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Abstract 

By assuming that the velocity potential is locally represented by a polynomial analytically 

satisfying Laplace’s equation, a method is developed to compute the evolution of surface gravity 

waves over varying topography for one dimension in plan. This local polynomial approximation 

(LPA) method is fast and simple and has no essential approximations in its treatment of the free 

surface boundary conditions. Different degrees of approximating polynomial may be used, which 

makes the method highly flexible. Conservation of energy considerations and comparison with 

both analytic results and experimental data show that, with the right choice of parameters, almost 

any desired level of accuracy may be achicvcd. Q 1997 Elsevicr Scicncc B.V. 

Keywords: Ocean waves; Surface waves: Numerical models: Shoaling: Wave dispersion 

1. Introduction 

The propagation of surface gravity waves over varying topography is an important 
problem in coastal engineering. For wave propagation in one dimension in plan, many 
approximate solutions to the equations of motion have been developed, almost all 
assuming irrotational flow in an inviscid fluid, but all suffer from limitations. The 
shallow water equations are well known but cannot describe steady, progressive waves 
of finite amplitude, and are unsuitable for many problems of engineering interest. 
Boussinesq-type equations (Peregrine, 1967; Madsen et al., 199 1; Madsen and Sorensen, 
1992; Nwogu, 1993; Wei et al.. 1995) can model waves which are both steady and 
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progressive, and extend the practical computational range, but are only mildly nonlinear 
and lose accuracy as both wave height and water depth increase. The KdV equation 
(Korteweg and de Vries, 1895; Johnson, 1973) suffers similar problems in addition to 
being confined to unidirectional waves. Boundary integral equation methods pioneered 
by Longuet-Higgins and Cokelet (1976) can provide excellent accuracy for any wave 
height in any water depth and may even be used to describe overturning waves, but 
these methods have traditionally been extremely expensive computationally. Recently, 
Wang et al. (1995) used a multi-subdomain approach to reduce the set of matrix 
equations into a block-banded form, which greatly improved efficiency, but large 
computers were still needed. Fourier solutions of the full equations of motion can offer 
good accuracy, but all assume a periodic domain, and most are computationally 
expensive (Multer, 1973; Fenton and Rienecker, 1982). The Fourier method of Dommer- 
muth and Yue (1987) is quite efficient, but is somewhat difficult to implement for 
anything other than a level topography. The Green-Naghdi theory of fluid sheets (Green 
et al., 1974; Webster and Shields, 1991;) also combines accuracy and efficiency, but 
produces sets of nonlinear equations which very quickly become highly complicated as 
the level of approximation increases. 

In this paper, a method is developed in the time domain for nonbreaking wave 
propagation in finite depths for one dimension in plan. Potential flow is assumed. The 
centerpiece of this method is a solution of Laplace’s equation using local polynomial 
approximation (LPA, see Fenton, 1986) of arbitrary order. Due to the use of a local 
instead of global representation of the velocity potential, the time of solution is directly 
proportional to the number of computational subdomains. This can provide an excellent 
combination of accuracy and efficiency, as will be shown. 

Emphasis is placed on validating the accuracy of the LPA method using comparisons 
with analytic results, experimental data, and other computational methods, and through 
conservation of energy criteria. 

2. Governing equations 

For it-rotational flow of an inviscid, incompressible fluid, all motion may be described 
by a velocity potential, 4(x, y, t), such that for two dimensional flow (u, u> = (a4/ax, 
a+/ay), where (u, U) is the fluid velocity vector, t is time, and x and y are, 
respectively, the horizontal and vertical coordinates. Throughout the fluid domain, the 
velocity potential must satisfy Laplace’s equation 

a24 a24 
2+2=0. 

d.Y 
(‘1 

At any instant in time, the velocity potential is completely defined by the boundary 
conditions 

4=4,on y=q, (2) 
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a+ dh d+ 
-- 
aY 

--=Oon y=h, 
dx ax 

a4 
x =f(x, Y> > t on the left and right boundaries, (4) 

where 4,(x, t> = 4(x, y = q, t> is the free surface velocity potential, v( x, t) is the free 
surface elevation, and h(x) is the bed elevation. The specification of the function f(x, 
y, 1) will be discussed later, and will vary depending on the type of boundary. 

The change of the system in time is governed by the free surface evolution equations. 
The kinematic free surface boundary condition is 

Jr] a+ arl WJ 
at=ay --- 

ax ax 
on y= 7. (5) 

The dynamic free surface boundary condition is based on the unsteady form of 
Bernoulli’s equation, which may be written as 

a+ -=c-gy-ll!~)2+(~)2)-s. 
at 

where g is gravitational acceleration, p is pressure, which in the absence of surface 
tension will be taken to be zero at the free surface, and p is the fluid density. C(t) is an 
arbitrary function which is constant through space, but may vary in time. The rate of 
change of the free surface velocity potential, &, may then be calculated as 

w, a4 a+ ark -=_ 
at at 

+--ony=v. 
ay at (7) 

3. Problem definition 

Consider the situation shown in Fig. 1. Nonbreaking waves propagate in one 
dimension in plan over varying topography with no discontinuities in bottom elevation. 
At time t,, both the elevation and velocity potential are known along the free surface. 
Conditions at the left and right global boundaries are known. Eqs. (5) and (7) may then 
be used to advance the free surface in time, provided that &$/ax, &$/dy, and dv/dx 

x,=0 
/,//‘/,,/,/,,,,,,~/~////,‘~/////,’/////// 

X2=0 AJm2 x)&,=0 x&/=0 

x,=0 x_,=o 

Fig. 1. Definition sketch for wave motion. 
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are known. an/ax may be readily estimated using any of a number of standard 
techniques for numerical differentiation, but to find @/ax and &$/ay requires the 
solution of Laplace’s equation in two dimensions, a potentially arduous task. However, 
in finite water depths, it is possible to make assumptions about the structure of the flow 
which allow for an accurate and highly efficient solution. 

4. Solution of Laplace’s equation 

Consider the velocity potential satisfying Eq. (1) 

where Re indicates the real part of a complex expression, i = J-1, y1 is an arbitrary 
integer greater than or equal to three, and the A, coefficients are independent and may 
vary in time. This function is defined only in region m, with coordinates (x,,, y) as 
shown in Fig. 1. Note that X, is local while y is a global coordinate. If an n value of 3 
is substituted into Eq. (8), the velocity potential will contain y’ terms, as do the 
Boussinesq equations. It would seem reasonable that larger values of n could give a 
better approximation and enable the description of more complex flows. 

