
Yeung and Vaidhyanathan (1992) developed a numerical two-dimensional wave tank and applied it to
the problem of the nonlinear interaction of waves with a submerged cylinder. They used boundary-fitted
co-ordinates such that the co-ordinates moved as the free surface moved. A variational method was used
for the grid generation, which could handle steep and multi-valued free surface profiles. Lagrangian
marker particles were used to define the surface, and problems of wave breaking over the cylinder could
be simulated.

A recent paper by Li and Fleming (1997) has introduced an interesting and powerful method, which
used a simple σ transform to map the flow from an irregular domain to one which is bounded by two
horizontal planes so that boundary conditions can be satisfied on a known domain. In these co-ordinates
all finite difference expressions become more complicated and Laplace’s equation no longer has constant
coefficients. However, because of the regular grid in the transformed co-ordinates, only small storage of
point geometry was required. A multigrid method was used, and the method applied to a well-known
standard wave shoaling and diffraction problem and obtained good agreement with experimental results.
The model was claimed to be fast and to run on a personal computer, even though 130,395 grid points
were used. A run time was 10 hours.

Navier-Stokes equation: Although outside a stated boundary of this Chapter, that little attention will
be given to problems of a more naval architectural nature, in the nature of a signpost we mention a paper
by Yeung and Ananthakrishnan (1992), in which the Navier-Stokes equation was solved for the viscous
flow problem associated with the heaving motion of a floating body. A finite difference method was
used, based on the boundary-fitted co-ordinates of Yeung and Vaidhyanathan (1992) mentioned above.
The Reynolds number of the flow problem was 1000, scarcely applicable to coastal or ocean engineering.

Turbulent flow equations: A remarkable method has been introduced by Lin and Liu (1998a, 1998b).
The two papers describe the development of a numerical model for studying the evolution of a wave train
with shoaling and eventual breaking, right through the surf zone. Unlike almost all methods described
in this Chapter, which assume irrotational flow, the model solves the Reynolds equations for the mean
flow field and the k − ² equations for turbulence closure using finite difference methods. To track free-
surface movements, the Volume of Fluid method is used. Care was taken to verify the accuracy of each
component of the numerical model by comparison with analytical solutions and experimental results.
The method (or methods) have been able to describe the shoaling and spilling breaking of long waves on
a beach, as described in the first paper, where a number of other physical results were presented. In the
second paper attention turned to the simulation of a plunging breaker, and again a number of physical
results are presented. These works seems to form a major step forward in both computational methods
and physical understanding of the phenomena of wave breaking.

4.1.4 Finite element methods

Eatock Taylor (1996, p51) wrote: ”It is perhaps surprising that the finite element method has not been
adopted more widely in computational hydrodynamics”, which is a statement with which the present
author can readily agree. At first blush the method, widely used throughout mechanics with its ability
to handle complicated geometries and difficult constitutive relations, would seem ideally suited to wave
propagation problems in coastal and ocean engineering. In an interesting series of papers, Wu and
Eatock Taylor and co-workers have described the development of the method and its comparison with
boundary integral equation methods (Wu and Eatock Taylor, 1994; Wu and Eatock Taylor, 1995; Greaves
et al. 1997). At the end of that corpus of work, however, the method seems to have been damned with
relatively faint praise, and the contributions of several other methods, described in the course of this
Chapter, seem to far outweigh any potential that finite elements might have.

The possible advantages of finite elements for simulating wave propagation include –
1. their ability to handle complicated geometries and a moving free surface;

21



Numerical methods for nonlinear waves John D. Fenton

2. the finite-width banded structure of the matrices generated, leading to economies of storage and
computational time; and

3. their ability to handle field equations of almost any complexity.

In the case of (1) boundary integral equation methods are every bit as good and have the advantage
that they have to approximate one fewer physical dimension. Finite element methods suffer from the
problem of having to generate a mesh of elements at each time step. In the case of finite differences the
use of boundary fitted co-ordinates and volume of flow methods has enabled them to handle non-trivial
geometries, but in general finite elements should be better at this, but at some cost.

Point (2) is where finite elements do have an advantage over boundary integral equation methods, but
local polynomial approximation and spectral methods also have this advantage and so do finite difference
methods for which, if computations can be performed on a rectangular grid, storage is trivial.

Finally, in the case of (3), certainly finite difference methods can be successfully used, even for turbulent
flow simulations as reported above. In any case, in wave propagation problems Laplace’s equation is a
good model for many situations, and the other main methods can be used.

The sequence of finite element papers mentioned succeeded in developing models which could solve the
two-dimensional problems of a wave tank whose length was 40 times the water depth, with a vertical
plate wavemaker; a circular cylinder oscillating below the free surface with computations extending as
far as 50 times the cylinder diameter; and standing waves in a rectangular tank with various submerged
bodies. None of these could be described as challenging for other methods. They compared computation
times with a boundary integral equation method and found the finite element program took much less
time. However, the gradual growth of error seemed to be a problem. If one looks at the results presented,
there is little to compare with the achievements of boundary integral equation, finite difference, spectral,
and local polynomial approximation methods in being able to handle large regions with high and possibly
breaking waves.

4.2 Boundary integral equation methods
Numerical methods for wave propagation using boundary integral equations (BIEs) have been proposed
for some two decades. In principle, such methods are almost ideal for they can handle irregular geome-
tries simply, and can even treat the overturning of waves as they break, as the free surface is usually
described in a Lagrangian sense. Their disadvantage is that they can require large amounts of compu-
tational effort, as a full matrix equation must be solved at each step in time. A noteworthy feature of
the history of BIE methods is how many papers have been published which have repeated the canon-
ical theory and numerical method and have then described the application to a particular problem or
problems.

The boundary integral equation can be obtained by either using a Green function or using Cauchy’s in-
tegral theorem. Elements of a simple theory are presented below. If one knows the potential distribution
around the boundary, the velocity of a point on the boundary may be calculated, and Bernoulli’s equa-
tion can be used to calculate the rate of change of the potential on the boundary. These give differential
equations for each boundary point, and the solution and the wave may be advanced in time. Then at the
next step it is necessary to solve the integral equation for the updated potential around the boundary and
the whole process is repeated successively.

The application of BIE methods was initiated by Longuet-Higgins and Cokelet (1976) for the study of
waves in deep water. They used a Green function method, which set up a boundary integral equation
with a logarithmic kernel. As they were using infinitely-deep water with assumed lateral periodicity
they could conformally map onto a more convenient domain. Time integration was by an Adams-
Bashforth-Moulton scheme. They found sawtooth oscillations on the free surface which had to be regu-
larly smoothed, but they were successful in simulating the overturning of waves.
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A different approach was introduced by Vinje and Brevig (1981), who used the Cauchy integral theorem
in terms of a complex potential function as the integral equation valid around the boundary. It can be
shown using complex analysis that the Longuet-Higgins and Cokelet formulation can be obtained from
this. The complex formulation tends to have more diagonally-dominant matrices, with faster solution
methods.

Baker et al. (1982) introduced a different approach which, although considerably more powerful and
efficient, seems not to have been used by other workers. Perhaps that is because the presentation of
the method departs from the canonical approach commenced by Longuet-Higgins and Cokelet – and
is non-trivial in the mathematical operations involved. The method can be used in both two and three
dimensions, can be used for layered flows, and requires onlyO(N2) arithmetic operations per time step.
Although it was necessary to assume lateral periodicity which would limit its application in general, the
authors managed to solve several problems of wave propagation, including wave breaking over varying
bottom topography.

New et al. (1985) modified the method of Longuet-Higgins and Cokelet (1976) so as to study the
propagation of waves on water of constant finite depth. They assumed lateral periodicity and mapped
the region onto an irregular annular region. This enabled high resolution computations, and by assuming
a linear wave solution as initial condition they were able to demonstrate the overturning of the wave crest
and to calculate the details of the flow field.

A problem which originated in naval architecture, but which may have some utility in studying the
breaking of a wave near a vertical wall, is the use by Grosenbaugh and Yeung (1989) of Vinje and
Brevig’s formulation to solve the problem of the generation of a plunging breaker by the motion of a
bluff floating body.

Dold and Peregrine (1984, 1986) briefly describe a very accurate method which is presented in detail
by Dold (1992). This was another important computational development. A complex formulation of
the boundary integral equation was used, with a singularity subtraction technique so that the integrand
to be approximated was continuous. A point-label parameter was introduced such that approximations
to derivatives and integrals could be made using equi-spaced formulae. The time stepping was highly
accurate, as Taylor series expressions were used. The resolution in time was 5th order and space dis-
cretization 10th order; it is stable and fast.

The original development was for the case of a flat bottom with lateral periodicity, which limited its
application somewhat. This can be overcome via conformal mapping. Tanaka et al. (1987) applied
the method to examine the stability of a solitary wave. It was found that the stability results depended
on the sign of the perturbation about the steady solution. If the unstable perturbation has one sign, the
wave soon breaks, but if it is of the other sign, it loses height and approaches a lower solitary wave
of almost equal energy. Cooker et al. (1990) extended the method to include the scattering of solitary
waves by a semi-circular cylinder, using conformal mapping to give a flat bed for computations. Passoni
(1996) also used the method with conformal mapping to study the reflection of a wave by a vertical
wall with a small sloping section in front of it. The method has been used by Yasuda et al. (1990)
to study the propagation of a solitary wave over a submerged rectangular obstacle. Later Yasuda et al.
(1997) studied the kinematics of the breaking in considerable detail. Liu, Hsu and Lean (1992) applied
the method with a conventional free-space logarithmic Green function for the integral equation, but
also introduced another Green function consisting of a series of free-space functions so that it yielded
solutions laterally periodic in space which meant that only the free surface need be included in numerical
integrations. Cooker et al. (1997) used the method of Dold and Peregrine as adapted by Tanaka et al.
(1987) to solve the problem of the reflection of a solitary wave by a vertical wall, and gave a number of
interesting results.

