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Abstract: Contour basin irrigation layouts are used to irrigate rice and other cereal crops on heavy cracking soils in Southeast Austral
In this study, a physically based two-dimensional simulation model that incorporates all the features of contour basin irrigation syster
is developed. The model's governing equations are based on a zero-inertia approximation to the two-dimensional shallow water equati
of motion. The equations of motion are transformed into a single nonlinear advection—diffusion equation in which the friction force i
described by Manning’s formula. The empirical Kostiakov equation and the quasi-analytical Parlange equation are used to model f
infiltration process. The governing equations are solved by using a split-operator approach. The numerical procedure described her
capable of modeling rectangular basins; a procedure for irregular shaped basins is presented in Paper Il. The model was validated ag
field data collected on commercial lasered contour layouts.
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Introduction east Australia exhibit particular features which distinguish them
from similar forms of irrigation elsewhere in the world.
80% of Australia’s national irrigated area is located in the In these layouts, water is applied to group of multiple basins

Murray—Darling Basin, which covers parts of New South Wales, divided by check banks constructed across the slope. These are
Victoria, Queensland, and South Australia. The Murray—Darling made by borrowing soil from the basin resulting in a toe-furrow
Basin located in the southeast of Australia covers 1,061,469 km along the banks. The basins are filled to the desired depth of
equivalent to 14% of the country’s total area. Irrigated agriculture water, which is retained until it infiltrates into the soil. The excess
in Australia has resulted in substantial benefits to individual rural water is drained back into the supply channel and into the next
communities and the nation as a whole. It accounts for 28% of the basin. A typical layout of a contour basin irrigation system is
total value of all agricultural production in Australia and contrib- shown in Fig. 1. The water flow patterns during inflow/advance
utes one third of the national output from rural industries by pro- and recession/outflow are shown in Figs. 2 and 3.
ducing most of Australia’s dairy products, cotton, rice, fruit, veg- Contour layouts are designed and used for cultivation of rice
etables, and wine. where ponding of water is required. Due to shortage of irrigation

Contour basin irrigation layouts are used to irrigate rice in water, the recent cap on water allocation in the Murray—Darling
heavy soils in the Murray—Darling River basin in southeastern basin, and growing concern about the environmental impacts of
Australia. Most of the rice cultivation in Australia is done on waterlogging and salinity, the agriculture department in the area
these layouts, which are found in the states of New South Wa|eS,promotes crops with low irrigation requirements to be grown in
Victoria, and Queensland. Approximately half of the irrigated rotation with rice to minimize adverse impacts on the environ-
land of southern New South Wales is developed under contourment and ground water. Crop rotation will also help improve the
basin irrigation systems. They are used primarily on soils that sojl structure and organic matter and will ultimately enhance the
have very low infiltration rates. Contour basin |ayOUtS in south- water use efﬁciency without affecting the net income of the farm-

ers.
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Fig. 3. Water flow pattern in contour basin layouts during recession
Fig. 1. Typical layout of contour basin irrigation system and outflow

ally of single closed basins, which are independent of each otheret al. (1994a,b and Singh(1996 developed two-dimensional
and not hydraulically connected. basin irrigation models based on shallow water equations using
There are many design parameters which influence hydraulicthe Kostiakov—Lewis equation to describe infiltration. Strelkoff
processes during an irrigation event in contour basin layouts. It is et al. (1996 developed their simulation model based on a zero-
very difficult to predict and compare the performance of alterna- inertia approximation of the two-dimensional shallow water equa-
tive design layouts without using a physically based simulation tions. These models are used for individual closed basins in which
model to describe the process. The development of design guidedrainage from the basin is ignored. Moreover none of these mod-
lines and benchmarks for contour basin layouts can only be simu-e€ls is able to describe typical contour basin systems with the
lated by modeling all the hydraulic processes involved in an irri- peculiar characteristics of those found in Southeast Australia such
gation event. This paper describes a two-dimensional simulationas presence of toe-furrows, irregular shapes, and multiple basin
model designed to evaluate the performance of existing layoutsoperation involving outflow from one basin to another through the
and to provide a design tool that can be used for design of newcheck banks and backflow into the supply channel.
layouts and developing general guidelines for design and manage- In this study, a two-dimensional simulation model for contour
ment of contour basin layouts. basin irrigation is developed. The model is based on the zero-
inertia approximation of the Saint—\Venant Equati¢@haudhry
1993. In this model, the equations are transformed into a single
Model nonlinear advection—diffusion equation, in which friction forces
are described using the Manning equation, and infiltration is de-
The design and management of contour basin layouts for rice andscribed using the empirical Kostiakov—-Lewis equation or the qua-
nonrice crops requires detailed knowledge of the hydraulics of sianalytical Parlange equation.
overland flow, infiltration, and drainage behavior. Several two-  There are many finite-difference and finite-element methods
dimensional mathematical models have been developed for simu-available for solving nonlinear equations, but most are plagued by
lation of overland flow conditions in basin irrigatigRlayan et al. the difficulty in approximating both the advective and diffusive
1994a; Strelkoff et al. 1996; Singh and Bhallamudi 19%1ayan terms of the equation with comparable accurdgfolly and
Usseglio-Polatera 19840ne way of obtaining acceptable accu-
racy is by solving the advection and diffusion terms using differ-
ent methods for each, in a “split-operator” approach. Under this
Point Inflow approach, advection is solved using a characteristic method
Check Bank flume whose favourable performance in one and two dimensions has
N been demonstrateiHolly and Preissmann 1977; Glass and Rodi
A 1982; Holly and Usseglio-Polatera 198#he method of approxi-
mation of the advection component is accurate when combined
with appropriate cubic spline interpolatiofschohl and Holly
1991). Here a cubic spline interpolation is used with the method
of characteristics and also for the diffusion component. This ap-
proach provides an alternative to the existing methods for
advection—diffusion type equations with nearly the same accuracy
Check Gate with while improving the efficiency of the solution.
Outflow Flume This paper deals with the numerical scheme used for the solu-
tion of governing equations with reguléerectangular grid discre-
tisations. The model is capable of dealing with point or linear
water inflow and several simultaneous inlet points. The model is
also capable of describing the drainage runoff from one basin to
an adjacent one. Field experiments were conducted on a commer-

Inflow Flume

Channel

Fig. 2. Water flow pattern in contour basin layouts during inflow and
advance
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cial layout to assess the performance of the existing system and to

validate the models. However, a different numerical scheme was
developed for irregular field shapes and multiple basin operation
and is presented in Paper Il by Khanna et(aD03.