The velocity potential function Eq. (8) may be thought of as having 2n independent 
basis functions which are linearly combined to form 4,,. For example, the functions 
associated with A,,, , A ,R, and A,, are, respectively, I, X, and -y. The form of these 
functions is not unique, and linear combinations of them may be made to form new sets 
of basis functions for 4,,. The form of Eq. (8) is the most basic expression of the 
velocity potential and will be useful when deriving linear dispersion characteristics, but 
for computational purposes, a different set of basis functions is more efficient. The 
velocity potential, while still completely equivalent to Eq. (8), will now have the form 

I 

n-l 

AAx n17 .Y> ‘I= C(Bj~Cf’j~(xnz, .Y)“jRd’jR(Xnz~ Y>) 

j= 0 I 

(9) 

I?, 

where [Bj,(t)], and [~,~,(t)],,, are the new coefficients in subdomain m, and +,,,_ and 

4 ,R are the new basis functions. These new functions 4,,_ and 4,R are formed from 
linear combinations of the old basis functions such that 

[ %L( x,,,, 4’11 ,)I = 
i (I 

II- I 

‘0, + Re E, ( zyR + ‘zyl)( x,, + iy)” 

(10) 
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with a similar function for +jjR. The coefficients Z4a, etc., are completely specified by 
satisfying the conditions 

+jiR = 

i 

(11) 

where A, is the width of subdomain m as shown in Fig. 1. 
To find these Z coefficients, expand Eq. (8) using the binomial theorem and collect 

like powers of y to get 

[ 4jLCxrn, Y>lm = 

+y2i2CiR=2 4 

0 
2 Z,,a~z-~ + y3i3+ *En; q 3 ; Z,,n;-3+ . . . 

0 

n odd 

I_ 
n even 

m,JL 

(12) 

with a similar expression for bjjR where 
0 
i is the binomial function a!/( b!(a - b)!). If 

n is even, nR =n-landn,=n,andifnisodd,n,=nandn,=n-l.Forconstant 
X mr the velocity potential is now seen to be a simple polynomial in y of degree n - 1, 
with the magnitude of each term dependent on the Z coefficients. If (p, is represented in 
this manner at x, = f A,/2, the coefficients may be found in a straightforward manner 
by creating a matrix equation in ZJR and Z,, based on Eq. (11) with a different right side 
for each +jjL and cP~,. 

Next, consider the interior boundary between areas m and m + 1, as shown in Fig. 1. 
Just left of the boundary, at X, = A,/2, 

~-=4n(% = Am/'27 Y 9 ‘) = 
i 

n- 1 

C ‘jR( ‘> +jR( Xm = Am/‘23 Y) 
j=O m 

while just right of the boundary at x m + , = - A, + , /2, 

++= &I+I(%I+I 

= -A,+,/23 Y$ r) 

n-l 

= C ‘jL(‘)+jL(Xm+I = -Am+,/‘2, Y) 
j=O m+ 1 

If 4, = I#-, it is obvious from Eq. (11) that (B,,(t)), = (B,,(t)), + ,. These n 
continuity arguments may be implicitly implemented by using 

BJ,"l(t) =(~R(t)),=(BjL(t)),+, (13) 
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as a new coefficient. The velocity potential will now be continuous across the boundary 
to the zeroth order, the number of independent coefficients is almost halved, and the 
usefulness of the form of Eq. (9) is justified. 

Now that the form of the velocity potential has been established, it is necessary to 
find coefficients such that the boundary conditions Eqs. (2)-(4) are satisfied as best 
possible, with the additional constraint that (@/ax)_ = (@/ax)+ on interior bound- 

, aries. 
There are many ways this could be done. Weighted residual techniques spring readily 

to mind, and since Laplace’s equation is analytically satisfied throughout the fluid 
domain, residuals would only have to be evaluated on the boundaries of the computa- 
tional subdomains. However, a large number of function evaluations, multiplications, 
and nested loops would still be required and, instead, a faster collocation method is used. 

With the new basis functions Eq. (11) and coefficients Eq. (13), (M + 1)n indepen- 
dent coefficients are needed to globally specify the velocity potential, where M is the 
number of subdomains. If the velocity potential is equivalently considered to have n 
degrees of freedom at each interior boundary, and at each of the left and right global 
boundaries, this method may be easily explained. 

Consider, for example, the interior boundary between subdomains m and m + 1 as 
shown in Fig. 1. On the boundary, one constraint sets the velocity potential at the free 

surface to the known 4,(x) Eq. (2) while another imposes the bottom boundary 
condition Eq. (3) at the bed. The remaining constraints set (a+/ax)_= (&$/ax)+ at 
n - 2 discrete points on the boundary. At each of the left and right global boundaries, 
the free surface and the bed are treated in a similar manner, but, to satisfy Eq. (4), 
@/ax is set to the known f( X, y, t) at n - 2 discrete points, which completes the 
specification of the velocity potential. 

The resulting system of linear equations may be solved at each time step using a 
banded or block-banded matrix solver. As previously stated, this provides the ‘order M’ 
solution at each time step which is a major advantage of LPA. 

All that is left is to determine the locations of the collocation points. Although there 
are many sets of points which will provide good performance, there is one family of 
points which also gives the solution some highly desirable qualities. Gauss-Legendre 

quadrature (e.g., Hornbeck, 1975, p. 154) of level N is a procedure by which the 
integral of a function over a finite interval may be estimated by knowing the value of the 
function at the N characteristic Gauss-Legendre points. A polynomial of degree 2 N - 1 
or lower will be exactly integrated using this procedure. For example, to estimate the 
integral of function g(x) over the interval ( - 1, 1) using Gauss-Legendre quadrature of 
level N = 3, it is necessary to know the value of g(x) at the characteristic Gauss- 
Legendre points x = - 0.7745966692, x = 0, and x = 0.7745966692. These values of 
g(x) are then multiplied by simple weighing functions to estimate the integral. For 
integrals over intervals other than (- I, I), the Gauss-Legendre points are linearly 
scaled between the limits of integration. 