Brorsen and Larsen (1987) used the Green function approach. They concentrated on the generation of
waves inside the computational domain by a vertical line of pulsating sources within the model, which
allowed the generation of any wave form desired and provided the basis for a general open-boundary
formulation.

23



Numerical methods for nonlinear waves John D. Fenton

Grilli et al. (1989) developed a method based on the Green function formulation, but used a high-order
time-stepping method in the spirit of Dold and Peregrine. Considerable effort went into the spatial ap-
proximation of the integral equation. Wave generation was performed by simulating wavemaker move-
ment or by imposing extended periodicity conditions. Wave absorption was for constant wave shapes. It
was found that no smoothing was necessary. They simulated several problems including the propagation
of a steady periodic wave, the breaking of an initial sine wave, the generation and run-up on a slope of a
solitary wave, and a transient wave generated by an articulated wavemaker.

Subsequently, Grilli and Horrillo (1997) gave more attention to boundary conditions, using both numer-
ical flap-type wavemaker and exact wave generation using accurate solutions for steady waves. They
went to some lengths to obtain a zero mass flux boundary condition, although this would have been
trivially obtained had they used equation (3.16) as part of their Fourier approximation method. An ab-
sorbing beach was modelled at the end of the tank in which free-surface pressure was used to absorb
energy from high-frequency waves and a piston-like condition for low-frequency waves.

Dommermuth et al. (1988) compared theory and experiment for the propagation, overturning and break-
ing of a high wave. They used the Vinje and Brevig scheme for the boundary integral equation with a
fourth-order predictor-corrector scheme for the time-stepping. A number of interesting results were ob-
tained, including the necessity to re-grid occasionally to guard against instability. One conclusion was,
comparing theory and experiment, that potential theory is satisfactory right up to the point of entry of
the breaker tip. A computational run took 30hrs on a supercomputer.

Ohyama and Nadaoka (1991) developed a robust model with open boundaries which they applied to
a number of practical studies of wave propagation over real topography (Ohyama and Nadaoka, 1994,
Ohyama et al. (1994, 1995)).

Beale et al. (1996) in a more mathematically-oriented study considered the formulation of Baker et al.
for an infinitely-deep two-dimensional fluid. They proved nonlinear stability and convergence of the
method as long as the solution remained regular.

It is clear that the computational expense of boundary integral equation methods can be high. This can
be offset by vertically sub-dividing the computational domain into sub-domains and requiring continuity
across the boundaries. In this way, instead of a full matrix corresponding to every computational point
influencing every other point explicitly and the whole matrix being full, the matrix will be composed
of full blocks centred on the diagonal which will be considerably smaller, with all terms outside those
blocks being zero and superfluous for storage or calculation. Wang et al. (1995) used this approach to
develop a two-dimensional numerical wave tank which was 110 times the wavelength of the simulated
waves. Their paper describes a number of details, including how the domain decomposition was done,
and how they installed a damping mechanism for longer waves which developed. The integral equation
method was that using a Green function, time stepping was generally fourth-order, and smoothing was
occasionally necessary. Plunging breakers were computed.

De Haas and Zandbergen (1996) describe a similar two-dimensional method involving domain decom-
position. A Green function method was used, with fourth-order time-stepping. They computed the
propagation of waves over a bar, a computation which, with four subdomains, took less than 8 hours
on a 90Mhz Personal Computer and 14 minutes on a supercomputer. A larger problem solved was the
propagation of irregular waves over an uneven bottom. They noted that the method is being extended
into the three-dimensional model described above (Broeze et al., 1993).

4.2.1 Three-dimensional methods

All methods described to here have been for planar wave propagation. Although outside our self-
imposed limitation of not treating problems of calculating wave effects on structures and ships, we
should mention the early and remarkable achievement of Isaacson (1982) in developing a method
which enabled the calculation of the three-dimensional propagation and interaction of fully-nonlinear
waves with both fixed and floating bodies. In two dimensions the Green function is a logarithmic
function: 1/2π × log r, where r is the distance between two points r1 = (x1, y1) and r2 similarly,
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such that r2 = (x1 − x2)2 + (y1 − y2)2. In three dimensions the Green function is 1/4πr, where
r2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, and where the notation is obvious. In three dimensions
of course, the appropriate integral equation is written over the surface enclosing the domain of interest,
which is divided into a number of surface panels. Isaacson introduced an image function which auto-
matically satisfied the flat-bottom boundary condition. Although the detail of tracking both the surface
of the body and the sea surface must have been considerable, he used his method as a working tool for
ocean engineering problems.

A group working in the Netherlands has developed a method and obtained solutions for three-dimensional
breaking waves. The approach began with Romate and Zandbergen (1989), who developed the boundary
integral formulation in three dimensions. The original paper was for linear problems with a flat upper
boundary. After writing a couple of useful papers on absorbing boundary conditions for such numerical
models (Romate, 1992; Broeze and Romate, 1992), they applied the methods developed to nonlinear
wave propagation and breaking in three dimensions, and showed the overturning breaking of the tip of a
breaker plunging over topography (Broeze et al., 1993). The programs ran on a supercomputer.

Celebi et al. (1998) also developed a nonlinear three-dimensional numerical method. They used the
same three-dimensional singularity as that described above, but they claimed to ”de-singularize it” by
placing such sources (rather than using it as a Green function) outside the computational domain. In this
way it was hoped to avoid errors caused by integrating across a singularity. This presumably comes at
some computational cost in that if an iterative scheme is used for numerical solution the matrices will not
be so diagonally-dominant or rapidly convergent. They used a fourth/fifth order Runge-Kutta-Fehlberg
scheme for advancing the solution in time. It was found necessary to re-grid the solution occasionally to
avoid the occurrence of a sawtooth instability. Results were produced for three cases (a) the generation
of waves by a piston-type wavemaker and their subsequent propagation., (b) diffraction by a truncated
vertical cylinder inside a rectangular tank with side walls, and (c) diffraction by a bottom mounted
vertical cylinder in the open sea. A supercomputer was used, with a computational time of 20 hours.
Results were satisfactory, especially interesting was the result that for nonlinear diffraction the fully
nonlinear transient results obtained agreed with experiment better than did results from a second-order
diffraction program.

4.2.2 A two-dimensional method which exploits periodicity around the boundary

The author (Fenton, 1993) has developed a method for wave propagation in two dimensions which has
some unusual features. It is included here for several reasons – to give the flavor of the mathematics
for boundary integral equation methods; to present a simple means of subtracting the singularity in the
complex boundary integral equation presentation; and, as it has not been made widely available, to
present the really unique feature of the method, that it recognizes that if one passes around a boundary,
then all quantities are periodic in position and Fourier methods may be used to obtain simple and accurate
differentiation and integration formulae (Fenton, 1992, 1996). The resulting method seems to work quite
well for shoaling problems, although it has not been exhaustively tested (Fenton and Kennedy, 1996).

A non-singular boundary integral equation: Consider a two-dimensional region such as that shown
in Figure 4-1 containing an incompressible fluid which flows irrotationally, in which case a scalar po-
tential function φ exists and satisfies Laplace’s equation: ∇2φ = 0. A typical boundary value problem
is where the value of φ or its normal derivative ∂φ/∂n or a combination of the two is known at all points
on the closed boundary C.

Consider Cauchy’s integral formula (see any book on functions of a complex variable):

πm i w(zm) =

Z
− w(z)

z − zm dz, (4.1)

where i =
√−1, zm = xm + iym is the complex co-ordinate of a reference point on the boundary as

shown in Figure 4-1, z = x + iy is the general point shown, and w = φ + iψ, the complex potential,
where ψ is the conjugate function, the stream function. In Vinje and Brevig’s formulation they used
either the real or the imaginary part of (4.1) depending on whether the point m was on a part of the
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Figure 4-1. Computational domain showing important points and co-ordinates

boundary where φ or ψ was known. In this way the algebraic equation obtained by approximating the
integral equation is more dominant in the unknown at that point and its numerical properties are better
than Green function formulation, although one can be shown to be equivalent to the other.

Here we introduce an alternative expression which effectively subtracts the singularity in (4.1). If the
complex function w = φ + iψ is analytic, then Cauchy’s integral theorem may be invoked for the
function (w(z)−w(zm))/(z − zm), givingI

w(z)− w(zm)
z − zm dz = 0. (4.2)

In this equation the integrand is everywhere continuous, even at z = zm, where it becomes the finite
value dw/dz|m, and its numerical approximation should be simpler. In this form it is not necessary to
calculate the angle πm at each point. Equation (4.1) is trivially obtained from (4.2), but this form has a
number of advantages.

