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Summary

A numerical method is developed to model the propagation of gravity waves over varying topography. The

representation of the velocity potential by a local polynomial approximation of arbitrary order provides an accurate and efficient
solution to Laplace's equation for one dimension in plan. The full nonlinear free surface evolution equations are then directly
applied to advance the solution in time. Energy is conserved to a high degree in the included examples of a propagating solitary
wave, colliding solitary waves, and a shoaling solitary wave, giving an independent verification of accuracy.

Introduction

The propagation of surface gravity waves over
varying topography has long been studied. Many
approximate solutions to the equations of motion have been
developed, but all suffer from limitations. The shallow water
equations are well known but cannot describe steady,
progressive waves, and are unsuitable for many problems of
engineering interest. Boussinesq equations (Peregrine, 1967,
Nwogu, 1993, others) can model waves which are both steady
and progressive, and extend the practical computational
range, but are only mildly nonlinear and lose accuracy as both
wave height and water depth increase. The KdV equation
(Korteweg and de Vries, 1895, Johnson, 1973) suffers from
similar problems. Boundary integral methods (Longuet-
Higgins and Cokelet, 1976, Grilli et al, 1994, others) can
provide excellent accuracy for any wave height in any water
depth and may even be used to describe overturning waves,
but are extremely expensive computationally. Fourier
solutions of the full equations of motion can offer good
accuracy, but assume a periodic domain, and most are
computationally expensive (Multer, 1973, Fenton and
Rienecker, 1982). The Fourier method of Dommermuth and
Yue (1987) is highly efficient, but is somewhat difficult to
implement for anything other than a level topography.

In this paper, a method is developed in the time
domain for nonbreaking wave propagation in finite depths for
one dimension in plan. Potential flow is assumed. The
centrepiece of this method is a solution of Laplace's equation
using local polynomial approximation (LPA, see Fenton,
1986) of arbitrary order. Due to the use of a local instead of
global representation of the velocity potential, the time of
solution is directly proportional to the number of
computational subdomains. This can provide an excellent
combination of accuracy and efficiency, as will be shown.

Governing Equations

Irrotational flow in an inviscid, incompressible fluid
may be described by a velocity potential ¢(x,y.f), such that,
for one dimension in plan, the fluid velocity vector
(u,v)=(0¢ [Ox ,0¢ [By), where x and y are, respectively, the
horizontal and vertical coordinates, and ¢ is time. Throughout

the fluid domain, the velocity potential must satisfy Laplace's
equation:

v =0, (1)
while, on the solid, motionless, bed, the bottom boundary
condition must be satisfied. This may be written as
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where h(x) is the vertical bed coordinate. The dynamic free
surface boundary condition is the unsteady form of
Bernoulli's equation:
ﬁ-1-1(:»24»\«'1)+g11+£=C ony=n, 3)
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where n(x,) is the location of the free surface, g is
gravitational acceleration, p is the pressure, which will be
taken to be zero at the free surface, and p is the fluid density.
C(f) is a constant throughout space. The kinematic free
surface boundary condition is

220320 ony=n, @

and is the equivalent of the bottom boundary condition for a
moving boundary.

Problem Definition

Consider the situation shown in Figure 1.
Nonbreaking surface gravity waves propagate in one
dimension in plan over varying topography with no
discontinuities in bottom elevation. At time r=0, both the
elevation and velocity potential are known at selected
unevenly spaced points along the free surface, and global
boundary conditions are known. Once the field equation (1)
is solved, subject to boundary condition (2), equations (3) and
(4) may be used to advance the free surface in time.

However, although the solution of Laplace's equation in two
dimensions is a potentially arduous task, in finite water
depths it is possible to make assumptions about the structure
of the flow which allow for an accurate and highly efficient
solution.
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Figure 1. Definition sketch for wave motion

Solution of Laplace's Equation
Consider the velocity potential function satisfying
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where Re indicates the real part of a complex expression,
i=J-1, nis an arbitrary integer greater than or equal to 2,
and the 4 coefficients are independent and may vary in time.
This function is defined only in region & with local
coordinates as shown in Figure 1. If n=2, the velocity
potential will have the same vertical structure as the shallow
water equations. For n=3, it will have the same vertical
structure as the Boussinesq equations. It would seem
reasonable that larger values of n could give a better
approximation to the actual velocity potential function and
enable the description of more complex flows.