For local polynomial approximation of level n, the velocity difference across interior 

boundaries (a+/ax)_(@/ax)+ is a polynomial of degree n - 1, while n - 2 colloca- 
tion points are available. If this difference were set to zero at the Gauss-Legendre points 
for N = y1 - 2, taking the free surface and the bed as limits, overall flow between 
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subdomains would be conserved for n 2 4. For higher values of n, additional weighted 

moments of flow would also be conserved. This property is considered important 
enough that in all examples given here, the collocation points are chosen to be the 
Gauss-Legendre points for N = n - 2. 

The entire procedure of calculating basis functions and solving Laplace’s equation 
may, with good coding, be completely automated so that to change the level of LPA 
approximation (for example, from 12 = 5 to R = 7) it would only be necessary to change 
one entry of an input file. This gives the LPA technique the flexibility to be able to 
change the level of accuracy easily to suit the requirements of a particular problem. 

It should be noted that, instead of matching horizontal velocities across internal 
boundaries at II - 2 collocation points, it is possible to equalize n - 2 weighted 
averages of flow across the boundaries. This removes the problem of choosing the 
locations of collocation points, and can also be shown to provide good linear dispersion 
characteristics. However, this idea will not be developed further due to the limitations of 

space. 

5. Linear dispersion characteristics 

In the previous section, the computational subdomains were all assumed to be of 
finite width. However, as mesh lengths go to zero, the continuity conditions between 
subdomains become a set of differential equations. If the velocity potential is then 
assumed to have the form of a small amplitude progressive wave, i.e. all coefficients are 
of the form cos(kx - wt), where k is the wavenumber, and w is the circular frequency, 
analytic solutions may be found for the phase speed, C, over a level bed. An outline of 
this process is given for the simple case of n = 3. 

Expanding Eq. (8) for the level of approximation n = 3, the value of c$, at the right 
boundary of subdomain m (at x, = AJ2) is 

&?I( X?!? = 4,/2, Y, t> 

= A,, +a,,% +A I *4+j2 .,,,( 33 +Y( -A,, ..,,i -23) 

+Y’( --A,, +A,,( -3-+))]m 
Similarly, at the left boundary of subdomain m + 1 

k+ i(x,+ i = -A,+ ,A Y> t> 

= Am +A,, I 
+y( -A,,+A,,[-2+)) +y2( -A1,+A3~( -+)) 

( 14) 
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For continuity of C#J across the boundary, 

&?I( xnl =4,/2, Y> t) = 4m+,(x,,+, = -4,+,/2, ~3 t) (16) 

This sets up three continuity equations for the constant, y, and y* coefficients. The 
derivation becomes simpler if [AORlm+ ,, etc. are written as [ AOR],,,+, = [AORlrtl + 
A,d[ A,,],/dx + . . , and if it is assumed A,,, = A,,+ ,. As A,, goes to zero. it is then 
an easy matter to arrive at the differential equations 

A 
dA,R 

IR = - 
dX 

8A,, 
2A,, = - 

8X 

where x is now a global variable. 
Using a similar process, the condition which specifies that (+/ax) 

collocation point y = Y, becomes 

dA,R 
2A,, = - 

JA*, d&R 

dX 
-2Y,---- 

ax 
3Y,2- 

dX 

and the bottom boundary condition Eq. (3), for a flat bed, becomes 

-A,, - 2yA,, = 0 

If the bed is assumed to be at h( x> = 0, this simplifies to 

A,, =0 

= 

(17) 

(18) 

(‘9) 

(Q/ax)+ at 

(20) 

(21) 

(22) 
For small amplitude wave motion, all coefficients will be of the form A,, = 

A,*,cos(kr - wt), and the form of the velocity potential will be 

4(x, y> f) = (A& -A;, y - A;R y*)cos( kx - wt) (23) 

Eqs. (17)-(19) may now be used to remove A,,, A?,, and A,, from Eq. (20). Eq. (22) 
may then be used to further eliminate A,,, and A,, may then be written in terms of 
A 2R. The LPA velocity potential in the small mesh length limit for the level of 
approximation n = 3 then becomes 

6(X, Y. t) =AGR ! -2+k2Y, 

k2 (24) 

If the kinematic and dynamic free surface evolution Eqs. (5) and (7) are linearized 
and combined to get 

a24 a4 
s+ga\=Oony=d, (25) 
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where d is the depth and y = d is thus the still water level, the small amplitude wave 
speed, c = w/k, of Eq. (24) is easily shown to be 

C2 1 

gd = 1 + (( kd)2/2)(1 - a;) 
(26) 

where CY, = Y,/d. 
For n = 4, a similar process results in 

;= [l +((kd)z/12)(2cqaZ+3(a,+cu,)-2(al+a2)2)] 

/[l + (W/6)(3 - ( a, + a*)2 + 4a,a,) + (( kd)“/l2) 

For higher levels of approximation, dispersion relationships become quite messy, and 
explicit formulae will not be given. 

Eqs. (26) and (27) are the local polynomial approximation to the exact relationship 

for small amplitude phase speed 

c2 exact tanh( kd) 
__ = 

gd kd 

It is helpful to compare LPA and exact phase speeds to get a better understanding of the 
accuracy of LPA. Fig. 2 plots small amplitude phase speed against dimensionless wave 
number for levels of approximation, n, equal to 3, 4, 5, and 7, which have, respectively, 
1, 2, 3, and 5 collocation points. Results are given for y (and therefore cri> values set so 
that collocation points are at the appropriate Gauss-Legendre points, using the free 
surface and the bed as limits, and show a clear improvement as the level of approxima- 
tion, n, increases. Phase speeds for n = 3 are reasonable for waves with a dimensionless 

0 98 

0.97 

0.96 

0.95 

n=7 

---n=5 

-n=4 

_ _ - n=3 

0 2 4 6 8 10 

kd 

Fig. 2. Local polynomial approximation to small amplitude phase speed 



146 A.R. Kennedy, .D. Fmton/Coastal Engirreering 32 (19971 137-161 

wavenumber less than kd = 1.4 (h/d = 4.5, where A is the wavelength), and after this, 
accuracy deteriorates quickly. Using n = 4 gives acceptable agreement up to the 
nominal deep water limit of kd = 7~ (h/d = 2). This level of approximation gives a 
dispersion relationship which is comparable in accuracy to (but different from) the 
Boussinesq results of Madsen et al. (1991) and Nwogu (1993). Increasing the level of 
approximation to II = 5 gives excellent results even at a depth of kd = 27r (h/d = I). 