Numerical scheme using periodicity around the contour: A feature of two-dimensional boundaries
is that around the boundary all variation is periodic, for in a second circumnavigation of the boundary the
integrand is the same as in the first, and so on. This suggests the use of methods that exploit periodicity
to gain handsomely in accuracy. A continuous co-ordinate j is introduced here, which is 0 at some
reference point on the boundary, and after a complete circumnavigation of the boundary has a value N ,
which will be taken to be an integer. This was introduced by Dold and Peregrine (1984) who exploited
the ability to use finite-difference formulae with equi-spaced values in j. Here we go further and exploit
periodicity as well. The integral in equation (4.2) can be writtenZ N

0

w(z(j))−w(zm)
z(j)− zm

dz

dj
dj = 0. (4.3)

Now a numerical approximation is introduced to transform the integral equation into an algebraic one in
terms of point values. The integral in equation (4.3) is replaced by the trapezoidal rule approximation:

N−1X
j=0

w(zj)− w(zm)
zj − zm z0j = 0, (4.4)

where zj = z(j) and z0j = dz(j)/dj, but in which after the differentiation, j takes on only integer values.
In this case the trapezoidal rule has reduced to the simple sum as the end contributions are from the same
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point, z0 = zN because of the periodicity. This is a particularly simple scheme when compared with
some such as Gaussian formulae which have been used to approximate boundary integrals. Where the
integrand is periodic, as it is here, the trapezoidal rule is capable of very high accuracy indeed. If it is
periodic and has a continuous kth derivative, and if the integral is over a period, then (Abramowitz and
Stegun, 1965, #25.4.3):

Error ≤ Constant
Nk

. (4.5)

This accuracy flows from the nature of the Fourier series which interpolates a function of such a degree
of continuity over N points. For functions that are of low degrees of continuity, where k might be 0,
1 or 2 say, the accuracy will be comparable to traditional low-level polynomial approximation of the
integrals, however if high degrees of continuity exist, the method should be very accurate indeed. One
will have to be careful with the point-spacing at corners, to ensure sufficient continuity.

In the form of equation (4.4), the expression is not yet useful, as the point j = m has to be considered.
It is easily shown that in this limit, the integrand (and hence the summand) becomes dw(m)/dm, and
extracting this term from the sum gives the expression with a ”punctured sum” j 6= m:

dw

dm
(m) +

N−1X
j=0, j 6=m

wj − wm
zj − zm z0j = 0, (4.6)

for m = 0, 1, 2, . . . , N − 1, and where the obvious notation wj = w(j) etc. has been introduced.
The notation dw(m)/dm means differentiation with respect to the continuous variable m, evaluated at
integer valuem. It is convenient here to introduce the symbol Ωmj for the geometric coefficients:

Ωmj = αmj + iβmj =
z0j

zj − zm , (4.7)

whose real and imaginary parts are the coefficients αmj and βmj . Equation (4.6) becomes

dw

dm
(m) +

N−1X
j=0, j 6=m

Ωmj(wj − wm) = 0. (4.8)

It is easily shown, writing z(j) in complex polar notation as z(j) = zm + r(j)eiθ(j), that

αmj =
1

r

dr

dj
=
d

dj
(log r) and βmj =

dθ

dj
, (4.9)

such that

Ωmj =
d

dj
(log (zj − zm)), (4.10)

also able to be obtained from equation (4.7). These weighting coefficients can be seen to have a relatively
simple physical significance.

One is free to use either the real or imaginary part of the integral equation and of the sums which
approximate it, equation (4.6) or (4.8). The two parts can be extracted to give

dφ

dm
(m) +

N−1X
j=0, j 6=m

£
αmj(φj − φm)− βmj(ψj − ψm)

¤
= 0 (4.11)

and

dψ

dm
(m) +

N−1X
j=0, j 6=m

£
αmj(ψj − ψm) + βmj(φj − φm)

¤
= 0. (4.12)

Either of these equations can be used at each of the N computational points, provided either dφ/dm
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or dψ/dm is known at that point, which can be done from the boundary conditions as described above.
Each equation is written in terms of the 2N values of φj and ψj . If N of these are known, specified as
boundary conditions, then there are enough linear algebraic equations and it should be possible to solve
for all the remaining unknowns.

It can be shown that in these equations, the dominant coefficients are the sum
PN−1
j=0,j 6=m βmj , the co-

efficient of ψm in (4.11) and φm in (4.12), and the equations are nearly diagonally dominant in those
quantities. This is fortunate, for as equation (4.11) can be used on the free surface where dφ/dm can be
evaluated and where ψm is the unknown and 4.12 on the sea bed where dψ/dm = 0, and where φm is
unknown, the system of equations is nearly diagonally dominant, which suggests a certain computational
robustness, and the possibility of iterative solution.

Although this formulation is likely to be rather more accurate than schemes which approximate the
integrand by low-order polynomials, the complex formulation of Vinje and Brevig also possesses this
property of diagonal dominance.

Numerical computation of coefficients: Now we have the problem of determining the derivatives
with respect to the arc-variable dz/dj and dw/dj. In problems of wave shoaling, the boundary of the
computational region, including the sea bed and the free surface, is quite irregular. The periodicity
around the boundary may be exploited to give a simple scheme for computing the necessary derivatives
around the boundary. The main problem is to compute values of the z0j . Also, it is convenient to be able
to use a means of interpolation between the computational points for plotting purposes which has the
same accuracy as the underlying numerical method. Both can be accomplished simply and economically
using Fourier approximation.

Suppose the position of each of theN boundary points zj , j = 0, 1, · · · , N − 1, is known. Consider the
discrete Fourier transform of the points:

Zm =
1

N

N−1X
j=0

zj e
−i2πmj/N = D(zj ;m), (4.13)

which is a sequence of the complex Fourier coefficients Zm, for m = −N/2, · · · , +N/2. The Fourier
series which interpolates the zj is

z(j) =

+N/2 //X
m=−N/2

Zm e
+i2πmj/N , (4.14)

where the sum
P00

is interpreted in a trapezoidal rule sense, with a value of 1/2 multiplying the end
contributions at ±N/2. For the case of integer j, this is the inverse discrete transform, denoted by the
symbol D−1:

zj = D
−1(Zm ; j), (4.15)

although in keeping with the approach of this paper we have not yet adopted integer values for the j in
equation (4.14). It can be differentiated to give:

z0j =
i2π

N

+N/2 //X
m=−N/2

mZm e
+i2πmj/N =

i2π

N
D−1(mZm ; j). (4.16)

In this way, if fast Fourier transform programs are available, the z0j may be computed by taking the
discrete Fourier transform of the points zj , multiplying each coefficient bym and inverting, all of which
can be done in O(N logN) operations.

The values z0j can now be used in (4.7). The derivatives of the complex potential which appear in (4.11)
and (4.12) are accomplished using the same method.
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The linear algebraic equations approximating the integral equations have been expressed relatively sim-
ply in terms of the coordinates of the computational points zj and the derivative around the boundary,
z0j . The accuracy of the method depends on how continuous the latter are, and in Fenton (1996) some
effort was spent in ensuring continuity across corners of the boundary. In fact it was found that even if
no special spacing was used, the accuracy was still surprisingly high. When it was applied to moving
boundary problems such as the shoaling of waves, as the boundary points moved, the most sophisticated
schemes for point spacing became the most inappropriate, as the accuracy of the schemes were quickly
destroyed by the movement of the points. It was found that the most robust schemes obtained simply
used equally-spaced points.

Set-up and solution of system of equations: When the z0j have been obtained, the coefficients
Ωmj = αmj + iβmj can be calculated and used in expressions (4.11) and (4.12), one for each point
at which an unknown exists. As the equations are nearly diagonally dominant, however, it should be
possible to exploit the simple Gauss-Seidel iterative procedure, particularly for timestepping problems
such as those for wave propagation, and in practice this was found to work very well indeed. The
computational effort is O(N2) per iteration, and the happy result was found in the present work, that as
all boundary points are interpreted as Lagrangian particles, and carry the geometry of the problem with
them, then the coefficients are very slowly varying, and a forward extrapolation of previous results gave
such an accurate initial estimate that only one iteration was usually necessary each time step to achieve
an accuracy of seven figures.

Much programming detail can be avoided if the step of assembling into a matrix is bypassed. In this
case, equations (4.11) and (4.12) may simply be rewritten: for points on the free surface

ψm =

−dφ(m)/dm−
N−1X

j=0, j 6=m

¡
αmj(φj − φm) − βmjψj

¢
N−1X

j=0, j 6=m
βmj

, (4.17)

and for points on the sea bed

φm =

dψ(m)/dm+
N−1X

j=0, j 6=m

¡
αmj(ψj − ψm) + βmjφj

¢
N−1X

j=0, j 6=m
βmj

. (4.18)

In practice, a procedure of over-relaxation can be adopted to give faster convergence. It was found
convenient in the present work where the coefficients changed slowly, not to store all the coefficients
αmj etc., as this requires storage of O

¡
N2
¢
, but to generate the coefficients necessary for each equation

every time it had to be evaluated such that the storage was O(N), and large numbers of points could be
used. Overall, the implementation of the scheme in this iterative form was particularly simple and rapid.

Figure 4-2. High wave on a steeply-shelving beach showing overturning

The only results reported here are for a wave heightH/d = 0.25 and a length 25 times that of the depth.
The initial conditions were computed using an accurate Fourier method (Fenton, 1988(Fenton 1988)).
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The wave was allowed to propagate across a shelf with a cosine profile, which shoaled to 1/4 the depth in
a distance of roughly half the horizontal length scale of the wave, a rather abrupt case, and corresponding
to the shoaling of a wave on a coral reef. Results are shown in Figure 4-2, and they show some of
the interesting phenomena associated with this nonlinear problem. After the wave travelled almost
right across the shelf, it started to grow in height quite quickly, while travelling over water of constant
shallower depth, and the large feature of a shelf developed behind the wave, which seemed to be in
the process of separating from the main wave and possibly becoming part of an oscillatory tail. At
the final stage a sharp crest began to form, which turned over as shown, the surface particles in this
latter stage experiencing very large accelerations. When compared with detailed pictures of plunging
breakers which have been alluded to above, this looks fairly modest, however, so were the computing
requirements, which were several hours on a 33MHz Personal Computer, and the author has made no
effort to capture the last instants of the breaking; the wave plunged to breaking before the next profile
was plotted.