Although (5) is the most straightforward
representation of ¢,, another equivalent form is to be
preferred, for reasons which will shortly become clear. The
new form will be

¢k(x;}%‘) =[E(Bﬂ¢ﬂ_(xk,}’)+ B_;'R¢jﬂ(xl V)| . (6)
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where B;; and Bj, are independent coefficients which may
vary in time. ¢, and ¢, are independent subsets of ¢,
defined such that

&, v x=-ax, /2
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To find this form, expand (5) using the binomial
theorem and collect like powers of y. For constant x,;, the
velocity potential is now a simple polynomial in y of degree
n-1, with the magnitude of each term dependent on the 4

coefficients. If ¢, is represented in this manner at x;=tAx;/2,
the form of (6) and (7) may be found in a straightforward
manner by creating a matrix equation in 4 and 4; with a
different right hand side for each ¢ ;; and ¢ ;.

Finally, it should be noted that since ¢;,, ¢,z and their
spatial derivatives are all, for constant x;, simple polynomials
in y, it is possible to create one dimensional representations of
these functions which are simpler to calculate. If this is done
at x;=+Ax;/2, much computational expense will be saved, as
they will frequently be evaluated at these locations.

Now that the form of the velocity potential has been
established, it is necessary to find 2» conditions to uniquely
determine the function over area k or, in an equivalent sense
over the whole domain, 2n conditions at each interior
boundary, plus » conditions at each of the left and right
global boundaries. Consider the interior boundary between
areas k and 4+1, as shown in Figure 1. If ¢ is to be
continuous across the boundary

- n=l
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It is obvious from (7) that (B); =(Bj. ), These n
continuity conditions may be implicitly implemented by
using B, =(B,g); =(B, )4y as a new coefficient. n will
now be continuous across the boundary to the zeroth order
without any explicit arguments.

Another condition may be filled by setting ¢ at the
free surface to the known ¢,. The bottom boundary condition
(2) must also be imposed, using the average value of &¢ /ox
across the boundary.

There are n-2 conditions which remain to be defined
at each interior boundary. To fill these, the difference in
8¢ /ox across the boundary is set to zero at n-2 discrete
points. A possible choice of location would be the
Chebyshev points, but here, they are instead chosen to be the
Gauss-Legendre quadrature points for N=n-2, with the upper
and lower limits taken to be the free surface and the bed. For
n 25, this will ensure that g, = 0, where

9: = ](!& —u_)dy, ©)
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AHRMS
Hid n m=15 m=30 m=60
3 44x10° 1.1x10°  14x10°
0.1 7 8.8x10°  19x10°  2.3x10”
11 1.5x10°  6.4x10°  5.0x10™"
3 1.4x10°  4.8x10°  4.7x10°
0.3 7 1.1x10°  3.3x10°  3.9x10°
11 1.0x10*  4.1x10°  5.0x10°
3 2.3x10%  95x10°  8.5x107
0.5 7 12x10°  1.3x10*  1.5x10°
11 12x10°  11x10°  1.7x107
3 27102 2.0x107  1.3x107
0.7 7 7.9x10°  4.1x10°  4.2x10™
11 1.1x107  3.0x10°  7.6x10°
(a) L/d =20
AI‘RMS
Hid n m=]5 m=30 m=60
3 23x107  2.4x107  2.5x107
0.1 7 2.0x10°  3.8x10°  9.1x107
11 2.8x10®  12x10°  1.9x10™°
3 2.6x107  2.6x10%  2.6x107
0.3 7 6.3x10°  1.2x10°  2.9x10°
11 9.0x107  1.1x10®  1.5x107
3 3.1x107  29x107  2.9x107
0.45 7 29x10*  5.3x10°  1.2x10°
11 1.7x10°  1.6x10°  1.9%x107
M) L/d=5
AHM
Hid n m=135 m=30 m=60
3 1.2x10™ 1.2x107  1.2x10™
0.1 7 1.7x10%  4.0x10°  9.9x10°
11 33x107  6.0x10°  1.4x10®
3 1.0x10"  1.0x10"  1.0x10"
0.2 7 3.7x10*  8.5x10°  5.2x10°
11 2.1x10°  2.7x10°  5.7x107
(©) Ljd=2