Governing Equations

Overland flow is described by the depth-averaged flow equations
(Chaudhry 1998 These equations in hydrodynamic form consist
of the continuity equation and the momentum equation. The two-
dimensional continuity equation for shallow water flow is written
as

aH
T3 (1)
whereq,=uh andq,=vh, discharge per unit width (frs) in the
x andy directions respectivelyh=water depth(m); u and v
=velocities in thex andy directions(m/s); H=h+z,=water
surface elevation above the datum=bottom elevation above
datum (m); |,=volumetric rate of infiltration rate per unit area
(m/9); andt=time (9).

The momentum equations for shallow overland flow can be
simplified by neglecting the inertial terms. The effect of these

terms becomes small compared with those describing the effect of

gravity and friction in shallow water flow situations. This is typi-
cal of agricultural fields, where velocities are low due to high
vegetation resistance, small depthggh relative roughnegsflat
slope and low discharge. The momentum equations i éedy
directions after neglecting inertial terms are given by

)

ay

where S;, and S;,=components of friction slope in the andy
directions. Now the Manning equation is used to relate the dis-
charge vector to the head gradiénegative of friction slope In
one-dimensional uniform flow, the dischargés described by the
Manning equation as follows:

+ Sfy:0

®)

1
a=- h5/3Sfl’2

wheren=Manning roughness coefficient; asg=friction slope.
The discharge vector per unit width inandy directions can be
generalized as follows:

g,=(g cosf @)

gy=gsin®

where 6=tan’1(qy/qx)=angle between the flow direction and
positive x direction. In diffusion flow, the friction slope is as-

1 (H—2)%® oH
qX:_ﬁ 9H\Z [aH\ 2172 3x
EIRES
1 (H—12)%? oH
Qy:_ﬁ- 9H'2 7oH 21/4'@
) (5]

The overland flow equations can now be transformed into a single
nonlinear adevection—diffusion equation by substituting dhe
andq, from Eq.(6) into the mass conservation Ed), and solv-

ing by differentiating and separating the coefficients of the time
derivative, the first, second, and mixed spatial derivativesl of
yields

oH oH  9H a?H a2H a2H
StV W=D11W+D12W+D228y —1lg
@
whereU andV are given by
5 (H—2zq)%8 oH  azg
U:_ﬁ oH\2 [9H\2 1/4(&‘&) (8)
(151 5]
5 (H—2zq)%8 aH 9z
V:_S_n oH\2 [9H\2 1/4(@‘@) 9)
(55

Eq. (7) describes two-dimensional overland flow in advection—
diffusion form including infiltration. The left-hand side of the
equation is the advection component in whidhandV are ad-
vection velocities. The right-hand side is the diffusion component
with D4;, D4, andD,, as diffusion coefficients. This is similar
to the advection—diffusion equation for scalar transport. Infiltra-
tion is considered as a sink term on the right hand side of the

equation.
The diffusion coefficient®,,, D;,, andD,, are given by
1[oH\2 [oH)\?
(H-29% 2\3x) |3y
1= n oH\2 [9H\2\54 (10)
x| ey
oH oH
(H—2)%" ax_ay
D=~ = THZ T9H 2.5 (11)
x| T\ay
aH)2 1(oH\?
(H-29% || 9x) "2ay
227 n gH\2 [gH\2\ 54 (12)
ax) oy

sumed to be equal to the slope of water surface, and is calculated®Verland Flow in Toe-Furrow

as

o [[aH\Z [aH}?
= Vlax) + Ty
The discharge components in tkeandy directions can be ob-
tained by combining Eq<2), (3), (4), and(5) which yield

©)

Contour basins have a toe-furrow on three sides. Flow into con-
tour basins enters and exits through the toe-furrows. Flow in the
toe-furrow needs special treatment, as the toe-furrow is com-
pletely filled long before the interior of the basin. The depth and
cleanliness of the toe-furrow was observed to significantly affect
the rate of flow at which water advances over the surface of the
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basin. The flow depth in the toe-furrow can thus be considered to
act as a boundary to overland flow from which water advances

over the basin. In this study, flow in the toe-furrow is treated

separately from the interior of the basin as one-dimensional flow

with infiltration.
The derivation of the one-dimensional flow equation for the
toe-furrow is the same as that of E(f) for two-dimensional

overland flow. The advantage of using the same form of equation

S+ 2hstrKs(esf ei)

top=25(1=5)(Ke— K2 "

st i
[1+8 Is_Ki}

Ks(hfhstr)(esfei)
(Ks_Ki)(ls_ Ks)

+

SZJFZhstrKs(esfei)+2(1*8)Ks(h7hstr)(esfei)
2(1-3)(Ks—Kj)?

is that it can be solved using the same numerical scheme used for

the two-dimensional case.

Infiltration

Two alternative infiltration equations, namely Kostiakov—Lewis

and Parlange equations are used to describe infiltration in the

model.