4.3 Spectral and pseudospectral methods
The essential idea behind spectral and pseudo-spectral methods is that global approximation can be
used, such that a field of flow is represented by a series of mathematical functions where each of those
functions possesses properties such as identically satisfying the field equation and certain boundary
conditions, leaving other boundary conditions to determine the coefficients of the functions in the series.
The graph of those coefficients is the spectrum of that which is being described, leading to the adjective
”spectral”. It is well-known that spectral approximation is capable of high accuracy. The family of
methods described in Section 3 as Fourier methods for steady waves depend on this, where the problem
there was to determine the relatively few coefficients in the series for stream function.

The distinction between ”spectral” and ”pseudospectral” is not particularly important. Spectral methods
are generally those where all computations can be performed in terms of the spectral coefficients without
having to re-compute the physical quantities which are being described. Whereas this is often the case
in partial differential equations with simple quadratic nonlinearities, the highly nonlinear nature of water
wave boundary conditions where the location of the boundary may itself be an unknown, is such that it
is usually necessary to pass repeatedly between the spectral representation and what it is representing.
All such methods are pseudospectral.

4.3.1 Early approaches

Early methods using global approximations were simple and accessible – and relatively inefficient com-
putationally. More recent developments have seen remarkably efficient methods developed, but at con-
siderable cost in terms of complexity. Multer (1973) originated the use of spectral methods applied
to the full unsteady nonlinear equations. He considered a tank with vertical ends, one of which was
allowed to move as a piston wavemaker. He defined the free surface by Lagrangian marker particles
which were allowed to move, similar to the procedure used in BIE methods. Fourier coefficients were
found by a least-squares procedure. Through the use of relatively low-order numerical integration and
the accruing of rounding errors in an orthogonalization process it was found that the method was of
limited robustness, yet it was a significant innovation.

Fenton and Rienecker (1982) used the following Fourier series, similar to Multer, rewriting them in a
slightly different form here for compatibility with similar Fourier sums in this chapter such as (3.23):

φ(x, y, t) = Ū x+
p
gd3

+N/2 //X
j=−N/2

Aj(t)
cosh jky

cosh jkd
eijkx, (4.19)

η(x, t)/d =

+N/2 //X
j=−N/2

Yj(t) e
ijkx, (4.20)

where d is a depth scale, which was taken to be the undisturbed depth. All derivatives with respect
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to x, y and t used in the nonlinear free surface boundary conditions (2.10) and (2.13) can be simply
obtained by differentiation of these expressions. Equation (4.19) satisfies the two-dimensional version
of Laplace’s equation (2.2) identically, and the bottom boundary condition (2.4) for the special case of
a flat bed, ∂φ/∂y = 0 on y = 0. An additional term involving sinh jky was introduced in an appendix
for the case of more general bottom topography when the bottom boundary condition would have to be
satisfied by collocation methods, similar to BIE methods. All variation with time is contained in the
coefficients Aj(t). Values of φ are known on the surface particles at an initial time t, but to advance the
solution it was necessary to know theAj(t+∆). To do this it was necessary to solve the matrix equation
obtained from (4.19) written for each of the surface particles. The matrix is full, and, unlike some BIE
methods, not diagonally dominant, although the underlying Fourier structure meant that it was not badly
conditioned and solution was quite robust. The operation count of this method is O(N3) at each time
step, in common with most BIE implementations.

A leapfrog scheme was used for the time stepping. Differently from Multer, the surface marker particles
were not Lagrangian but were constrained to move vertically only. In this way fast Fourier methods
could be used for all spatial interpolation and differentiation and the trapezoidal rule could be used
for numerical integration with the same accuracy as the underlying Fourier accuracy. An advantage
of this was also that at the stage of solving the matrix equation at each time step, the horizontally-
equispaced points gave matrix coefficients which retained the character of the underlying orthogonality
of the Fourier series on such points, and meant that the solution was robust and accurate. As the free
surface was also represented by a Fourier series, this meant that it could only be a single-valued function
of the horizontal space dimension, and the method could not describe overturning waves. In practice the
Fourier series would require many terms to describe such motion and would probably not be as efficient
as BIE methods for such problems anyway. The concentration on accuracy allowed computations of the
propagation of solitary waves to proceed for many time steps and to provide interesting results for the
reflection of a solitary wave by a wall and the nonlinear overtaking interaction of two solitary waves of
different heights.

4.3.2 Fast methods

A more powerful approach was developed independently by Dommermuth and Yue (1987) and West et
al. (1987), based on conventional analyses of waves by modal and perturbation expansions. This allows
a pseudospectral treatment of the nonlinear free-surface conditions, so that the computational effort is
proportional to the number of modes N and the order M of the analysis. As the method depends on an
expansion about the mean water level, it would have difficulty in treating overturning waves.

Let the potential on the surface be φs(x, z, t) = φ(x, η, z, t). Introducing the horizontal plane gradient
operator ∇2 = (∂/∂x, ∂/∂z), then substituting into the free surface boundary conditions (2.10) and
(2.13) become

∂η

∂t
+∇2φs ·∇2η − (1 +∇2η ·∇2η)

∂φ

∂y
= 0 on the free surface y = η, (4.21)

and

∂φs
∂t

+ gη +
1

2
∇2φs ·∇2φs −

1

2
(1 +∇2η ·∇2η)

µ
∂φ

∂y

¶2
= 0, also on y = η. (4.22)

These two equations can be integrated in time for the evolution of φs and η if ∂φ/∂y)y=η can be
evaluated. To do this it is assumed that φ and η are O(ε)¿ 1 and φ is written as the series

φ(x, y, z, t) =
MX
m=1

φ(m)(x, y, z, t), (4.23)

where φ(m) = O(εm). The free surface potential is then expanded in a Taylor series about y = 0 (the
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level of the undisturbed free surface):

φs(x, z, t) = φ(x, η, z, t) =
MX
m=1

M−mX
k=0

ηk

k!

∂kφ(m)

∂yk

¯̄̄̄
¯
(x,0,z,t)

. (4.24)

At each order φ(m) satisfies a boundary value problem for z < 0 subject to a Dirichlet condition on
z = 0 given by (4.24), given η and φs. These are solved recursively from m = 1, 2, . . . . Typically the
φ(m) are represented by an eigenfunction expansion

φ(m)(x, y, z, t) =
X
n

φ(m)n (t)ψn (x, y, z) form = 1, 2, . . . ,M, (4.25)

where the ψn are basis functions satisfying the field equation and conditions on the bottom and side
boundaries, which will, in general limit the method’s applicability. Substituting (4.25) into the sequence
of Dirichlet conditions (4.24) the modal amplitudes φ(m)n (t) are obtained using pseudospectral colloca-
tion and fast transforms. Finally the vertical velocity on the free surface is given by

∂φ

∂y
(x, η, z, t) =

MX
m=1

M−mX
k=0

ηk

k!

X
n

φ(m)n (t)
∂k+1ψn
∂yk+1

¯̄̄̄
(x,0,z)

. (4.26)

In practice rapid convergence with both M and N was obtained, and for wave heights lower than 80%
of the maximum convergence was exponential.

The original application was to deep water, Liu, Dommermuth, and Yue (1992) have applied it to inter-
actions with submerged bodies and varying bottom topography. It is a very powerful method. Tanaka
(1993) used it to study the Mach reflection of high solitary waves. He found a number of results which
contradicted an earlier simple theory. Most notably, he found that the theoretical prediction that the
Mach stem had an amplitude four times that of the incident wave simply did not occur, and that effects
of regular reflection were much more likely to ameliorate the Mach stem and its effects. The develop-
ment of the Mach stem is such a slow process that wave tank experiments have not been able to be used
to resolve the differences between theory and computation, and the numerical wave tank in this case has
proved to be more definitive.

Craig and Sulem (1993) introduced another high-order spectral scheme based on an expansion about the
undisturbed level. The method was applied to planar flow problems with a flat bed, although they are
not necessary limitations of the method. Spatially-periodic boundary conditions were assumed.

4.4 Green-Naghdi Theory
This is a very different approach to the problem, and was initiated by Green, Laws and Naghdi (1974)
and Green and Naghdi (1976a, 1976b). The theory has its origins in nonlinear plate and shell theory,
and used concepts of directed surfaces, known as Cosserat surfaces, with the main aim of reducing
the dimensionality of the problem by one. As such, this approach could be lumped in with Boussinesq
theories and the local polynomial approximation methods subsequently described here, as theories which
assume a particular variation in the vertical, thereby removing that dimension from the computations. In
its original formulation, the theory is difficult and the results presented were of first order only.

In subsequent papers its potential in nonlinear wave computations became more fully realised. Ertekin
et al. (1986) applied it to the notable phenomenon observed experimentally that a ship in a restricted
waterway can periodically generate two-dimensional solitons which move away ahead of the vessel.
That work required only the assumptions that neither horizontal velocity varied with elevation and that
vertical velocity varied linearly with it, no more than the classical long wave theory. Yet the satisfaction
of the boundary conditions in the Green-Naghdi formulation meant that the problem could be solved.