Table 1. LPA fit to a regular wave

and the subscripts indicate the right and left sides of the
boundary, respectively.

If the domain is periodic, then global boundaries
may simply be treated in the same manner as internal
boundaries but, otherwise, a somewhat different approach is
needed. At each boundary, » conditions must be given. Two
of these will always be the specification of the free surface
velocity potential, and the imposition of the bottom boundary
condition (2). The remaining n-2 conditions may be filled
through the specification of known velocity potentials and/or
velocities at discrete points. For the case of a vertical wall,
which will be used here for all computations of wave

propagation, horizontal velocities are set to zero at the Gauss-
Legendre points.

There are now as many equations as unknowns, and
the resulting linear system of equations may be solved using a
banded matrix solver. As previously stated, this provides the
"order m" solution which is the major advantage of LPA.

Representation of the Free Surface and Bed

Bed and surface slopes are generally found using
finite differences, but here, both were represented using
simple one dimensional polynomial splines (normally of
degree n) with break points coincident with the internal and
external boundaries. Since the computational grid remained
constant in time, a solution matrix was computed only once,
with the consequent savings. For a global boundary
condition of a vertical wall, odd spatial derivatives were set to
ZEro.

Time Stepping Procedure

Once the velocity potential function has been
determined, (3) and (4) may be used to advance the system in
time. Equation (4) may be applied directly, while (3) changes
somewhat to become
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the rate of change of ¢ for a particle constrained in the x-
direction but moving with the free surface. For all
calculations presented here, a fourth order Adams-Bashforth
time stepping technique (AB4) was used, since it provided
reasonable accuracy while requiring no intermediate steps,
which would have been extremely costly. As the AB4
method is not self starting, a fourth order Runge-Kuita
technique was used for the first three time steps.

Approximation of Velocity Potential Function for a
Regular Wave

To test the accuracy of LPA solutions of Laplace's
Equation, discrete values of surface elevation and velocity
potential were used to generate LPA velocity potential
functions which were then compared with the exact solutions.
Elevations and potentials used as input were taken from
waves generated using numerical Fourier theory (Rienecker
and Fenton (1981), Fenton (1988)), which gives an accurate
waveform and, as importantly, provides an exact solution of
Laplace's equation throughout the domain.

A "goodness of fit" parameter was generated for
each wave tested. At each evenly spaced computational
point, the difference in velocities between the exact solution
and LPA was found for ug, v, and ;. The subscripts here
represent, respectively, the free surface and the bed, and
horizontal velocities were averaged across the boundary. The
root mean square (RMS) value of all of these differences was
then divided by the exact maximum # at any computational
point to give Au, ., the dimensionless RMS velocity
difference. Table 1 gives Au,, for various dimensionless
wavelength to depth ratios L/d and heights H/d.

As expected, accuracy tends to increase with
increasing degree of polynomial, n. Errors also tend to



decrease with increasing number of computational
subdomains, m, but, as may be seen with the results for »=3, a
limit is reached as n itself limits the complexity of flow.
However, with the right combination of » and m, almost any
desired level of accuracy may be achieved, even with the
highest waves tested. Most impressively for what is
essentially a shallow water expansion, this applies up to the
deep water limit of L/d=2.

The use of n values much greater than 11 may
require special techniques, as the large exponents make the
matrix equations somewhat ill-conditioned. Using n=11, the
potential accuracy of LPA could, in some cases, exceed the
accuracy of the matrix solution in double precision.