With IZ set to 7, extremely accurate results are found for phase speed in depths up to 
kd = 371. (h/d = 2/3), which is indeed a good result for a finite depth method. 

It is possible to ‘tune’ phase speeds to more closely approximate the exact small 
amplitude solution through the adjustment of collocation points, but this is not recom- 
mended. If the structure of the velocity potential is inherently inadequate to describe 
waves of a certain wavenumber, such ‘tuning’ may adversely affect other properties, 
such as the calculation of bottom velocities, and performance over variable topography. 
The Gauss-Legendre points provide excellent continuity properties, and phase speeds 
are seen to improve rapidly with increasing level of approximation, ~1. Since, as it will 
be shown, the real power of LPA is with the higher levels of approximation, phase 
speeds should be good for any reasonable depth. 

6. Time stepping 

Once the velocity potential function has been determined, the solution may be 
advanced to the next time step by applying the free surface boundary conditions (Eqs. 
(5) and (7)) at each computational point. Knowing +/at and &$,/at, the free surface 
elevations and velocity potentials may be updated using any desired technique. For most 
calculations presented here, a fourth-order Adams-Bashforth method (AB4, e.g. Horn- 
beck, 1975, p. 196) was used, since it provided good accuracy while requiring no 
intermediate steps, which would have been extremely costly. However, computations of 
wave propagation over a submerged shelf used a third-order Adams-Bashforth method 
(AB3) for its greater stability. For small amplitude waves travelling over a level bed 
with no underlying steady current, Von Neumann stability analyses of the AB3 and AB4 
methods give the criteria 

c,,,,>At I 0.2303A,,, (AB3) (28) 

c,,,,$At < 0.13694,, (AB4) 

where c24 is the small amplitude celerity of the smallest resolvable wavelength (with 
length A g 2 A,,). These are essentially Courant criteria for the smallest resolvable 
wavelength, which is linearly the most unstable. Nonlinear stability will, of course, be 
somewhat different, but Eq. (28) may still serve as a first guide to choosing the time 
step. 

As the AB3 and AB4 methods are not self starting, a fourth-order Runge-Kutta 
method was used for the first three time steps. 
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7. Energy integrals 

For an inviscid fluid with no external forcing, the sum of potential and kinetic 
energies should remain constant through time. We therefore use the constancy of this 
sum as a check on the accuracy of the computations. The potential energy V may easily 
be shown to be 

(29) 

where S indicates integration over the free surface length, and h, is the still water 
datum. For a domain enclosed on all sides but the free surface, and satisfying Laplace’s 
equation, the kinetic energy, T, using the method of Fenton and Rienecker (1982), is 

Both integrals were evaluated by fitting discrete values of the integrand to the same 
spline used to model the variation in the free surface and bed. The spline was then 

integrated analytically. 

8. Approximation of velocity potential for a regular wave 

As a first test of accuracy, LPA solutions of Laplace’s equation were used to try to 
reproduce the kinematics of a regular wave. Test waves were generated with zero 
Eulerian current using numerical Fourier theory (Rienecker and Fenton, 1981; Fenton, 
1988), which gives an accurate waveform and, importantly for the present comparison, 
provides an exact solution of Laplace’s equation throughout the domain. 

The resulting free surface elevations and velocity potentials were used as input into 
the LPA model with periodic global boundary conditions, and a ‘goodness of fit’ 
parameter was generated for each wave tested. At the boundaries between computational 
subdomains. LPA velocities u,, us, and u,, were found, where subscripts s and b here 
represent, respectively, the free surface and the bed, and horizontal velocities were 
averaged across the boundary. The exact velocities at these points were then subtracted 
to give Au,, AuS, and Au,. The ‘goodness of fit’ parameter was then defined as 

AU 
1/3MC:= ,((4)2m + (AU,)‘, + (4):) 

RMS = 
U a(exact),max 

where u,(,,,~~)~~~ is the maximum analytic horizontal velocity at any computational 
point. 

Table 1 plots AuRMs for various wavelengths, h/d, against height to depth ratio, 
H/d, for different levels of approximation, n, and numbers of computational subdo- 
mains, M. 

As expected, accuracy tends to increase with increasing level of approximation, n. 
The level n = 3 appears to be reasonable only for small, long waves; for all others 
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velocities are reproduced poorly, and improvement with increasing number of subdo- 
mains, M, is poor to nonexistent. However, with n equal to 7, accuracy improves 
dramatically, as would be expected from knowledge of the linear dispersion character- 
istics. Even for the highest, shortest waves in Table l(c), error levels appear to be more 
than acceptable. Errors also show a steady decrease as the number of subdomains per 
wavelength increases. The level of approximation n = 11 is extremely accurate for every 

Table 1 

LPA fit to a steady wave 

H/d n AU RMS 

M= 15 M = 30 M = 60 

(a) h/d=20 

0.1 

0.3 

0.5 

0.7 

(b) h/d= 5 
0.1 

0.3 

0.45 

Cc) h/d = 2 
0.05 

0. I 

0.15 

0.2 

3 4.4x lo-’ 

7 8.8 x 1om5 

II 1.5x lo-’ 

3 1.4x IO_’ 

I I.1 x loml 

II 1.0x 10-j 

3 2.3~ 10m’ 

7 1.2x 10-j 

II 1.2x lomJ 

3 2.7~ 10m’ 

7 7.9x 1OF” 

II I.1 x lo-? 

3 

II 

3 

I 

11 

3 
7 

II 

3 1.3x10-’ 

I 1.8~ IO-” 
II 1.0x 10-7 

3 1.2x 10~ ’ 

7 1.7x10m” 

11 3.3 x IO_’ 

3 1.1 x 1or 

7 2.0x lo-” 

II 2.4X 10mh 

3 I .o x 10 -- ’ 

7 3.7x IV” 

11 2.1 x IO_ 

2.3~ IO-’ 2.4~ IV* 

2.0x 1om5 3.8~ IO-” 

2.0x lo-x l.2xlo~” 

2.6~ IO-* 2.6~ 10m’ 

6.3 x lo-’ 1.2x 10-j 

9.0x 1or7 1.1 x IO_” 

3.1 x 1o-2 2.9~ IO-’ 

2.9~ IO-” 5.3x10m5 

1.7x 1or’ 1.6X IOmh 

1.1 x lo-’ 

1.9x lomh 

6.4~ IO-” 

4.8X IO-’ 

3.3x 1or5 

4.1 x lo-h 

9.5x10m1 

1.3x 1oma 

I.1 x 1om5 

2.0x 1om2 

4.1 x IO_ 

3.0x 1or1 

1.3x IOY’ 

4.1 x lom’ 
2.6~ 10.’ 