Shields and Webster (1988) brought the theory into the context of coastal and ocean engineering. They
derived the equations differently, using a variational approach for unsteady inviscid flow. Like the pre-
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vious work, a fundamental aspect was that a form was assumed for variation in the direction to be
eliminated (the vertical), chosen such that boundary conditions could be satisfied. Then a variational
procedure was used to minimize the error when this was substituted into the equations, giving algebraic
equations. A σ transformation was used which mapped the flow domain of a relatively thin fluid body,
such as a sea of infinite depth, to a region between two parallel planes:

s(x, y, z, t) =
2z − (η + h)

η − h ,

so that on the surface z = η, s = +1, while on the bed z = h, s = −1. Then for the velocity field a
polynomial variation with s was assumed. An approximation was then made, that equations such as the
momentum equations were conserved in a ’weak’ sense, being multiplied by a power of s and integrated
over the fluid depth. This was enough to determine the coefficients necessary.
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Figure 4-3. Approximations for linear phase velocity

Next a number of problems were examined, for steady two-dimensional waves. The equations quickly
become very complicated, such that a reasonable level for presentation was third level, showing cubic
variation. These were applied to the solitary wave, and results were obtained which were very rapidly
convergent with the level of approximation, much more so than results from perturbation theory which
are in the form of power series which are slowly convergent (Fenton, 1972).

Shields and Webster then studied periodic waves over a flat bed and obtained results which, although not
as accurate as high-order perturbation methods in the limit of high waves, converged very quickly and
gave usable results over much of the range of possible waves. As an example, consider the linearised
analytical expressions they obtained for the linear wave speed c in terms of the depth d and wavenumber
k, for which the exact linearised expression is c2exact /gd = tanh kd/kd:

c2

gd
=

1

1 + 1
3(kd)

2
, (4.27)

c2

gd
=

1 + 1
10(kd)

2

1 + 13
30(kd)

2 + 1
80(kd)

4
, (4.28)

c2

gd
=

1 + 13
105(kd)

2 + 1
420(kd)

4

1 + 16
35(kd)

2 + 3
140(kd)

4 + 1
6300(kd)

6
. (4.29)

It can be seen that these are in the form of Padé approximants, rational functions of polynomials. If
these are expressed as power series, they agree with the power series expansion of the exact expression
to second, fourth and sixth order. When compared with the exact expression as shown in Figure 4-3,
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where M is the order of approximation, it can be seen that these are remarkably accurate and quickly
convergent expressions, and are much more so than the equivalent power series. They are accurate
even for water deeper than the nominal deep water limit kd = π. These results were also obtained
by Kennedy (1997) using polynomial approximation applied to the conventional formulation of the
problem, as described below.

4.5 Local polynomial approximation
Local Polynomial Approximation (LPA) methods were originally conceived as a more consistent way
of analyzing sub-surface pressure records (Fenton, 1986). Traditionally for such problems a global
approximation method has been used, where the wave field over a finite period is approximated by a
Fourier series. The approximation is of very high accuracy and is valid throughout the region of interest.
However the equations in which that representation is then used are only those of linear theory. This not
only leads to a discrepancy between the low accuracy by which the physical system is modelled and the
high numerical accuracy used in that model, but also severe limitations as to the boundary geometries
which can be considered, as the theory is valid for a flat bed.

LPA methods, on the other hand, are an attempt to use approximation by locally-valid polynomials
where the level of approximation is arbitrary and specifiable, with a finite order of accuracy, but able to
be used with the full nonlinear equations. They are an attempt to turn in the direction of conventional
numerical methods for the simulation of nonlinear waves, so that the level of physical and numerical
approximation is consistent, and that as far as possible routine computational techniques can be used.
Their local nature leads to the fortunate result that the computational effort is less than global methods
such as BIE methods. In common with those methods, they can be used to satisfy other boundary
conditions locally, so that irregular boundaries can be treated, including problems of wave interactions
with solid boundaries of a possibly abrupt nature or of a gentle nature such as an irregularly varying
bottom.

4.5.1 Two-dimensional computational methods

Local polynomial approximation methods can be used as a means of spatial approximation in performing
the unsteady computations for the propagation of waves over varying topography. Whereas in spectral
and pseudospectral methods Laplace’s equation is satisfied by series of eigenfunctions; and by satisfying
a boundary integral equation in those eponymous methods, in the methods to be presented here it is
satisfied by polynomial functions which are valid locally. Kennedy (1997), in his PhD thesis and in a
series of papers (Kennedy, 1996), Kennedy and Fenton (1996, 1997), and Fenton and Kennedy (1996),
has developed the method for both two and three-dimensional waves and has shown that it is an accurate
and efficient way of solving many wave propagation problems. It is accurate, even for waves which are
approaching what is normally thought of as deep water, and its computational cost is proportional only
to the number of computational points (”O(N)”), and to the order of approximation. It is capable of
treating irregular geometries, however it has not yet been modified to allow for the case of a bluff body
such as a cylinder in the flow. As it depends on representing the flow field by polynomials, it would have
some difficulty in describing an overturning wave, but as a general workhorse for a number of problems
of wave shoaling it may have much to offer.

In this section, on two-dimensional flow fields, two main variants are summarized here: a fully nonlin-
ear model which can provide highly accurate results, and a model which uses Taylor expansions about
the undisturbed surface to increase speed, but which sacrifices some accuracy for high waves. For both
methods, the expense of solution at each time step is directly proportional to the number of computa-
tional subdomains, which allows wave evolution to be computed over relatively large regions with a
reasonable computational cost.

Solution of Laplace’s equation: For both the fully nonlinear and expansion LPA methods for one
dimension in plan, the basic method of solution for Laplace’s equation is very similar. As shown in
Figure 4-4, the computational domain is divided into subdomains extending vertically from the free
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Figure 4-4. Definition sketch for local polynomial approximation

surface to the bed. In any typical subdomain, m, the velocity potential φm at any point (xm, y) is
represented by the polynomial, similar to (5.4):

φm (xm, y, t) =

A0R +Re

³Pn−1

j=1 (AjR + iAjI) (xm + iy)
j
´
+

(xm + iy)
n

½
AnR, n odd
iAnI , n even



m

(4.30)

where n is an integer ≥ 3 which controls the level of approximation, i =
√−1, Re (. . .) means taking

the real part. The coefficients Aj are functions of time. For any given n, it is these coefficients which
must be chosen to best satisfy the boundary value problem. Equation (2.2) is identically satisfied, as
in the full complex form of (4.30) the right side is an analytic function of zm = xm + iy. With the
introduction of subdomains, two additional constraints are introduced: the velocity potential, φ, and its
normal derivative, ∂φ/∂x, must be continuous across subdomain boundaries.

The velocity potential φ may be made analytically continuous across subdomain boundaries through a
transformation of basis functions which, in addition, almost halves the number of independent coeffi-
cients. However, ∂φ/∂x will still be discontinuous across boundaries. (Details of the transformation
may be found in Kennedy and Fenton, 1995.) In a domain with M subdomains, the revised basis func-
tions may now be though of as having n independent coefficients defined at each internal boundary
between subdomains, plus n coefficients at each of the left and right global boundaries, for a total of
(M − 1)n+2n = (M + 1)n independent coefficients. The constraints on these are as follows. At each
internal boundary between subdomains, the free surface velocity potential is set to the specified value.
Next, the two-dimensional form of the bottom boundary condition (2.4) is imposed, using the average
value of ∂φ/∂x across the boundary. The remaining n− 2 constraints at each internal boundary match
the horizontal velocity, ∂φ/∂x, across the boundary at n − 2 discrete points. For overall continuity,
these collocation points are here set to the Gauss-Legendre points for level N = n − 2, using the free
surface (or still water level for the expansion method) and bed as limits. At each of the left and right
global boundaries, φ is also specified at the surface and (2.4) at the bed. However, instead of a velocity
match as with the internal boundaries, the horizontal velocity at the boundary, ∂φ/∂x, is instead set to
the known value at n− 2 collocation points.

All of these constraints result in a set of block banded linear equations. These may be solved using
any banded or block banded matrix solver, both of which have a computational cost which is directly
proportional to the number of subdomains,M .

Linear dispersion characteristics: Here, as a test of the ability of polynomials to describe the
flow field, we consider what results they give for the linear phase speed, compared with traditional
approximation by periodic functions in x and hyperbolic functions in y. As subdomain lengths go to
zero, a set of differential equations for the velocity potential results, which may be easily solved for
the case of small amplitude waves over a level bed. Figure 4-5 shows the LPA small amplitude phase
speed relative to the exact relationship for the levels n = 3, 4, 5, 7, with collocation points set to the
Gauss-Legendre points for N = n − 2. Accuracy for the level of approximation n = 3 is poor in
anything other than shallow water but increasing to n = 4 gives usable small amplitude results past the
nominal deep water limit of kd = π (L/d = 2). The level of approximation n = 5 (usually used with
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the LPA expansion method) has good dispersion characteristics even for very short waves with kd = 2π
(L/d = 1), while with n = 7, phase speeds remain excellent past a dimensionless wavenumber of
kd = 3π (L/d = 2/3).
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Figure 4-5. LPA linear phase speed

Fully nonlinear LPA: The fully nonlinear version of LPA can provide excellent accuracy for finite
depth potential flow calculations. There are two main steps: Laplace’s equation is solved exactly as
described earlier, and a time stepping method (here usually third or fourth order Adams-Bashforth) is
then used to solve the evolution equations (2.10) and (2.15) to advance the solution to the next time step.
If the Gauss-Legendre points of level N = n − 2 are used as collocation points, then the first n − 3
weighted moments of flow will be conserved between subdomains, as well as having velocity matches
at the collocation points. For an accurate potential flow method, computations are also quite efficient.
For a very large computational run with 900 subdomains and 4000 time steps, total run time for the level
n = 7 is about 3.5 hours on a 150MHz Personal Computer. Figure 4-6 shows the shoaling of a solitary
wave of initial height H/d = 0.15 as it propagates onto a shelf of depth 0.5d. The classical fissioning
into multiple solitons is clearly evident, with the leading wave reaching a final dimensionless height on
the shelf of 0.507. As an independent estimate of computational accuracy, relative energy fluctuations
were less than 2× 10−4.

