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Summary A numerical method is developed to model the propagation of gravity waves over varying topography.   The 
representation of the velocity potential by a local polynomial approximation of arbitrary order provides an accurate and efficient 
solution to Laplace's equation for one dimension in plan. The full nonlinear free surface evolution equations are then directly 
applied to advance the solution in time. Energy is conserved to a high degree in the included examples of a propagating solitary 
wave, colliding solitary waves, and a shoaling solitary wave, giving an independent verification of accuracy. 

Introduction 

The propagation of surface gravity waves over 
varying topography has long been studied. Many 
approximate solutions to the equations of motion have been 
developed, but all suffer from limitations. The shallow water 
equations are well known but cannot describe steady, 
progressive waves, and are unsuitable for many problems of 
engineering interest. Boussinesq equations (Peregrine, 1967, 
Nwogu, 1993, others) can model waves which are both steady 
and progressive, and extend the practical computational 
range, but are only mildly nonlinear and lose accuracy as both 
wave height and water depth increase. The KdV equation 
(Korteweg and de Vries, 1895, Johnson, 1973) suffers from 
similar problems. Boundary integral methods (Longuet-
Higgins and Cokelet, 1976, Grilli et al, 1994, others) can 
provide excellent accuracy for any wave height in any water 
depth and may even be used to describe overturning waves, 
but are extremely expensive computationally. Fourier 
solutions of the full equations of motion can offer good 
accuracy, but assume a periodic domain, and most are 
computationally expensive (Multer, 1973, Fenton and 
Rienecker, 1982). The Fourier method of Dommermuth and 
Yue (1987) is highly efficient, but is somewhat difficult to 
implement for anything other than a level topography. 

In this paper, a method is developed in the time 
domain for nonbreaking wave propagation in finite depths for 
one dimension in plan. Potential flow is assumed. The 
centrepiece of this method is a solution of Laplace's equation 
using local polynomial approximation (LPA, see Fenton, 
1986) of arbitrary order. Due to the use of a local instead of 
global representation of the velocity potential, the time of 
solution is directly proportional to the number of 
computational subdomains. This can provide an excellent 
combination of accuracy and efficiency, as will be shown. 

 



 



 



 



 



under control. Accuracy was further decreased by the 
continually increasing height to depth ratio as the wave 
progressed. Interestingly, fluctuations were in the kinetic 
energy, while the water surface profile seemed reasonable. 
The reason for this is unclear. Wave propagation into a depth 
of 03ds could not be computed accurately with any 
discretisation tried, likely due to incipient breaking, which is 
beyond the capabilities of this scheme. 

Conclusions 

A method has been developed using local 
polynomial approximation to provide a highly accurate and 
efficient solution to Laplace's equation for potential flow in 
finite depths, and thus to simulate nonbreaking wave motion 
over varying topography for one dimension in plan. The use 
of a series of arbitrary order permits the choice of optimum 
parameters for a particular problem. 
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