Propagation of a Solitary Wave

For a first test of the entire procedure, solitary waves
were propagated across a level bottom. The waves used were
actually pseudo-solitary, consisting of one wavelength of a
regular wave with L/d =25 superimposed upon a steady
current which exactly opposed any return flow under the
trough. Waves were propagated 25d using s time steps in an
enclosed system of length 50d. Figure 2 shows an example of
water surface profiles as the wave propagated from left to
right, and also serves as a definition sketch. Note the
difference between 4 and d,, the still water depths for the
original periodic wave and the pseudo-solitary wave,
respectively, and A; and A, the corresponding still water
datums.

Since, in an enclosed box, the sum of Kkinetic
energy, 7, and potential energy, V, should remain constant
over time, a single indicator of global accuracy was given by
the Relative total Energy Fluctuations (REF). This was
defined as

REF = ((T4V) e =(T+V )i YT +V) 0.
Table 2 gives results for » values of 3, 7, and 11.

Trends are generally as expected; accuracy
increasing with increasing degree of polynomial », number of
subdomains m, number of time steps s, and with decreasing
wave height H/d,  An interesting observation is that
increasing » will not lower REF values if the computational
grid in either space or time is too coarse. Similarly, if the
solution to Laplace’s equation is relatively inaccurate, a
decrease in time step size will not give the expected
convergence. Overall accuracy varies widely. In general,
using n=3 appears to be only suitable for relatively small
waves, while n values of 7 and 11 are suitable for the entire
range tested. However, although highly accurate, the full
potential of using n=11 does not appear to have been realised
for this simple test, and it provides no clear advantage over a
~ nvalue of 7.

To some degree, all computations showed growing
fluctuations in total energy, although, as is readily obvious
from REF values, these were generally quite small. The
sawtooth instability of Longuet-Higgins and Cokelet (1976)
was not observed in any of the cases in Table 2, although it
could be reproduced if a coarser time step were used.

REF

Hid, n m s§=15 §=150 =300 $5=600

3 30 7.0x10° 2.0x10"
0.1029 7 30 6.5x10" 9.1x10°
11 60 23x10°  1.0x10°

3 30 4.5x10° 2.2x10°
0208 7 30 7.1x10° 7.6x10°
11 60 2.1x10*  7.1x10°

3 30 14x107 1.1x107

03161 7 60 8.6x10* 7.7x10°
11 60 8.7x10" 8.8x10”
3 60 5.4x10°  4.7x107

04249 7 60 2.7x10°  1.1x107
11 120 1.0x10*  3.2x10%
3 60 12x10%  1.1x107

0.5346 7 120 3.3x10*  2.0x107°
11 120 3.4x10*  1.1x10°

Table 2. Energy conservation during solitary wave
propagation

Run times for 100 time steps with m=60 on a 80486
DX2-66 based PC were 16s, 87s, and 251s for »n values of 3,
7, and 11, respectively.

Reflection of a Solitary Wave by a Vertical Wall

For a more demanding test, the interaction of two
identical, oppositely directed solitary waves or, equivalently,
the reflection of a solitary wave by a vertical wall was next
modelled. The computational domain consisted of an
enclosed system of length 50d, with initial conditions of two
inwardly directed solitary waves. For a given number of time
steps, s, used in a computational run, the step size, Af, was
chosen such that the undisturbed solitary wave would
propagate 25d in this time. Figure 3 shows a sequence of
water surface profiles, ending near the centre of the
interaction.

Several results of engineering interest may be
obtained from these calculations: namely the maximum water
surface elevation at the wall, the maximum force on the wall,
and the maximum moment about the base of the wall. These
are nondimensionalised as follows:

n =1+( -h)/d,.
F" = force per unit length / pgdf s

M" = moment about base per unit length / pgd: ;

For all quantities, no attempt was made to interpolate between
time steps to find the maximum value.