Figure 4-6. Results from the LPA method for the propagation of a wave over a shelf of depth 50%.
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LPA free surface expansion method: The free surface expansion method is somewhat more complex,
with two major differences from the fully nonlinear version. The first difference is that, instead of solving
Laplace’s equation using the free surface and the bed as limits, it is instead solved between the still water
level and the bed. The mode coupling free surface expansion of Dommermuth and Yue (1987) is then
used to relate the value of φ at the free surface to the value of φ at the still water level. The order of
expansion may be easily changed to accommodate the level of nonlinearity of the problem considered.
Accuracy is less than the fully nonlinear version for higher waves, but there is one major advantage:
since the upper limit of the computational domain remains constant through time, a matrix equation
must only be filled and decomposed once, rather than at each time step as with fully nonlinear LPA. This
decomposed matrix is then solved with different right hand sides at each time step, which is much faster.

It is worthwhile to implement the second major change only if the computational domain is invariant
with time, as is the case here. This involves another change of basis functions, so that there is only one
independent variable per computational point. Details of this transformation may be found in Kennedy
(1997). With the new basis functions, all conditions but (2.14) are automatically satisfied, so this con-
straint is used at every computational point to generate a new set of linear matrix equations for the LPA
solution to Laplace’s equation. The new matrix is purely banded and has both fewer variables and a
smaller bandwidth than with the previous basis functions. Computational speeds are therefore further
increased. A reasonable analogy may be made between the new basis functions and B-splines, as both
are piecewise continuous polynomials which use a set of interpolation conditions to reduce the num-
ber of independent computational variables to one per computational point. These new basis functions
could also be computed for the fully nonlinear version, but to retain full accuracy, they would have to be
recomputed at each time step as the free surface moves. This would slow down computations, which is
why they were not used.

The two parameters which control the accuracy of the LPA expansion method are the degree of the
polynomials, n, and the order of free surface expansion, J . While the fully nonlinear LPA was developed
to calculate potential flow problems with very high accuracy, the LPA expansion method is viewed as
a tool for more practical problems. To give reasonable nonlinear accuracy, which is mostly controlled
by the order of free surface expansion, J , and good frequency dispersion, which is only affected by the
LPA level, n, the parameters J = 3 and n = 5 were generally used.
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Figure 4-7. Measured and computed time series, H0/d = 0.05, T
p
g/d = 9.903.

For an example of the capabilities of the method, computations here will be compared with the experi-
mental results of Beji and Battjes (1993) as reported by Ohyama et al. (1994). In this experiment regular
waves were propagated over a two dimensional bar-trough setup and time series of surface elevations
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were taken at various points. Results are presented here for a single wave train which was initially of
reasonably small amplitude in intermediate depths, but became significantly nonlinear over the bar. The
initial height was H0/d = 0.05 with a period of T

p
g/d = 9.903. Figure 4-7 shows a comparison

between computed and experimental values at Stations 1, 3, 5 and 7, which are, respectively, just before
the bar, on the bar crest, on the downslope and in the trough. Agreement is quite good, with the LPA
expansion model accurately predicting the steepening of the wave as it progresses up and sheds sec-
ondary waves on the bar, and its decomposition into higher harmonics on the downslope. As the wave
progresses, computations begin to overestimate wave heights slightly due to the lack of dissipation in
the model, and a small phase difference appears. However, similar differences were also noted in the
fully nonlinear boundary element computations of Ohyama et al. (1994). Overall, the expansion model
predicts wave evolution quite well, and may be relied on to provide a good estimate of nonlinear wave
evolution for a wide range of waves. Computations are quite fast. For example a computation with 900
subdomains and 4000 time steps would have a total run time on a 150MHz Personal Computer of about
10 minutes for the LPA level n = 5 and expansion level J = 3, compared with 3.5 hours for the fully
nonlinear version using n = 7.

4.5.2 Three-dimensional computational methods using local polynomial approximation

In this section the development and application of a method developed by Kennedy is described, fol-
lowing his PhD thesis (1997), and summarized in Kennedy and Fenton (1996). This method uses some
of the ideas developed above for two dimensions extended to three dimensions. Again, the velocity
potential is represented in the vertical by a polynomial of arbitrary degree, but here a set of differential
equations results for the local polynomial approximation to the exact solution. This is shown to provide
excellent linear and nonlinear results for a wide range of waves. The degree of polynomial may also
easily be changed to give the level of accuracy desired for a particular problem.

Solution of Laplace’s equation: The velocity potential used here assumes a polynomial variation in
the vertical such that

φ(x, y, z, t) =
MX
j=0

Aj(x, z, t) y
j , (4.31)

whereM > 2. The Boussinesq approach would be to write a Taylor series expansion about some point in
the water column which satisfies the bottom boundary condition (2.4) to the order of accuracy desired.
However, we want to distribute error more evenly than is possible with a Taylor series, where error
quickly increases away from the expansion point. The obvious approach would be some sort of finite
element method, but this would involve volume integrals which are slow to compute and unless higher
order elements were used, convergence would be slow and computational costs would rise significantly.
A different approach is used which is simple in concept, and distributes the error in satisfying (2.1) over
the water column. First, constraints are imposed so that the velocity potential satisfies (2.4). Next the
mean and first M − 2 weighted averages of 2.1 over the water column are set to zero such that

ηZ
h

yl
µ
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

¶
dy = 0, for l = 0, . . . ,M − 2. (4.32)

The appropriate global horizontal boundary conditions finish the specification of the problem and a set
of linear equations results which may be solved.

Once the flow field is known, the free surface elevations and velocity potential may be updated in time
using the evolution equations (2.10) and equation 2.15 for updating the value of potential on a marker
able to move vertically only.

Linear properties: An important property of any approximate model is its ability to describe the
flow structure in the vertical, whether or not the waves are large. This was tested in two ways, one by
using linearized versions of the free surface conditions to give analytical approximations to the linear
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dispersion relation connecting wave speed c and wavelength.. The results obtained are exactly the same
as the three expressions (4.27), (4.28) and (4.29) as obtained by Shields and Webster (1988) using
Green-Naghdi shallow water theories I, II and III. and shown in Figure 4-3. Clearly, even in what
is widely considered to be water so deep relative to the wavelength that the effects of the bottom are
negligible, λ/d ≈ 2, kd ≈ π, the accuracy is high, possibly surprising for such a case where the vertical
distribution is exponential but we are approximating by a polynomial. The second test was that of the
vertical distribution of fluid velocities. The accuracy of an integral quantity such as wave speed is not
always maintained when it comes to point quantities, but the method proved to predict fluid velocities
accurately when compared with linear wave theory, as reported in the references cited, up to a limit of
about kd = π.

It was concluded that the level of LPA approximation M = 2 is only suitable for waves in shallow and
mildly intermediate depths, and it was suggested that this was not enough. The approximation M = 3
gave better results through to the nominal deep water limit, while M = 4 gave accurate results through
to quite deep water. It was concluded that an increase to an LPA level greater than this was not justified.

Nonlinear properties: The properties of the governing equations were investigated by comparing
their solutions for steady nonlinear waves of propagation with those obtained from Fourier methods.
Fully nonlinear LPA solutions were found by assuming a steady travelling wave as with the Fourier
methods, and determining coefficients by solving the resulting set of nonlinear equations. The results
were excellent, with both LPA levelsM = 3 and 4 able to describe the wave accurately to within about
10% of the waves of maximum height, when the numerical methods could not solve the equations. It
was concluded that the ability to describe nonlinear waves gave additional confidence in the accuracy of
the three-dimensional LPA method.

Time stepping solutions: The stepping forward in time is the relatively simple part, with either a
leapfrog scheme and a third-order Adams-Bashforth method used to update the free surface elevations
and surface velocity potentials, after a Runge-Kutta technique for the first time steps to start them. To
solve Laplace’s equation, all coefficients were represented using fifth-degree two-dimensional B-splines,
which are simply the product of one-dimensional B-splines in x and z which have the same centre. Errors
in the LPA solution are then proportional to δ4, where δ is the mesh size. The banded system of linear
equations which results was solved using a line-by-line successive under-relaxation technique. Several
problems of three-dimensional wave propagation were solved, as now described.

The run-up of a focussed solitary wave on a vertical wall: For the first test a solitary wave of height

Figure 4-8. Bottom topography for solitary wave reflection

H/d = 0.2 was propagated over topography which tended to focus the wave, which was then reflected
by a vertical wall. Computations were performed withM = 4. Figure 4-8 shows the topography which
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consisted of a flat bed followed by a double cosine variation in the x and z directions with an amplitude
of 0.1 d. Figure 4-9 shows the instantaneous surface profile shortly after maximum run-up. Conservation
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Figure 4-9. The reflection of a focussed solitary wave by a vertical wall

of energy was used as an independent check on the accuracy. For all tests, the maximum fluctuation in
relative total energy at any time was less than 2× 10−4.