1.2x IO_’ 

4.0x IO_ 

6.0~ 10mx 
I.1 x IO_’ 

4.5 x 1om5 
3.4x IO_’ 

I.OX IO_’ 
8.5X 1om5 

2.7~ IOmh 

1.4x lo-3 

2.3X lo-’ 

5.0x10-” 

4.7x lo-’ 

3.9x lorh 

5.0x lo-’ 

8.5X lo- 

1.5x lo-’ 

1.7x lo-’ 

1.3x lo-? 

4.2~ IO-” 

7.6X IO-’ 

2.5X IO- 

9.1 x lo-7 

1.9x lo-” 

2.6~ IO-’ 

2.9~ IO-’ 

1.5x lo-’ 

2.9~ IO-* 
1.2x 10-s 

1.9x lo-’ 

1.3x10-’ 

9.6~ lKh 
7.0x 10-y 

1.2x 10-l 

9.9x lo-” 

1.4x lo-x 
l.Ixlo-’ 

1.5 x lo-5 
7.6X lo-’ 

1.0x 10-l 
5.2X IO-’ 
5.7x 10-1 
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wave tested in Table 1. Its worst performance is with the highest wave in Table l(a) but, 

even here, RMS errors are less than one part in ten thousand. Since accuracy improves 
rapidly with increasing number of subdomains, M, this is probably only a problem of 
resolution. In fact, the accuracy of the level of approximation II = 11 is so great that it is 
not immediately clear that the additional accuracy is even necessary, since the expense 
of solution will increase significantly over n = 7. However, as will be shown later, there 
are problems sufficiently complex, and with sufficient nonlinearity that the use of such 
highly accurate approximations may be justified. 

The use of II values greater than 11 may require special matrix techniques or a 
further revision of basis functions, as the large exponents make the matrix equations 
somewhat ill-conditioned. Using IZ = 11, the potential accuracy of LPA could, in some 
cases, exceed the accuracy of the matrix solution in double precision. 

9. Propagation of a solitary wave 

For a first test of the entire procedure, solitary waves were propagated across a level 
bottom, with height to depth ratios H/d, ranging from 0.1029 to 0.5346. The waves 
used were actually pseudo-solitary, consisting of a numerically exact regular wave with 
length to depth ratio L/d = 25 superimposed upon a steady current which opposed any 
return flow under the trough. The wave was cut at the trough and one wavelength was 
placed into the computational domain, with smoothing initially provided at the edges. 
Waves were propagated for distance 25d in an enclosed system of length 50d. For this, 
and all subsequent computations, the global boundary condition (Eq. (4)) was taken to 
be a solid vertical wall: i.e. &$/ax = 0 on the left and right global boundaries. 

Fig. 3 shows an example of water surface profiles as the wave propagated from left to 
right, and also serves as a definition sketch. Note the difference between d and d,, the 
still water depths for the original periodic wave and the pseudo-solitary wave, respec- 
tively, and h, and h,, the corresponding still water elevations. 

To calculate surface and bottom slopes dv/ax and ah/dx, both the free surface and 
the bed were represented in all computations by one dimensional polynomial splines of 
degree n, with break points coincident with subdomain boundaries. Since the computa- 
tional grid remained constant in time, a solution matrix was computed only once, with 
the consequent savings. For a global boundary condition of a vertical wall, odd spatial 
derivatives were set to zero at the boundaries. 

1 .s”i” 
1.25 i 

h 0 f 1 +7-m+--- 
0.75 + 

d 0.5 - 
0.25 + 

d, 

I O-_----A--~ 

0 5 10 15 20 25 

x/d 

Fig. 3. The propagation of a solitary wave across a level bed. 
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Energy integrals (Eqs. (29) and (30)) were computed as a general indicator of 
stability and accuracy. Potential energies were calculated using h, as datum. A single 
parameter for global accuracy was given by the relative total energy fluctuations (REF), 
defined as 

REF = 
(T+ v>tn,X-(T+ v>n,in 

CT+ VI,=” 

Table 2 gives results from the computational runs. 
Trends are generally as expected; accuracy increases with increasing number of 

computational subdomains, M, and number of time steps, K, and with decreasing wave 
height H/d,. An increase in accuracy with increasing level of approximation, n, is only 
weakly apparent and, especially for small waves, fluctuations in energy appear to be 
mainly controlled by the spatial and temporal resolution. In fact, for the levels of 
approximation II = 7 and y1 = 11, REF values are generally orders of magnitude higher 
than velocity errors from a wave of similar height in Table I(a). For such a simple 
problem, the benefits of a high level of approximation appear to be small. 

To some degree, all computations showed growing fluctuations in total energy, 
although, as is obvious from REF values, these were generally quite small. All 
computations were stable from the results of the linear stability analysis (Eq. (28)) with 
the exception of the one asterisked value in Table 2, which was marginally unstable. 
However, as high frequency oscillations will, in this case, travel with the speed of the 
solitary wave, which is greater than the small amplitude celerity, the validity of the 
stability criterion (Eq. (28)) may be brought into question for this, and related problems. 
It seems obvious that, in some cases, linear stability is not sufficient to ensure nonlinear 
stability. The sawtooth instability of Longuet-Higgins and Cokelet (1976) was not 

Table 2 

Energy conservation during solitary wave propagation. Asterisked value is linearly unstable 

H/d, 12 M REF 

K = 75 K = I50 K = 300 K = 600 

0.1029 3 30 7.0x lo- 4 2.0x10 G 
7 30 6.5 X IO? * 

II 60 
0.2086 3 30 4.5x10-3 

7 30 7.1 x lo-’ 
II 60 

0.3161 3 30 1.4x IO ? 
7 60 

I I 60 
0.4249 3 60 

7 60 
II I20 

0.5346 3 60 
7 120 

II 120 

9.1 x lo-’ 
2.3 x lo-’ 

2.2x lo-? 

7.6X IO- ’ 

2.1 x lo-” 
l.lXIO 2 
8.6~ lo-” 

8.7 x lo-’ 

5.4x lo-’ 
2.7~ IO-’ 

1.2x IO I 

I.OX l0-h 

7.1 x lo-” 

7.7x lomi 
8.8X 10-x 

4.7x lo- 1 
I.1 x loms 
I.OX loml 3.2 x IO-” 

I.1 x lo-? 