Kostiakov—Lewis Equation

Many of the earlier surface irrigation model€lemmens et al.
1981; Playan et al. 1994a,b; Singh and Bhallamudi 19%&e
described infiltration using empirical equations, in particular the
modified Kostiakov(1932 equation. The present model also in-
corporates the empirical infiltration equation given by
Kostiakov—Lewis(Clemmens et al. 1981; Playan et al. 19p4a

XIn (15)

Is_Ki
in which 6;=initial soil moisture at the point§ = saturated soil
moisture content;S=sorptivity (m/+/s); hg=minimum soil
moisture pressure-head value in the wetting cyei®; and d
=shape parameter is an indicator of the variation of hydraulic
conductivity with the soil moisture content and is given by the
relation

Is_ Ks)

0s
3((05—01)(Ks—K;j))= L (Ks—Kj)db (16)
Eq. (15 can be used to determine infiltration rdteby iteration
for a given intake opportunity time, depth of fldwand other soil
parameters. Depth of flow is considered to be invariant with
time for the purpose of calculating infiltration ratéuring each

Empirical parameters for this equation are available for some soil time step.

types. Furthermore, this equation is easy to incorporate into the

simulation model and imposes low computational overhead.
This equation is given by

Z=Kkt3 + bty (13)

whereZ = cumulative infiltration volume per unit arde); a, k,
b=empirical constants; ang,,=intake opportunity time, or the
time since the wetting front arrived at the point or node in con-
sideration. The infiltration rate can be determined by differentiat-
ing Eg. (13) with respect to intake opportunity time

=aktg, '+b (14)

ls=gr

wherel ;= volumetric rate of infiltration per unit are@/s).

Parlange Equation

Numerical Scheme

The two-dimensional model formulated in this study is based on

the analytical description of the following processes:

1. Surface flow governing equations by a single advection—
diffusion equation, and

2. Subsurface flow described either by the Kostiakov—Lewis
infiltration model or the quasianalytical physically based
Parlange model.

The advection—diffusion equation considers the combined effect

of the advection and diffusion processes, which describe the

physical transport of mass. The solution of this equation can be

performed in two separate stages for the advection terms assum-

ing there is no diffusion and then the diffusion terms. This is

known as the “split-operator” approach, in which advection and

diffusion are computed independently over short time increments

Infiltration can also be described using the quasianalytical Par- (Komatsu et al. 1985
lange with three soil characteristic parameters. These parameters The advantage of the split-operator approach is that it allows

are sorptivity S, hydraulic conductivity paramete,, and a
shape parametey which is related to hydraulic conductivity of
the soil(Parlange et al. 1982Sorptivity S is related to soil water
diffusivity. The second parametdf,,=K,—K;,, is the difference
between the hydraulic conductivityn/s) at saturatior(soil mois-
ture 0=0,), and the hydraulic conductivitym/s) at uniform ini-
tial moisture contentsoil moistured =9;).

This equation was further modified, by Haverkamp et al.
(1990, by introducing an additional paramethy,, that takes
into account the possibility of an infinite diffusivity near satura-
tion. This is the minimal soil pressure value in the wetting cycle

the use of an accurate scheme for each pro@ésmatsu et al.
1997. This approach also helps to exploit the advantage of the
hyperbolic nature of the advection—diffusion equation to devise
characteristic-based numerical schemes which allow natural treat-
ment of boundary conditions and provide a framework for a
simple and accurate methodolo@iomatsu et al. 19856 Using
this approach, the solution is obtained in two steps. The results
from the first or intermediate step for solving the advection terms
are added to the diffusion terms based on the values obtained for
the advection term.

Various numerical schemes can be used for the solution of the

at which a continuous nonwetting phase exists in the porous me-advection and diffusion components. These schemes depend on
dium. hg, is constant in time and independent of the changing the form of discretization of the physical domain in either regular
boundary condition values. This equation is reformulated through grid (rectangular or quadrilateral gridirregulap. In this study,
differentiation and then analytically integrated to obtain an equa- regular grid discretization is used for contour basins of regular
tion in terms of intake opportunity time with an assumption of shape, while quadrilateral or irregular discretization is used for

constant positive head over tinjfEdenhofer and Schmitz 1985;
Schmitz et al. 1985; Singh 1996 yield

basins of irregular shapéA model for irregular shaped basins is
presented in Paper II; see Khanna et al. 2D03.
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Solution of Advection Term Fig. 5. Computational domain for bicubic splines

The choice of method for the solution of the advection component it Hermite bicubic interpolation to solve the advection part of
is the method of characteristics described by several earlier au-ihe transport equation with minimum numerical damping or os-
thors (Holly and Prelssmanr.l 1977; Glass and qul 1982; Holly cjjjations. They carried out the interpolation using, not only con-
and Usseglio-Polatera 1984; Holly and Toda 1985; Komatsu et al. centration at two nearby points, but also the spatial derivatives

1985; Komatsu et al. 1997In this method, neglecting all the  there. This gave good results with fourth-order accuracy in a one-

terms on the right hand side of E(f) yields the following ad-  gimensjonal scalar transport problem. Glass and Ra882
vection equation: modified and extended this method to two-dimensions for simu-
oH oH oH lation of scalar mass transport. Holly and Komat8983 also
H+U W+VW:0 a7 modified Holly and Preissmannid 977 two-point fourth order
method to an eight-point method. This method had some practical
This equation states that the scalar quantityof a given fluid difficulties in its general implementatiofKomatsu et al. 1985

particle does not change along the flow pathline. Such a pathlinebecause each interpolation was based on 64 adjacent points re-
is actually a characteristic line for EGL7), and its direction at  sulting in an overly cumbersome scheme.