The propagation of regular waves over Whalin’s topography: In a series of experiments, Whalin
(1971) propagated waves over a semi-circular shoal which tended to focus waves on the flat behind the
shoal. Many investigators have since performed computations over the same topography. In the LPA
computations regular waves were generated from one boundary using as input the time series of velocity
from the fully nonlinear LPA solutions for steady waves. On the transmitting boundary a radiation-
type boundary condition was used and solved in finite difference form using an upwinding scheme.
Throughout the computationsM = 3 was used. Figure 4-10 shows the experimental and computational
harmonic amplitudes along the centreline for the highest waves. The shoaling topography begins at a
distance of 8m. Also shown on the figure are results from different Boussinesq models. For the longest
wave with τ = 3s, both computational models overpredict the amplitude of the first harmonic and
moderately underpredict the amplitude of the second and third harmonics. This is surprising, for both
computational models should operate best in this range. However, the experimental topography was
actually composed of a series of steps, whereas the computations approximated this by a smooth slope
and so dissipation might have been significant in the experiments.

For the next wave computations agree somewhat better with experimental data. Both LPA and Boussi-
nesq models predict similar features. A feature of this wave is that the initial amplitude of the first
harmonic used to calculate the incoming waves appears to be too high. The third figure shows LPA
results for a wave of what seems to be the actual input height, and agreement is much better. The final
wave tested, with a period of 1 second, had an initial length to depth ratio of 3.27. This was the best
predicted of all the waves. The computational values of the first harmonic are still slightly high on the
final shoal, but apart from some initial noise the second harmonic is well predicted. The Boussinesq
equations tended to underpredict this harmonic. Kennedy concluded that agreement with experiment
was not as good as might be hoped, but as different computational methods exhibited similar behavior,
that might be too self-critical a judgement.

5. The nonlinear analysis of field and laboratory wave data
An important subset of problems is that of determining the nature of waves or the flow field underneath
waves from recorded data, such as a time history of the free surface at a point or the recorded pressure
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Figure 4-10. Harmonic amplitudes along centreline of Whalin’s topography. Solid lines – Kennedy’s results;
dashed lines – Boussinesq numerical solution; symbols – experimental results; vertical chain-dashed line – be-
ginning of dissipating beach, not reproduced in computations. (a) τ = 3s, A1 = 0.0146m, (b) τ = 2s,
A1 = 0.00.0149m, (c) τ = 2s, A1 = 0.0149m (expt), 0.0135m (comp), (d) τ = 1s, A1 = 0.0195m.
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history at a sub-surface point. It is strange that these problems, although apparently important, have
received relatively little attention when compared with the effort which has gone into devising methods
for the simulation of wave propagation as described above.

5.1 The wave kinematics problem
The problem here is, given the recorded time history of the free surface at a point, such as might be
obtained from a wave staff, to calculate the velocity structure underneath the waves. This is important
in the estimation of wave loading on marine structures. Dean (1965) tackled this problem in the same
paper where he made his contributions to solving the steady wave problem (Section 3.1). He assumed
that the stream function ψ could be written as a finite Fourier series, but, cf. equation (3.5), there should
be sine functions as well, because with experimental results one will not have just even functions as
when a wave is symmetric about a crest:

ψ(X,Y ) = −Ū Y +
X
j

sinh jkY (Aj cos jkX +Bj sin jkX) , (5.1)

remembering thatX = x−ct is a local variable moving with the wave. From a procedure similar to that
for Fourier approximation theory described in Section 3, given a time history of elevation between the
troughs of a single wave it was possible to use (5.1) and satisfied at enough computational points that
the coefficients could be found by a least-squares method. He presented results for four waves which
showed it to have worked well.

Dean’s method assumed that all time and horizontal space variation could be brought together in the
form of x − ct, namely that all harmonics are bound to the main wave and travel at the same speed,
c. Lambrakos (1981) allowed a more general assumption, where harmonics were allowed to travel at
various speeds (but without a mean current). As in this case the whole motion cannot be rendered steady
by the subtraction of wave speed, it is easier to use velocity potential φ as it appears in the unsteady
surface dynamic equation (2.12)

φ(x, y, t) =
X
i

X
j

cosh jky (Aij cos (jkx− iωt) +Bj sin (jkx− iωt)) , (5.2)

where i here is an integer and ω is the fundamental frequency of the input signal. The coefficients were
to be found mainly by substituting into the kinematic free surface equation (2.10) and satisfying that on
a least-squares basis. The dynamic equation (2.12) was used subsequently to give the surface elevation
at other points on the wave. The results obtained seem quite good.

Forristall (1985) also took as his primary data the readings of surface elevation as a function of time, and
to extract the kinematics chose to satisfy the surface kinematic boundary condition, assuming a planar
wave problem. He noted that if the free surface history is known, then the bottom and the kinematic
surface boundary condition define a Neumann problem which can be solved for the velocity potential,
which could be found through finite difference methods, using irregular computational modules at the
surface. He noted that using the linear dispersion relation is surprisingly effective in calculating the
surface evolution, but that using second order interaction equations gives better results. The results
were excellent, however he noted that because of directional spreading the method should be extended
into three dimensions for field problems. He subsequently did this (Forristall, 1986), in which case the
computations were very intensive, but good agreement with demanding field experiments was obtained.

Sobey (1992) developed a method based on approximation by a local Fourier series, where, similar to
(3.23), variation is assumed to be as

φ(x, y, t) = ūx+
NX
j=1

Aj
cosh jk(y + d)

cosh jkd
sin j (kx− ωt) , (5.3)

but where this is intended to apply only over a local segment of record, with relatively few terms in
the series used. As with local polynomial approximation as implemented above, the assumption has
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also been made that all components are travelling at the same speed. The assumption of trigonometric
variation in the horizontal, in the context of local approximation, might be thought to be somewhat
arbitrary, as one is approximating a finite length of record of arbitrary variation with no periodicity
apparent. With reported used values of series length of only N = 3, some of the advantages of Fourier
approximation, such as high accuracy and orthogonality of the basis functions, are not brought into play.
However, in deeper water the resultant variation with y may make the approximation more economical
than polynomial methods. Sobey reported good agreement with data obtained from numerical solution
of regular waves, however there were problems with the analysis of laboratory data, including difficulties
with convergence of nonlinear optimization methods.

Baldock et al. (1996) describe an experimental investigation in a wave flume where a large number
of water waves were focused at one point in space and time to produce a large transient wave group.
Measurements of the water surface elevation and the underlying kinematics were compared with linear
wave theory and a second-order solution based on the sum of wave-wave interactions. The latter gave
an improved description, but many of the wave-wave interactions were found to occur at a higher order
of wave steepness. The paper did not refer to an earlier one from the same group and based on the same
experiments whose contributions in the present context are rather greater. Baldock and Swan (1994)
modified the method of Lambrakos (1981) to analyse the results. Whereas Lambrakos concentrated on
the kinematic free surface condition, Baldock and Swan found the coefficients in the expansion by min-
imizing errors in both surface boundary conditions. They noted that the least-squares fit to the boundary
conditions was dominated by the large number of spatial locations at which measured data was not pro-
vided, and so they introduced an arbitrary weighting function which gave much more weight to results
from the measurement point. The computations were intensive, taking two hours on a workstation. The
paper is very interesting and provides important insight into the processes around the focused wave
group, however, in view of the computational intensity and a certain arbitrariness with the weighting
function, the method used does not seem to be a routine way of analysing records. For more general
situations where there is no focusing, local methods of analysis might be preferred.

5.2 Analysis of sub-surface pressure and velocity measurements

5.2.1 Introduction

Often in coastal and ocean engineering wave data are recorded by means of a sub-surface pressure
transducer. The information obtained by a pressure transducer is p(tn), the pressure at a finite number
of instants tn, n = 1, 2, ..., N . From this record it is desired to infer the properties of the wave which
is passing overhead. The conventional approach based on linear wave theory is to take the signal p(tn),
obtain its discrete Fourier transform Pj , for j = 0, ±1, ..., ±N/2, use linear wave theory to find
the corresponding harmonic components of the surface elevation and fluid velocity, and then to obtain
the actual surface elevations and velocities by inverse Fourier transforms. A limiting feature of linear
theory is that all components of the waves travel at the speed corresponding to each component, and
in the face of all experience, that there is no tendency for higher harmonics to be swept along at the
speed with which the dominant wave feature is travelling. Particularly in near-shore regions, with the
observed tendency of long waves to travel as (nonlinear) waves of translation, this is an unnecessarily
limiting assumption. Also, it seems strange and unnecessary that the whole record is used to determine
conditions at one point.

A more severe problem is the fundamental ill-conditioning of the problem, where fluid motions are in-
ferred from solution of an elliptic equation (Laplace) from boundary data specified on one level only, that
of the pressure transducer. Usually it is desired to find the surface elevations η(tn), from the calculated
spectrum Yj of the free surface elevation. The transfer function connecting Yj and Pj is proportional to
cosh k(j)d / cosh k(j)yp, where k(j) is the wavenumber given by the linear dispersion relation for the
jth harmonic of the signal, and yp is the elevation of the transducer above the bed. For higher frequency
components the transfer function varies like exp(k(j)(d−yp)), and using the short wave approximation
for the linear dispersion relation, this varies as exp(j2ω2(d − yp)), where ω is 2π divided by the total
time of the record. It is clear that the transfer function grows remarkably quickly with j, corresponding
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to higher frequency components. Even for smooth records with spectra Pj which decay quite quickly in
j, this exponential growth of the transfer function with j completely destroys any accuracy for harmonic
components shorter than the water depth. The method is really only suited to long waves in shallow
water. Unfortunately it is for these conditions that linear wave theory is not particularly appropriate, as
the waves are likely to be nonlinear and to be long, giving rise to the presence of higher harmonics with
their attendant ability to destroy the meaningful part of the signal.