3.3 x 1om1 2.0x lo-’ 

3.4x 10Y1 I.1 x 1omi 
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observed in any of the cases in Table 2, although it was reproduced if a coarser time step 
was used. 

10. Reflection of a solitary wave by a vertical wall 

For a more demanding test, the interaction of two identical, oppositely directed 
solitary waves or, equivalently, the reflection of a solitary wave by a vertical wall was 
next modelled. The computational domain consisted of an enclosed system of length 
50d, with initial conditions of two inwardly directed solitary waves. For a given number 
of time steps, K, used in a computational run, the step size, At, was chosen so that the 
undisturbed solitary wave would have propagated 25d in this time. Fig. 4 shows a 
sequence of water surface profiles which, for clarity of view, end near the center of the 
interaction. 

Several results of engineering interest were obtained from these calculations; namely 
the maximum water surface elevation at the wall, the maximum force on the wall, and 
the maximum moment about the base of the wall. These were nondimensionalized as 
follows: 

* _ %ax - 4 F* = 
(force/unit length),,, 

77- d 9 
s pgd,2 

M* = 
(moment about base/unit length),,, 

pgd: 

Results are summarized in Table 3. It is seen that, to keep errors in total energy 
small, discretisations in both space and time needed to be much finer than for the case of 
a propagating solitary wave. This is because the interaction between the two solitary 
waves was both extremely nonlinear and of short duration. Accordingly, both the 
accuracy and stability of the time stepping procedure and the ability of the velocity 
potential to describe the flow field were challenged. 

Energy fluctuations (REF) for n = 3 were again poor for anything other than the 
smallest waves. However, it is also of interest that results for the maximum force, 
overturning moment, and surface elevation appear more robust and seem reasonable for 
all but the highest waves. The level of approximation II = 7 provided good results for all 

2.5 - 

2, 

1.5 7 
y/d 

1 -r 

0.5 - 

01 i 

0 5 10 15 20 25 30 35 40 45 50 

x/d 

Fig. 4. The collision of two solitary waves of height H/d, = 0.5346, ending near the center of the interaction. 
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Table 3 

1 

The collision of a solitary wave with a vertical wall 

1.1827 

H/d M K n 

3 

F’ 

1.3509 

0.1029 120 600 

7 

3 

I .384X 

0.7167 

I 

7 

I .3X48 

0.7 184 

3 

11 

1.5424 

0.7184 

7 

0.2086 

1.6022 

120 600 3 0.9453 

1 I .6022 

7 0.9553 

II 0.9.553 

0.3161 120 600 3 1.1600 

7 1.1828 

0.4249 200 1000 

0.5346 400 2500 

500 3500 

700 5000 

0.6466 0.7003 9.6x 10mh 

MS 

0.808 1 

AS 

0.887 1 

REF 

3.2x IO- 

0.8435 

0.2882 

0.9958 

0.2099 

5.4x 

3.7 x 

10 4 

lo-’ 

0.8435 

0.2893 

0.9957 

0.21 17 

1.5 x 

2.8X 

1om1 

lorh 

0.984 1 

0.2893 

1.1146 

0.2117 

4.6x 

2.9x 

IO- 

lo- ’ 

1.0597 1.3686 1.6x IO-’ 

0.446 1 0.4305 

1.0598 

I.1 x 

I .3685 

10-l 

8.9 x lo-5 

0.4536 0.4436 6.1 x IO-’ 

0.4536 0.4436 1.6x IO-’ 

0.6259 0.6517 2.0x 10-l 

0.6467 0.7003 4.5 x lo-” 

waves, although, for the highest wave tested, it appeared to be near the limit of its 
applicability. An n value of 11 provided excellent results for all waves tested. 

Computations could become unstable using parameters which would successfully 
propagate a non-reflecting wave of the same height, although none of these computa- 
tional runs are included in Table 3. These instabilities ranged from the sawtooth 
instability of Longuet-Higgins and Cokelet (1976) to total failure. In particular, obtain- 
ing an accurate solution for the highest wave tested required many attempts. Fig. 4 
shows that, near the center of the interaction, the crest was quite sharp, so a very fine 
discretisation was needed to resolve it. The growing periodic total energy fluctuations of 
the previous section were not as important here, since the largest energy variations 
invariably occurred near the center of the interaction. All of these findings were not 