any point in the flow domain is given by the following ordinary Another way of interpolatingd is to construct bicubic-spline-
differential equations: interpolating polynomials over the entire computational domain at
the old time step. A bicubic spline polynomial, passes through
dx : . X T -
—=U(x,y,t) each data point and is continuous in its zeroth, first, and second
dt (18) derivatives. Construction of the bicubic spline requires the solu-
dy tion of a linear algebraic system for the second derivatives
E=V(x,y,t) through inversion of a tridiagonal matrix. Implicit in this con-

struction is the imposition of the upstream and downstream
The characteristic equation that holds along any one of these linesboundary conditions for the second derivatives. Bicubic-spline-

is interpolating polynomials were constructed over the entire do-
dH main (Fig. 5 and used for the estimation bf at pointP (Shikin
W:0 (19) and Plis 1995 The inner points in the computational domain are

called knots of the grid. The bicubic spline functibr(x,y), over
The solution is carried out by replacing Hd7) with the ordinary ~ the entire domain, is defined by

differential Eqs.(18) and(19), which are then integrated numeri- 3 3
cally over a space—time grid. The location of the characteristic Fxy)=> e (x—x)P(y—y;)a (1)
lines on a rectangular grid is shown in Fig. 4. p=0 4-0 " J

The characteristic line starts at poftand extends to the node
denoted by ,j). The solution ofH after advection is given by

H*(x;,y; t+A)=H(x—U; A, y;— Vi jA) (20)

and in each cell

Rij={(XY) Xi=X<Xi11,Y;<Y<Yj11},

whereA =time step. Eq(20) shows that the advected valuetdf 1=0,1,...m j=0L...n (22)
is equal to the value ofH previously at &—U;;A,y; whereR;; represents the entire computational domain. This satis-
—ViAt). fies the conditions

This implies that if the location of poirf® (origin of the char- F(xi,yp)=wjj, i=01,...m, j=01,...n (23)

acteristic ling at the old time step has been found, the solution of N
the advection equation can be completed by determining the valuewhere w;;=value of the function at each node; amﬁ,';é)

of H at that point. The key to the characteristic solution, then, is =spline coefficients. 16 mn coefficiermﬁ"é) are needed to con-
the accurate interpolation of the internodal values. Holly and Pre- struct the bicubic spline. E423) provides (n+1)(n+1) equa-
issmann(1977) used the method of characteristics in conjunction tions while additional equations are available in the form of re-
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strictions on the values of the spline derivatives at the boundary Y L.
and corner knots of the grid. The boundary conditions used for 4 Point inflow
this model require that the following derivatives of the desired
spline be continuous on the lings=x; andXx=Xxp,_1: ®
dS 9S 4%S 9%S 9%S 9°S
X' gy’ ax2’ axay’ ay?’ ox3
%S 93 9%s  9%s %S
IX29y " axay?’ ax3ay’ ax2ay?’ ax30y?

Xp, ¥p

bbb

and the derivatives
S aS 92S 092S 92S 43S

%S 9%S 9*s  9*S  9°S
axay2' oy’ ax2ay?’ axays’ ax29y3

\ 4
=

be continuous on the lings=y, andy=y,_;. This is known as Fig. 6. Line and point inflow boundary
the “not-a-knot” condition(de Boor 1978 Under this condition,

the value of the first and second partial derivatives of the desired
function with respect tox andy need not to be specified on the | 1fow Boundary
boundary knots. A spline satisfying this condition has a greater

than usual smoothness. Once the spline is constructed, its coeffip gistinct feature of contour basin irrigation in Southeast Austra-

cients are used to interpolate the valuetbat pointP. lia is that inflow to the basin occurs as overflow from the side
supply channel as well as from the toe-furrows. Water first enters
Solution of Diffusion Term from the supply channel and into the toe-furrows, and once all the

) o ) toe-furrows are filled water overflows onto the field.
Nonadvection terms such as diffusion and sources or sinks should | the computational scheme, the depth of water in the supply

also be estimated in a way compatible with the numerical treat- channel is considered to act as a boundary condition to the over-
ment of advection. The computation of diffusion in the split- 504 flow in the basin. In a multiple basin system, the depth of
operator approach can be accurately carried out using a variety Offjow in the supply channel drops when the water supply is di-
finite difference and finite element numerical scherttesmatsu verted onto the second basin upon completion of irrigation in the
et al. 1997. first basin. The depth of flow in the supply channel is thus im-
In this model, bicubic splines were again used for calculating posed as a boundary condition during inflow to the basin as
the diffusion terms. The advantage of constructing bicubic splines shown in Fig. 6. This is termed a line inflow boundary condition.

is that they also enable the calculation of the second and mixedThe |ine inflow boundary condition is defined as a flow depth and
derivatives of the function which are required to determine the gpecified as

diffusion terms at the foot of the characteristic line. These are
calculated at the foot of the characteristic line indicating that the H(xg,yg t)=h(xg,yg,t) +Zo(Xg,yg 1) (25)
calculation of the diffusion terms then proceeds along the Charac'whereH(xB V& ,t) =water surface elevation at the boundary line-
teristic line. This approach was found to improve stability. Second inflow node: h(xg,Ygs,t)=depth of flow at the boundary line-
and mixed derivatives ofl are calculated using bicubic splines.  jsfiow node; zy(Xs Vg ,t) = bed elevation at the same point; and
Combining the advected values bif with the values of the  y_ andy,=values ofx andy that define the location of these
second and mixed derivatives bff calculated using the bicubic  points on a fixed boundary. The model also incorporates the pres-
splines with respect ta andy, the values oH at the new time  ence and effect of a toe-furrow along the basin check bank. The

step are calculated as depth of flow in the toe-furrow acts as a flow boundary to the
) a2H; | 82Hi,,- overland flow over the basin. The depth of flow in the toe-furrows
Hij(t+A)~H (+ADy— 2~ +A 125%3y is described by assuming one-dimensional flow and this condition

is applied to three sides of the bagiwo-side check banks and
i bottom check bank The one-dimensional flow equation for toe-
+AD22V_|SA (24) furrows is also solved using the “split-operator” approach.