5.2.2 Local sine-wave approximation

Nielsen (1989) originated the use of local approximations. His method cannot be described as ”nonlin-
ear” and hence it falls outside the limits of this Chapter, nevertheless we mention it here, as it is a simple
and charming idea and seems to work quite well in many problems. It is based on the fitting of a single
sine wave to three pressure measurements equi-spaced in time and using linear theory to calculate the
corresponding surface elevation at the central point in time. The present author has always been of the
view that it should not work. However, it does seem to work better than theory would suggest, even for
large amplitude and nonlinear waves. However it does suffer from a certain lack of robustness, and is
not yet a tool for routine analysis of records. Its performance has been studied rather more completely
by Townsend (Townsend and Fenton 1996, Townsend,1997, Townsend and Fenton, 1999) in the context
of the methods now to be presented here.

In a paper to appear Sobey and Hughes (1998) have taken the idea further and have incorporated hor-
izontal velocity measurements into the formulation. They applied it to the smooth data obtained from
Fourier approximation methods for steady waves, for which they reported rather disappointing results.
They went on to use the local Fourier approximation method of Sobey (1992) described above. This is
presented further below.

5.2.3 Local polynomial approximation methods

The use of local low-degree polynomial approximation does not overcome the fundamental ill-conditioning
of the problem, but in water of finite depth the approach is much less susceptible to the problems of ill-
conditioning described above.

Basic theory: In this section it is assumed that the waves are travelling over an impermeable bed which
is locally flat, that all motion is two-dimensional, and that the fluid is incompressible and the fluid motion
irrotational such that a complex velocity potential w exists, w = φ + i ψ, where φ is velocity potential
and ψ is stream function, which is an analytic function of the complex coordinate z = x + i y. The
coordinate origin is taken to be on the bed, beneath the pressure probe. As the entire discussion is based
on local approximation we can introduce a local time t, which is zero at the instant at which the pressure
reading is taken. The velocity components (u, v) are given by u− i v = dw/dz. The approximation is
made here that the motion locally is propagating without change in the x direction with a speed c, which
is as yet unknown. Hence, variation with x and t can be combined in the form given byX, a co-ordinate
moving with the wave such that X = x− ct. Locally, this is a reasonable assumption, as the time scale
of distortion of the wave as dispersion and nonlinearity take effect is considerably larger than the local
time over which the theory is required to be valid.

A principle of local polynomial approximation is adopted, such that in the vicinity of the pressure probe,
throughout the depth of fluid, the complex velocity potential w(x, y, t) and the free surface η(x, t) are
given by polynomials of degree M in the complex variable Z = z − ct = x− ct+ iy moving with the
wave such that

w(x, y, t) =
MX
j=0

aj
j + 1

(z − ct)j+1 , (5.4)

and

η(x, t) =
MX
j=0

bj(x− ct)j . (5.5)
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As w is an analytic function of z, the expansion (5.4) satisfies Laplace’s equation (2.2) identically
throughout the flow. The bottom boundary condition v(x, 0, t) = 0 is satisfied if the coefficients aj
are real only, as the bj are. It remains to satisfy the boundary conditions on the free surface, that the
pressure is constant and that particles remain on the surface. It is expected that this type of approxi-
mation will be best for long waves, as it is well-known that for short waves, variation in the vertical is
exponential, and the use of expressions like (3.5) would be more appropriate.

Here we use the approximation again that motion is steady in a coordinate system (x−ct, y). The steady
kinematic equation that the value of ψ is constant on the surface y = η is

Imw = −Q, (5.6)

whereQ is a constant, the volume flux per unit span under the waves. The steady Bernoulli equation is

1

2

¯̄̄̄
dw

dZ

¯̄̄̄2
S

+ gη = R, (5.7)

where R is a constant, and the subscript S denotes the surface y = η.

Also, in the frame in which motion is steady Bernoulli’s equation can be written for the point (0, yp),
where the pressure probe is located, and as the pressure around that point can be expressed as a Taylor
series in x− ct we can write

p

ρ
(x, yp, t) = R− 1

2

¯̄̄̄
dw

dZ

¯̄̄̄2
P

+ gη − gyp =
MX
j=0

pj(x− ct)j . (5.8)

The coefficients pj can be found from a sequence of the local pressure readings p(tn) by interpolation,
or more likely, approximation.

Substitution of the series (5.4) and (5.5) into equations (5.6), (5.7) and (5.8) gives polynomials in x− ct.
These polynomials must be valid locally for all values of x − ct, hence the coefficients of each power
of x − ct must agree across the equation. This gives a system of nonlinear equations in the unknown
coefficients a0, a1, a2, ..., and b0, b1, b2, ... . The equations are in terms of the coefficients p0, p1, p2,
..., calculated from the pressure readings. It is feasible to produce the equations by hand calculation for
M = 2. However for larger values of M the amount of calculation becomes prohibitive, and symbolic
algebra manipulation packages are necessary. The original presentation produced solutions for M = 2
andM = 4. The system of equations is overdetermined, in that, for example atM = 2 it contains seven
nontrivial equations in the six unknowns a0, b0, a1, b1, a2 and b2.

Fenton (1986) solved the full equations numerically in the initial presentation of the method. The rather
cumbersome set of nonlinear equations was solved by direct iteration and by least-squares methods.
Although it worked well on smooth computationally-generated waves it has proved to be sensitive to
noise in real data and does not calculate water particle velocities accurately. These problems were
identified by Townsend (Townsend and Fenton 1996, Townsend,1997), who examined various versions
of the method and placed the theory on a more sound footing. Subsequently his identification of the
large advantage to be gained by using velocity measurements as well may justify the routine use of this
approach in many field and laboratory studies (Townsend and Fenton, 1999). Considerable support for
this is provided by the work of Sobey and Hughes (1998).

Use of velocity and pressure data: Townsend’s initial attempts to improve the performance of the LPA
concept as applied to pressure data used nonlinear least squares optimization methods. Difficulties were
encountered with both convergence and sensitivity to some variables, particularly wave speed. However,
he improved the governing polynomial representation. The horizontal and temporal variation as unscaled
polynomials inX = x− ct as shown above is convenient, but is not necessarily sound computationally.
It would be better to use a set of functions which were orthogonal on the computational interval, to
ensure that the equations were as linearly independent as possible. Chebyshev polynomials could be
used, but Townsend adopted the artifice of scaling theX variation so that for a particular computational
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window it lay in the interval [−1,+1]. In this way, the set of monomials
©
Xj , j = 0, 1, . . . ,M

ª
is not

an orthogonal set, but for M not large they approximate the oscillatory and orthogonal behavior of the
firstM Chebyshev polynomials.
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Figure 5-1. Actual and calculated free surface for a wave of λ/d = 10,H/d = 0.6.
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floor.

As the indeterminate nature of the wave speed c and hence the horizontal velocity seemed to be the
major problem it was decided to use the measured horizontal velocity as an additional input to a new
LPA method. By writing a polynomial for the horizontal velocity similar to that for pressure, (5.8), a
simpler set of equations with more useful input was obtained. Numerical solution could be reduced to
finding the minimum of a single variable at each point, and the results were found to be rather more
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robust and more accurate, especially if the higher level of approximation M = 6 was used. It was
recommended that, in view of the desirability of knowing the fluid velocities in determining the current,
if any, and providing more useful input, in future the velocity be included as well as pressure in any field
or laboratory studies where wave characteristics were to be inferred. Typical results of the method are
shown below. Figure 5-1 shows the results for a high wave of intermediate length. The fine line shows
the pressure signal used to generate the results; the velocity signal is not shown. The LPA method with
M = 6, and with pressure and velocity provided, gives accurate results. The traditional linear spectral
method has failed due to the imposition of a frequency cutoff; applying the next component would have
led to a wildly erroneous solution.

In Figure (5-2) the results for a laboratory generated wave are shown, where the velocity and pressure
measurements were taken close to the floor. The asymmetry of the laboratory wave is clear. Conventional
linear spectral analysis gave very poor results for this, but the local polynomial approximation method
seems quite robust and accurate. The method proved surprisingly accurate, even for waves as short as
twice the water depth, generally held to be the limit where waves are considered to be so short that they
do not feel the bottom and variation in the vertical is exponential.

5.2.4 Local Fourier approximation

Sobey and Hughes (1998) take this considerably further than the earlier presentation of Barker and Sobey
(1996). Like Townsend for polynomial approximation, they have incorporated horizontal velocity mea-
surements into the formulation. A powerful innovation was to use a combination of the dynamic and
kinematic free surface boundary conditions which eliminated both temporal and spatial gradients of the
free surface elevation from the surface equations. The problem formulation requires the least-squares
solution of a number of nonlinear equations, which means that it is computationally intensive and ”prob-
ably not well-suited for routine analysis”, but they also noted ”it is possible to perform selective analysis
of individual waves or large wave groups within the time series that may be of particular interest”. To test
the method they applied it firstly to the smooth results from Fourier approximation methods for steady
waves, and found excellent agreement. When applied to field data with ”very energetic wave and cur-
rent conditions” they noted that ”credible solutions were obtained”. The methods of local approximation
seem to offer considerable potential.
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