2, 

1.75 I 

1.25 - 

r(* It 

0 LPA 

. Fourier Fenton & Rwwcker 

~~~ Analytic Su & Mirle 

. G-N Ertekln & Wehausen 

0 MAC Chan 8. Street 

LItlear reflectIon 

Fig. 5. The maximum runup of a solitary wave on a vertical wall 
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entirely unexpected, as this is one of the most demanding problems involving nonbreak- 
ing waves. 

Some of the results may be compared with similar numerical and analytical studies. 
Fig. 5 plots the most accurate values of 7 * against incident wave height and includes 
previous analytical and numerical results. All solutions quickly deviate from the 
assumption of linear reflection for waves greater than H/d, = 0.2, demonstrating the 
nonlinearity of the problem. The third-order analytical solution of Su and Mirie (1980), 
and the numerical Green-Naghdi restricted Theory I (G-N) solution of Ertekin and 
Wehausen (1986) remain good for larger waves but there is some divergence as wave 
heights continue to increase. Results from the marker and cell (MAC) method of Chan 
and Street (1970) and the numerical Fourier solutions of Fenton and Rienecker (1982) 
are highly comparable to present calculations, although there are small differences for 
the highest waves. Although not shown here, maximum forces and moments from 
Fenton and Rienecker (1982) also compare well with present results, and it may be 
consulted for a more detailed qualitative and quantitative analysis of the interaction. 

11. Shoaling of a solitary wave 

For a final test using solitary waves, the shoaling of a solitary wave of initial height 
0.12 was examined. The computational domain had an overall length of 125d and 
consisted of three sections: an initial level of depth d, and length 25d, a plane slope of 
length lOd,, and a final shelf with depth d,. As with the previous two test setups, the 
boundaries of the computational domain were taken to be vertical walls in order that 
meaningful conservation of energy values might be obtained. Fig. 6 gives computational 
details, illustrates the bottom geometry and shows surface profiles of the shoaling 
waves. 

Some features were common to all runs. On the first flat, the wave propagated 
without change of form. While passing over the slope, the wave height began to increase 
because of the decreasing depth. Also at this time, as shown in Fig. 6, the front of the 
wave steepened, and there were small reflections. Once on the final shoal, the wave 
continued to grow as the advancing mass split into what appeared to be several solitary 
waves, with the highest at the front. 

The behavior of the wave over the final shelf may be quantitatively compared to 
other results. Analytic solutions to the variable depth KdV equation by Johnson (1973) 
for solitary waves propagating onto a shoal show fissioning into multiple solitary waves 
followed by an oscillatory tail, and simple results are found for the number and 
amplitude of solitary waves developing. For special eigen depths, no oscillatory tail is 
present. Table 4 compares the most accurate values from the present method to heights 
analytically predicted for the leading wave by the KdV equation. Results are also 
included from numerical solutions to Green-Naghdi restricted Theory I (Ertekin and 
Wehausen, 1986) and a numerical Boussinesq-type solution (Madsen and Mei, 1969). 
The heights of any trailing solitary waves are not listed as, due to a finite length, they 
were not always adequately resolved at the end of the computational runs. Results are 
similar, but show scatter. Green-Naghdi theory consistently underpredicts the height of 
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the first solitary wave, while, from the one point available, Boussinesq theory gives a 
result comparable to the LPA solution. The variable depth KdV equation consistently 
overpredicts wave heights, which is not a great surprise as it does not allow for 
reflections as the wave progresses up the slope. All methods except LPA are for a 
relatively low level of approximation, and may become invalid for such highly nonlinear 
waves as exist on the final shoal. 

(a:ld :i r. 
0 20 40 60 80 100 120 

x/d 

(b) 1.2 - 

115 - 

0.9 + I ~~~~ / i- 

0 20 40 60 80 100 120 

x/d 

0.9 L ~ ~~ +_ + -~ 

0 20 40 60 80 100 120 

x/d 

Fig. 6. The propagation of a solitary wave of height H/d, = 0.12 onto a shelf. (a) Bottom topography, (b) 
d,/d,=0.6137, n=7. M=300,At(g/d,05=0.06,REF=l.7X10~”,(c)d,/d,=0.S, n=7, M=375. 

At(g/d)“5=0.048, REF=3.9~10-4, (d) d,/d,=0.4510, n = 7. M = 600, At(g/d)“’ = 0.03, REF = 

1.6~ IO-‘. 
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Table 4 

Heights of leading solitary waves arising from the propagation onto a shelf of a solitary wave of initial height 

H/d, = 0.12 

H/ ds 

d,/d, LPA Green-Naghdi KdV Boussinesq 

0.6 I37 0.1745 0.168 0.181 

0.5 0.1988 0.184 0.207 0.20 

0.45 10 0.2120 0.190 0.220 

The first and third shoaling depths shown are KdV eigen depths and, therefore, no 
trailing oscillatory waves are predicted by that low order theory. For final depth 
0.6137d,, two solitary waves are predicted to emerge from the wave mass, and for depth 
0.4510d,, three waves are forecast. LPA solutions clearly showed the emergence of 
these solitary waves, but solutions for both depths also showed trailing oscillatory 
waves. However, these were quite small, with amplitudes less than the reflected wave 
generated as the solitary wave progressed up the slope. 

This test setup also required fine discretisations to keep energy fluctuations small. 
Continually increasing wave heights in shallower depths meant that parameters which 
might work well at the beginning of the run could cause computations to become 
unstable as the wave progressed up the slope and across the shelf. 

12. Propagation of waves over a submerged shelf 

The previous computations involving solitary waves gave a good idea of the potential 
accuracy of the LPA method, but the behavior of periodic and irregular waves is of 
much greater engineering interest. This final section computes the propagation of regular 
waves over a submerged shelf, and results are compared with the experimental and 
computational results of Ohyama et al. (1995). Fig. 7 shows the experimental setup of 
the shelf and measurement locations. The wave generator is not shown in the diagram as 
it was located at a distance x/d = - 56.6. Although a larger number of experiments 
were performed, full results were only given for three wave conditions, which were 
designated cases 2, 4, and 6. These waves had respective periods of TJg/d = 5.94, 
8.91, and 11.88, and all waves were of initial height Ho/d = 0.1. Both experimental and 
computational runs finished before waves reflecting off the shelf had rereflected off the 
wave generator and reentered the area of interest. All of the present computations used 
the level of approximation IZ = 7 along with a spatial discretisation of A x/d = 0.1 and a 
time step of At@ = 0.0198. 

Waves were generated computationally by specifying a time series of velocity at 
collocation points on the generating boundary. For stability, the free surface slope at the 
boundary, a~/ax, was specified using the analytic expression for the slope of the target 
wave, while slopes near the boundary were calculated using second and fourth order 
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Fig. 7. Experimental setup for wave propagation over a submerged shelf. 
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central differences. Fully nonlinear time series of velocities and surface slopes were 
taken from steady waves generated using the method of Fenton (1988). 

At the far end of the domain, waves entered a special propagation zone in which the 
free surface evolution equations Eqs. (5) and (7) gradually changed to become the 
advection equations 

a a77 i-1 
a arj 

at ax 
= -c-- 

ax ax 

and 

(3’) 

(32) 

where c is the small amplitude phase speed for the periodic wave. These equations were 
solved in finite difference form using an upwinding scheme. At the exiting boundary, 
the specified horizontal velocity distribution was calculated from linear theory and the 
free surface elevation at the boundary. The effect of these conditions was to ensure that 
any errors arising from an imperfect boundary condition could not propagate back into 