Initial and Boundary Conditions Internal Boundary Condition

The methodology used for the numerical solution is explicit in The solution of the overland flow problem in undulating basins
nature, requiring initial and boundary conditions.tAt0, a finite causes mass balance errors due to varying soil surface elevations.
value of water depttH (Bed elevatior- 10"8 m) is assigned at ~ The problem arises when a node is characterized by a bottom
each node, to start the computation and avoid a numerical singu-elevation higher than the water surface elevation in a neighboring
larity. This method does not introduce significant err@fyan node. In this case, flow would occur outward from the dry node,
et al. 1994a; Singh and Bhallamudi 199Ifiltration depth is set  which is a physical impossibility. This problem causes errors in
to zero at all the nodes at tinte=0. The land surface elevation, the estimation of final mass balan¢gapata and Playan 2000
Zp(X,y) is an initial condition and an input to the model. This problem was reported by Strelkoff et #1996 who sug-
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Fig. 7. Layout of single rectangular contour basin with line and point inflow

gested a procedure to overcome the problem by specifying antion season 1998-1999 at Wyanda, New South Wales, Australia.
internal boundary condition as a practical means of dealing with Field experiments were carried out with a side ditch lay@ig.

an undulating basins surface. At each time step, the model checks7) in which detailed monitoring of waterfront during advance and
dry and wet nodega wet node is defined as one with a minimum recession, flow depth, inflow and outflow was carried out. Field
depth of 1 mn. If the water surface slopes away from a dry node and grid nodes were mapped using a global positioning system
the advected velocities and diffusion coefficients at that node are(GPS. The GPS was also used to monitor the advance of the
set to zero. This problem is more acute at nodes near the toe+waterfront over the field by regularly walking along the water-

furrow due to the difference in bed elevations. front. Inflow and outflow were monitored using a flow meter in-
stalled in flumes in the supply channel and at the outlet points
Determining Infiltration (Figs. 2 and R The rectangular experimental bay was 384 m long

by 78 m wide &3 ha). The basin which was sown to subclover

Kostiakov—Lewi . . by E(L4 by th ) had been laser leveled in both directions about 5 years earlier
ostiakov—Lewis expression given by E4) or by the quasi- although it still has local undulations due to movement of sheep

analyglcaltkl]:’atrlaﬂge 5}({15)(.1 As thefconsputat;]on progrgss?rs], It ISI and vehicles. The contour map of the field was obtained from a
Fc:szlin?iltratl c\iNdenth N aldvsn(l:er rornthriatch ez atrtlo fefll We Saiﬁuéurvey based on 12.8x2.5m grid spacing. The basin was
ate ated depth could be larger than the depth ot fiow ava nearly dead level with slopes of about 0.013 and 0.065% along
able or alternatively the wetting front may not yet have reached . . -
. the length and width of the basin, respectively.

that node. Therefore a procedure is introduced that only allows o .
S . o . A combination of three sources of data were used to validate
infiltration to start when a node is wet, which is characterized by .

the model. These are:
a flow depth equal or greater than£0om. If the depth of flow at ) T ) ) )
a wet node is less than the infiltrated depth, then flow depth is 1. Basin monitoring data including advance, recession and flow

Infiltration in Eq. (24) is determined by using the empirical

reset to 108 m to avoid computation of a negative flow depth. depth were collected during the actual field experiments on a
This procedure introduces a small mass balance error due to vio- commgrmal layout; . .
lation of the continuity equation. This mass balance error is mini- 2. Infiltration and roughness parameters obtained from the |lit-
mized by equating the infiltration depth to the flow depth avail- erature on experiments conducted on similar soils in the vi-
able at that node and determining the new intake opportunity time ~ Cinity of the experimental aredaheshwari and Jayaward-
corresponding to this new infiltration depth by inversely solving ane 1992; Maheshwari and McMahon 1992; Hume 1993
the Kostiakov—Lewis equatiofPlayan et al. 1994a; Singh and and,. ) o .
Bhallamudi 1997. 3. Basic soil characteristics data collected from the experimen-
If Parlange’s equation is used, a new intake opportunity time is @l basins. _ _
calculated at a wet node for each time step using (E§. The It is important to note that no parameter in the model was cali-
equation is then solved iteratively using a Newton—Raphson tech-Prated during the validation process. Instead, the model was in-
nique for a given value ofi and intake opportunity time. dependently validated using that outlined above. The validation

variables used were cumulative area wetted during advance, wa-
terfront advance pattern, and advance water balance. The model
using the Kostiakov—Lewis infiltration equation was validated
The computer model was validated using field data obtained from against field data collected from the first irrigation whereas the
an experiment conducted on a commercial farm during the irriga- model using Parlange’s quasianalytical infiltration equation was