Resuits are summarised in Table 3. It is seen that, to
keep errors small, discretisations in both space and time must
be much finer than for the case of a propagating solitary
wave. Computations could also become unstable using
parameters which would successfully propagate a wave of the
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Figure 3. Surface profiles of colliding solitary waves of height 0.4249, ending near centre of interaction

Hid, n m s F My REF
0.1029 7 120 600 0.7184 0.2893 12117 2.8x10°
02086 7 120 600 0.9553 0.4536 14436 6.1x10°
03161 7 120 600 1.1828 0.6467 1.7003 4.5x10™
0.4249 7 200 1000 1.3848 0.8435 1.9958 5.4x10™
0.5346 11 600 3500 1.6022 1.0598 2.3685 5.3x10™

Table 3. Maximum runup, force, and overturning moment
arising from a solitary wave incident on a vertical wall

same height. In particular, obtaining an accurate solution for
the highest wave tested required many attempts with
increasingly fine discretisations. The growing periodic total
energy fluctuations of the previous section were not as
important here, since the largest energy variations invariably
occurred near the centre of the interaction. It is possible that
another time stepping procedure might improve things
somewhat, as the AB4 scheme is relatively unstable. All of
these findings were not entirely unexpected, as this is one of
the most demanding problems involving nonbreaking waves.

One final aspect is worthy of mention. Forces and
moments given here were nondimensionalised with respect to
d,, the solitary wave depth. However, the waves used, as
stated in a previous section, were actually pseudo-solitary and
formed from a regular wave with L/d=25. If the wave is
regarded in this manner, and the equivalent regular wave
depth, d (>d,), is used to calculate dimensionless forces and
moments, they can vary significantly from those in Table 3.
For the highest wave tested, the maximum force drops by
over twelve percent, while the maximum overturning moment
is more than eighteen percent less than if the solitary wave
depth d, were used. For smaller waves, the difference is less.
Since, in a real world situation, a wave impacting on a wall is
likely to have more of a periodic than solitary nature, actual

forces and moments for a nonbreaking design wave of height
Hid are likely to be less than given here.

Shoaling of a Solitary Wave

As a final test of the LPA technique, the shoaling of
a solitary wave of initial height 0.1029 was examined. The
computational domain consisted of three sections: an initial
level of depth d, and length 254, a slope of the same length
with depth decreasing cosinusoidally to a final shelf of depth
dyand length 50d. As with the previous two test setups, the
boundaries of the computational domain were taken to be
vertical walls. The time step Az was chosen so that the
undisturbed wave would have travelled 904 in s time steps.
Figure 4 gives some examples of propagation.

General features were common to both runs. On the
first flat, the wave propagated without change of form. While
passing over the slope, wave height increased slightly, the
front of the wave steepened, and there were small reflections.
Once on the final shelf, the wave continued to grow as the
advancing mass split into what appeared to be several solitary
waves of progression, with the highest at the front.

Results are qualitatively similar to solutions to the
variable depth KdV equation by Johnson (1973), which show
the wave mass on the final shelf fissioning into solitary waves
followed by an oscillatory tail. However, due to assumptions
inherent in the KdV equation, these solutions show no
reflections, as were found here.

This test setup showed most clearly the limitations of
the AB4 scheme. The growing fluctuations in energy
observed while propagating solitary waves on a level bottom
were a concern, and required fine discretisations to keep them



under control. Accuracy was further decreased by the
continually increasing height to depth ratio as the wave
progressed. Interestingly, fluctuations were in the kinetic
energy, while the water surface profile seemed reasonable.
The reason for this is unclear. Wave propagation into a depth
of 03ds could not be computed accurately with any
discretisation tried, likely due to incipient breaking, which is
beyond the capabilities of this scheme.

Conclusions

A method has been developed using local
polynomial approximation to provide a highly accurate and
efficient solution to Laplace's equation for potential flow in
finite depths, and thus to simulate nonbreaking wave motion
over varying topography for one dimension in plan. The use
of a series of arbitrary order permits the choice of optimum
parameters for a particular problem.
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Figure 4. The propagation of a solitary wave onto a shelf