the area of interest, because they would continuously be advected out of the domain. For 
simple test cases of regular waves propagating over a level bed, reflection from the 
exiting boundary was found to be so small as to be negligible. 

Figs. 8 and 9 show computed and measured time series at Stations 3 and 5, as defined 
in Fig. 7. An overall phase shift was applied to the computational results for each wave 
case so that the phase would match the experimental data. Elevation traces at Station 3 
show that the waves have shoaled significantly on the shallow crest, and all time series 
show tails which have been shed behind the main body of the wave. Wave heights on 
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Fig. 8. Computed (lines) and measured (symbols) time traces of surface elevation at station 3. (a) Case 2, (b) 

case 4. (c) case 6. 

the shelf are very large, especially in cases 4 and 6, where the height to depth ratios at 
Station 3 are around 0.6. Agreement with computations is excellent. The LPA model 
shows a slight tendency to underpredict crest heights, but this was also a feature of the 
Boundary Integral Equation Method (BIEM) solutions of Ohyama et al. (1995). 

However, although these results at Station 3 are quite good, Ohyama et al. also 
obtained reasonable results at this station using the Boussinesq model of Nwogu (1993), 
which has a considerably lesser computational cost than either LPA or BIEM. However, 
the Boussinesq model proved unable to accurately model the decomposition of the wave 
after the shelf into higher harmonics, as measured at Station 5. Fig. 9 shows LPA and 
measured time series at Station 5. For all cases, LPA results agree very well with the 
experimental data, and can predict both the magnitudes and phases of the multicrested 
sea state. The present results are actually better overall than the BIEM solutions of 
Ohyama et al. (1995). Since the potential accuracy of BIEM is greater than that of LPA 
using n = 7, the reason for this is likely that the finer spatial and temporal resolution of 
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Fig. 9. Computed (lines) and measured (symbols) time traces of surface elevation at station 5. (a) Case 2, (b) 

case 4. (c) case 6. 

the present computations allowed them to better capture the features of the wave motion. 
This greater resolution was made possible by the significantly lower computational cost 
of LPA when compared to BIEM. 

As a matter of comparison, computations were also performed using the LPA level of 
approximation n = 5 with the same spatial and temporal resolution, but will not be 
shown here. Results at Station 3 were almost identical to those computed previously 
using n = 7, but results at Station 5 were not as good. Since the linear dispersion 
relationship for the level of approximation y1 = 5 is good up to a wavenumber of 
M = 29~, which is much shorter than any of the primary wavelengths, this discrepancy 
is somewhat surprising. However, computation of the nonlinear decomposition of the 
wave on the downslope and trough is a significantly more demanding task, and 
necessitates a good representation of the nonlinear interaction of free and forced waves 
for several higher harmonics. The lower level of approximation assumed using y1 = 5 
simply was not able to accurately model the tluid velocities in this situation, and the 
computational results reflected this. 
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13. Computational speed 

Several times previously it has been mentioned that, because of the local approxima- 
tion which results in a block banded matrix structure, LPA provides an accurate and 
efficient solution of Laplace’s equation. The accuracy of LPA has been shown using a 
number of tests, and quantitative results are now given to demonstrate its efficiency. An 
industry standard measure of floating point processor performance, SPECfp92 (Dixit, 
1992) is used to compare CPU cost/time step for LPA and BIEM across different 
platforms. 

On a DEC Alpha 3000 model 300LX with a SPECfp92 of 77.7, a medium sized 
computation with 250 surface points (249 subdomains) using the level of approximation 
IZ = 7 takes almost exactly 0.5s CPU/time step. Because of the block banded nature of 
the LPA matrix equations, run times for computations with a greater or lesser number of 
subdomains may be linearly scaled from this. For the levels of approximation IZ = 3 and 
n = 11, times may be multiplied by 0.18 and 2.89 respectively. 

These times may be compared with BIEM results for the model of Grilli et al. (1989). 
For a computation with 250 surface points running on a Spare Station Ultra 1 with a 
SPECfp92 of 35 1, computational times range from 18s-23s CPU/time step, depending 
on the topography. After scaling to a SPECfp92 of 77.7, this becomes 8ls-104s 
CPU/time step. For larger or smaller problems, CPU cost is proportional to (total 
nodes)‘, where r varies between 2.0 and 3.0 depending whether adaptive integration is 
necessary. The authors would like to thank Stephan Grilli for providing the above 
information on BIEM computational costs. 

The cost of BIEM using the multi-subdomain method of Wang et al. (1995) may now 
be estimated. They state that the controlling cost in BIEM is usually the time in 
generating the coefficient matrix, TcM From Fig. 3(a) of their paper, the ratio of TcM 
using the multi-subdomain approach over a flat bed with 10 panels on interior 
boundaries to TCM using normal BIEM is approximately 0.3. Applying this to the scaled 
results of Grilli gives a rough estimate of CPU cost/time step of 24s-3 1s with 
SPECfp92 = 77.7. Because of the multi-subdomain approach, costs for larger or smaller 
problems may be linearly scaled. 

These results indicate a clear advantage in speed for LPA (0.5s vs. 24s-31s). 
However, there are some factors which will reduce this difference somewhat. The first is 
the tendency of computational nodes in BIEM to cluster around areas of high curvature, 
which effectively increases resolution over a fixed grid approximation with the same 
number of surface points. The second is that BIEM generally uses larger time steps than 
LPA. Still, a significant difference in computational speed will remain. 

14. Discussion and conclusions 

The LPA method developed here has been shown to provide excellent accuracy with 
a reasonable cost over a wide range of test cases. Analytic results, comparisons of 
velocity errors with exact solutions, and time domain computations have all demon- 
strated the effectiveness of the LPA technique. 
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The use of a polynomial series of arbitrary degree permits great flexibility, as a lower 
level of approximation may be used for mildly dispersive, mildly nonlinear problems, 
while highly nonlinear problems such as the collision of large solitary waves may be 
represented very well using a polynomial of higher degree. Analytic solutions of the 
LPA linear dispersion relationship can provide a basic guideline for the accuracy of a 
given level of approximation, although nonlinear considerations are also very important. 

The necessary spatial and temporal resolution required to accurately solve a given 
problem is also important. As the nonlinearity of the problem grows, the resolution 
needed to solve a problem accurately increases greatly. In this paper, the necessary mesh 
size was generally found by trial and error, and accuracy was verified by comparison 
with some independent criterion. Unfortunately. no hard and fast rules were found, 
although the examples given here can provide a guide for similar problems. However, as 
LPA has a relatively low computational cost, it takes little additional effort to run a 
problem more than once with different resolutions to compare results. 

As derived here, LPA is only applicable for wave propagation for one dimension in 
plan. However, a variant using many of the same principles which is valid for three 
dimensional fluid motion is presented in Kennedy and Fenton (1996). Another variant of 
the present method uses the mode-coupling expansion of Dommermuth and Yue (1987), 
along with further revision to velocity potential basis functions, to greatly increase 
speed, although some accuracy is sacrificed for higher waves. All of these methods are 
fully detailed in Kennedy (1997). 
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