Model Validation
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Fig. 8. Area wetted during advance for single rectangular contour basin with line inflow

validated against data collected during the second irrigation. Thefield observed advance data. Fig. 8 shows a comparison of area
model validation was carried out ugira 2 stime step which wetted during advance computed by the model and field observed
proved to yield the best model performance taking into account data. It can be observed that the modeling results satisfactorily
stability and accuracy. match the field observations. Variations between the observed and
predicted data can be ascribed to spatial variation in topography
caused by sheep and vehicle traffic, spatial variation in soil infil-
tration characteristics and the variation in actual inflow rates. The
spatially varying factors are not accounted for by the model given
In the first irrigation, a contour basin with a toe-furrows on three that the discretization scale exceeds the scale of resolution re-
sides and a supply channel was irrigated using line inflow from quired to account for these effects.
the side supply channel with an average discharge of 0%1§ m
for 8.33 h (actual supply discharge varied from 0.12 to
0.18 n/s). Outflow was allowed from the supply side of the
basin into the supply channel after the inflow was cutoff. Figs. 9 and 10 show the waterfront configuration obtained from
The parameter of the Kostiakov—Lewis equation were taken asthe model and field observed advance at 2 and 4 h, respectively,
k=0.055 m/§%%6 a=0.026; andb=3.0 mm/h. At the time ofthe  during the advance phase with inflow occurring only from the
experiment, the soil was completely dry and heavily cracked. supply channel. The direction of flow is from left to right. It can
Manning’s roughness coefficient was taken as 0.29 based on prebe observed from these figures that the waterfront advance simu-
vious experimental results obtained from similar soil conditions lated by the model matches satisfactorily with field data. These
(Maheshwari and McMahon 1982Actual ground elevation data
were used in the simulation. The contour basin was discretised on
a 6.25 mx 6.4 m grid inx andy directions, respectively, yielding Observed: ------- Predicted:
a total of 806 nodes, 62 in thedirection and 13 in theg direc-
tion. The elevations of additional intermediate nodes were deter-

Model Validation Using Kostiakov—Lewis Infiltration
Equation

Waterfront Advance

mined using linear interpolation of the observed dataly 217 0T
node elevations were obtained during the survey of the)figlke

model was run for the total simulation time of 43 h until the 60
lateral flow ceased. Recession was very slow as outflow was al- 50

lowed only as backflow into the supply channel through the toe-
furrows. In common practice farmers allow water to drain into the
supply channel as well as into downstream basin through check
gates located on the check bank. These gates are normally locatec| & 30}

]
> ] <
v

stance {m)
ey
<

near the inlet end of the basin. —_p

Field monitoring of the recession was hampered by the fur- 20}
rowing effect of the tillage equipment, movement of sheep and
small-scale topographical effects. These microtopography effects 10}
could not be accounted for with the grid spacing used for the |
discrete model. % 50 100 150 200 250 300 350

Distance (m)
_> X

Cumulative Area Wetted During Advance

Basin overland flow is a two-dimensional flow problem. In order Fig. 9. Compan;on of wa.lterfr.ont advance with model prediction
after 2 h(arrows indicate direction of flow

to take this into account, model outputs were contrasted against
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Observed; ------- Predicted: Table 1. Values of Parameters of Parlange Infiltration Equation

Parameter Value
70 0; 0.38
bs 0.47
50 K, 5.67% 10 1° m/s
sol Ks 2.29x10°% m/s
YE L S 2.64x10°4 m/\/s
§ 401 3 0.95
2 hgtr —-0.02m
A 30
—>
20t
Validation of Simulation Model Using Parlange
1or i Infiltration Equation
00 50 100 150 200 25'0‘ 300 350 The quasianalytical Parlange infiltration equation is based on pa-
Distance (m) rameters depending on soil properties, depth of overland flow and
——> X

time. The use of this equation requires the determination of soil
Fig. 10. Comparison of waterfront advance with model prediction _satu_rgt_ed hydra_ulic conductiyity, u_nsatL_Jrated hydraulic cond_u_ctiv-
after 4 h(arrows indicate direction of flow ity, mmgl and final volumetric soil moisture content, sorptivity
and soil parameterd and h,,. Some of these parameters were
obtained by monitoring soil moisture before and after the irriga-
tion event and measuring the basic soil properties in the labora-
results indicate that the model has the capability of simulating the tory and field. The values of initial and final soil moisture were
behavior of overland flow with satisfactory accuracy. These re- measured during the field experiments. The values of other pa-
sults the capacity of the model to simulate satisfactory accuracyrameters such as unsaturated hydraulic conducti€itysaturated
using a line inflow boundary condition. hydraulic conductivityKs, and sorptivityS were drawn from a
field monitoring study conducted on a similar soil in the experi-
mental area(Smith 1999. The values of parametdr and h,
suggested by Haverkamp et 81990 were used in the simula-
The comparison of water volume predicted from the model and tion. Table 1 shows a summary of all the equation parameters
observed in the field is shown in Fig. 11. The volume of water used in the computation of infiltration.

during advance obtained from the model is compared with the  During the second irrigation of the season, the basin was irri-
volume of inflow from the supply channel. The predicted volume gated from the side supply channel with an average discharge of
of water during advance consists of overland volume and infil- 0.2 nf/s for 4 h. An additional point inflow(drainage runoff
trated volume. The absolute deviation between observed and prefrom the upstream basin was also included. The average rate of
dicted volume at the end of advance was about 8%. The mainthe point inflow was taken as 0.025fs, which is the same as
source of deviation can be attributed to the uniform infiltration the value observed during the trial. After the inflow was cut off,
parameters adopted for the whole basin as spatial variability of outflow was allowed back into the supply channel and into the
infiltration parameters was not considered in the present study. downstream basins through the check bank.

Advance Volume Balance

—e— Observed —&— Predicted
4.5
4
35
0 3
-
Z st
1
0.5
0
0 1 2 3 4 5 6 7 8
Time (hour)

Fig. 11. Comparison of volume of water as predicted and observed during advance phase
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Fig. 12. Wetted area during advance for second irrigation using Parlange infiltration equation

Manning’s coefficient for the simulation of this irrigation to the fact that Parlange infiltration equation includes the effect of
event was taken as 0.068/aheshwari and McMahon 1992  surface flow depth which is an important factor once water has
given that the soil was wet and all the cracks were closed indi- reached a point in the field and depth begins to increase and later
cating less resistance to flow compared to the first irrigation. The recede over time. It has been shown in earlier surface irrigation
model was run for a total of simulation time of 24 h. Cumulative models(Singh 1996 that for different values of sorptivit$ and
area wetted during advance, configuration of the waterfront ad- saturated hydraulic conductivit{ the inclusion of surface flow
vance and advance water balance obtained from the model simudepth in the infiltration calculation affects the overall irrigation
lation were used against field observed data to test model accu-simulation results.
racy. The inclusion of flow depth alters the overall water balance
more significantly that it does the advance trajectory. Therefore, it
appears to be important to include the effect of flow depthn
the infiltration prediction while simulating irrigation. One disad-
Fig. 12 shows the comparison of wetted area during advance ob-vantage of using Parlange equation is a fivefold increase in com-
tained from field observations and modeling results using the Par-putation time due to the iterative method used to calculate depth
lange infiltration equation. It can be observed that the model re- of infiltration using a Pentium-11-333 MHz based personal com-
sults compare well with the experimental data. The error in puter. With the availability of faster personal computers, this dis-
predicting the cumulative time employed to cover the basin area advantage becomes less significant.
after completion of the advance phase is 7%. Deviations in the  Figs. 12—14 indicate that the simulation model using the Par-
trajectory of wetted area prediction are due to the same reasondange infiltration equation is capable of simulating the various
mentioned earlier such as soil variability, minor topographic un- phases of an irrigation event with satisfactory accuracy. The use
dulations, spatial variability of infiltration and the variation in
actual inflow rates which cannot be accounted for in the model.

Cumulative Area Wetted During Advance

Observed: ------- Predicted:

Waterfront Advance

Figure 13 shows the waterfront advance pattern obtained from the 701
simulation model using Parlange infiltration equation after 30 min

of elapsed time. This run also incorporates inflow from the supply 60
channelline inflow) and drainage runoff from the upstream basin 50
(point inflow). The direction of flow of water for line inflow was y g >
from left to right as indicated in Fig. 13. = 40
The modeling results obtained with the Parlange’s infiltration 8
equation compare well with the observed pattern of waterfront 230
advance. These results also indicate that the model is capable of —

incorporating drainage runoff inflow from the upstream basin 20
which starts at the same time as inflow from the supply channel.

10}
Advance Volume Balance 0 . /\ . . .
. . 0 50 106 150 200 250 300 350
Fig. 14 shows the observed water balance during the advance Distance (m)
phase and that predicted by the model using Parlange infiltration —_— X

equation. The cumulative volume of water during advance pre-
dicted by the model shows good agreement for the whole of the
advance phase. This good accuracy of prediction can be attribute?

Fig. 13. Waterfront advance pattern after 30 min during second irri-
ation(arrows indicate direction of flow
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Fig. 14. Water balance during advance phase as predicted by Parlange infiltration equation

of this infiltration model depends on the availability of the soil
and infiltration parameters. With the availability of these param-

Notation

eters the user has a choice of selecting either the Parlange infil-The following symbols are used in this paper:

tration equation or the empirical Kostiakov—Lewis equation. The
results indicate that while both these equations do not affect the

simulation result significantly in terms of advance time and pat- p,, D,,,D;,

tern, the use of Parlange infiltration equation can provide a more
accurate water balance approximation. It can also be speculated
that the use of Parlange infiltration equation can better represent
soil moisture condition as it takes into affect of soil moisture into
the prediction of infiltration. However such a comparison was not
undertaken in this study.

Conclusions

A two-dimensional mathematical computer simulation model was
developed to simulate the hydraulic processes involved in the
irrigation of contour basin layouts in southeast Australia. The
model is based on the zero-inertia approximation of the shallow
water flow equations, leading to a two-dimensional advection—
diffusion equation including infiltration sink term. The model
handles infiltration using either the empirical Kostiakov—Lewis
equation or the quasianalytical Parlange equation. The two-
dimensional advection—diffusion equation was found to be ca-
pable of describing shallow water flow in contour basin irrigation
systems accurately over a range of flow and layout configurations.
This single equation was solved by the method of characteristics
coupled with bicubic splines for rectangular grid discretization.

The computer simulation model was validated against field
data collected on a commercial contour basin layout. The vari-
ables used for the validation of the model were cumulative wetted
area during advance, waterfront advance pattern and volume bal-
ance during advance. Modeled and observed cumulative wetted
area and waterfront advance patterns were in good agreement
barring minor variations which can be ascribed to local undula-
tions caused by sheep tracks and vehicle movement, spatial varia-
tion of infiltration and variation in inflow rates which are not
included in the present scale of modeling.
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a
b

infiltration empirical constant;

infiltration empirical constant;

diffusion coefficients;

acceleration due to gravity (nfjs

water surface elevation above datgm);
water depth(m);

minimum soil moisture pressure value on
wetting cycle(m);

volumetric rate of infiltration per unit area
(m/s);

soil hydraulic conductivity at initial
moisture contentm/s);

soil hydraulic conductivity at saturation
(m/s);

empirical infiltration constant;

Megaliter (1,000 ri);

Manning roughness coefficient;
discharge vector (Afs);

component of discharge vector per unit
width in x direction (n#/s);

component of discharge vector per unit
width in y direction (n#/s);

sorptivity (m/\/s);

friction slope;

component of friction slope in direction;
component of friction slope iy direction;
time (s);

intake opportunity time, or time since
wetting front is arrived at point or node);
advected velocity irx direction(m/s);
velocity in x direction(m/s);

advected velocity iry direction(m/s);
velocity iny direction(m/s);

Cartesian coordinatgsn);

value ofx andy on fixed boundary;
bottom elevation above datufm);

time step(s);

shape parameter related to conductivity of
solil;

= angle between flow direction andaxis;

initial soil moisture; and

= soil moisture at saturation.
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Subscripts
B boundary nodes;
i,j location of node on computation grid; and
X,y = Cartesian coordinates.

References

Chaudhry, M. H.(1993. Open-channel flow, Prentice-Hall, Englewood
Cliffs, N.J.

Clemmmens, A. J., Strelkoff, T., and Dedrick, A. 981). “Develop-
ment of solution for level-basin designJ. Irrig. Drain. Eng. Div.,,
ASCE, 107(3), 265-279.

de Boor, C. D.(1978. A practical guide to splines, Springer, New York.

Edenhofer, J., and Schmitz, G1985. “An analytical solution of the

infiltration equation for general initial and boundary conditions.”

Proc., 21st Congress IAHR, Melbourne, Australia.

Glass, J., and Rodi, W1982. “A higher order numerical scheme for

scalar transport.Comput. Methods Appl. Mech. Eng., 31, 337-358.

Haverkamp, R., Parlange, J. Y., Starr, J. L., Schmitz, G., and Fuentes, C.
(1990. “Infiltration under ponded conditions: 3. A predictive equa-

tion based on physical parameter§dil Sci., 14905), 292—-300.
Holly, F. M., Jr. and Komatsu, T1983. “Derivative approximations in
the two-point fourth-order method for pollutant transporBfoc.,
Frontiers in Hydraulic Engineering, ASCE, Reston, Va., 349—355.
Holly, F. M., Jr., and Preissmann, A1977). “Accurate calculation of
transport in two dimensions.J. Hydraul. Div., Am. Soc. Civ. Eng.,
10311), 1259-1277.

Holly, F. M., Jr., and Toda, K(1985. “Hybrid numerical schemes for

linear and nonlinear advectionProc., 21st Congress IAHR, Mel-
bourne, Australia.

Holly, F. M., Jr., and Usseglio-Polatera, J. K1984). “Dispersion simu-
lation in two-dimensional tidal flow.J. Hydraul. Eng., 1107), 905—
926.

Hume, I. H.(1993. “Determination of infiltration characteristics by vol-

ume balance for border check basin&gric. Water Manage.,
23(1993, 23-39.
Khanna, M., Malano, H. M., Fenton, J. D., and Turral,(R003. “Two-

dimensional simulation model for contour basin layouts in southeast

Australia. II: Irregular shape and multiple basing.” Irrig. Drain.
Eng., 1295), 317-325.
Komatsu, T., Holly, F. M., Jr., Nakashiki, N., and Ohgushi, (£985.

“Numerical calculation of pollutant transport in one and two dimen-

sions.” J. Hydrosci. Hydr. Eng., 3(2), 15-30.

Komatsu, T., Ohgushi, K., and Asai, K1997. “Refined numerical
scheme for advective transport in diffusion simulatiod."Hydraul.
Div.,, Am. Soc. Civ. Eng., 1231), 41-50.

Kostiakov, A. V. (1932. “On the dynamics of the coefficient of water
percolation in soils and on the necessity for studying it from a dynam-
ics point of view for purposes of ameliorationProc., Trans. Sixth
Comm. Int. Soc. Soil Sci., Moscow, Part A, 17-21.

Maheshwari, B., and Jayawardarne, (1992. “Infiltration characteris-
tics of some clayey soils measured during border irrigatidkgric.
Water Manage., 21, 265—-279.

Maheshwari, B., and McMahon, T. A1992. “Modeling shallow over-
land flow in surface irrigation.”J. Irrig. Drain. Eng., 1182), 201—
217.

Parlange, J.-Y., Lisle, I., Braddock, R. D., and Smith, R(1®82. “The
three-parameter infiltration equationSoil ci., 1336), 337—-341.

Playan, E., Walker, W. R., and Merkley, G.(RP9944a. “Two-dimensional
simulation of basin irrigation. I: Theory."d. Irrig. Drain. Eng.,
120(5), 837—-856.

Playan, E., Walker, W. R., and Merkley, G.(P994h. “Two-dimensional
simulation of basin irrigation. II: Applications.J. Irrig. Drain. Eng.,
12Q(5), 857-870.

Schmitz, G., Haverkamp, R., and Velez, O. (985. “A coupled
surface-subsurface model for shallow water flow over initially dry
soil.” Proc., 21st Congress IAHR, IAHR, Melbourne, Australia.

Schohl, G. A., and Holly, F. M., Jt1991). “Cubic-spline interpolation in
langrangian advection computationl” Hydraul. Eng., 117(2), 248—
253.

Shikin, E. V., and Plis, A. 1(1995. Handbook on splines for the user,
Chemical Rubber Corp., New York.

Singh, V. (1996. “Computation of shallow water flow over a porous
medium.” Ph.D. thesis, Indian Institute of Technology, Kanpur, India.

Singh, V., and Bhallamudi, S. M1997. “Hydrodynamic modeling of
basin irrigation.”J. Irrig. Drain. Eng., 1236), 407—-414.

Smith, J.(1999. “Draft report on determination of rice soil hydraulic
properties by Guelph and Disc permeametry.” CSRIO Land and
Water, CSIRO, Australia

Strelkoff, T. S., Tamaini, A. H. Al-, Clemmens, A. J., and Fangmeier, D.
D. (1996. “Simulation of two-dimensional flow in basins and bor-
ders.” Presentation at the Proc., ASAE Annual International Meeting,
Phoenix Civic Plaza, Phoenix.

Zapata, N., and Playan, E2000. “Simulating elevation and infiltration
in level-basin irrigation.”J. Irrig. Drain. Eng., 126(2), 78—84.

316 / JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2003



