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Abstract: Contour basin irrigation layouts are used to irrigate rice and other cereal crops on heavy cracking soils in Southeast Australia.
In this study, a physically based two-dimensional simulation model that incorporates all the features of contour basin irrigation systems
is developed. The model’s governing equations are based on a zero-inertia approximation to the two-dimensional shallow water equations
of motion. The equations of motion are transformed into a single nonlinear advection–diffusion equation in which the friction force is
described by Manning’s formula. The empirical Kostiakov equation and the quasi-analytical Parlange equation are used to model the
infiltration process. The governing equations are solved by using a split-operator approach. The numerical procedure described here is
capable of modeling rectangular basins; a procedure for irregular shaped basins is presented in Paper II. The model was validated against
field data collected on commercial lasered contour layouts.
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Introduction

80% of Australia’s national irrigated area is located in the
Murray–Darling Basin, which covers parts of New South Wales,
Victoria, Queensland, and South Australia. The Murray–Darling
Basin located in the southeast of Australia covers 1,061,469 km2,
equivalent to 14% of the country’s total area. Irrigated agriculture
in Australia has resulted in substantial benefits to individual rural
communities and the nation as a whole. It accounts for 28% of the
total value of all agricultural production in Australia and contrib-
utes one third of the national output from rural industries by pro-
ducing most of Australia’s dairy products, cotton, rice, fruit, veg-
etables, and wine.

Contour basin irrigation layouts are used to irrigate rice in
heavy soils in the Murray–Darling River basin in southeastern
Australia. Most of the rice cultivation in Australia is done on
these layouts, which are found in the states of New South Wales,
Victoria, and Queensland. Approximately half of the irrigated
land of southern New South Wales is developed under contour
basin irrigation systems. They are used primarily on soils that
have very low infiltration rates. Contour basin layouts in south-

east Australia exhibit particular features which distinguish them
from similar forms of irrigation elsewhere in the world.

In these layouts, water is applied to group of multiple basins
divided by check banks constructed across the slope. These are
made by borrowing soil from the basin resulting in a toe-furrow
along the banks. The basins are filled to the desired depth of
water, which is retained until it infiltrates into the soil. The excess
water is drained back into the supply channel and into the next
basin. A typical layout of a contour basin irrigation system is
shown in Fig. 1. The water flow patterns during inflow/advance
and recession/outflow are shown in Figs. 2 and 3.

Contour layouts are designed and used for cultivation of rice
where ponding of water is required. Due to shortage of irrigation
water, the recent cap on water allocation in the Murray–Darling
basin, and growing concern about the environmental impacts of
waterlogging and salinity, the agriculture department in the area
promotes crops with low irrigation requirements to be grown in
rotation with rice to minimize adverse impacts on the environ-
ment and ground water. Crop rotation will also help improve the
soil structure and organic matter and will ultimately enhance the
water use efficiency without affecting the net income of the farm-
ers.

Old layouts are inefficient when used with crops other than
rice which do not require ponding of water. This is due to poor
drainage from the basin leading to overirrigation, groundwater
accession, and poor productivity. Similar problems of poor drain-
age also occur with rice cultivation when basins must be drained
during the maturing stage prior to harvest.

Since rice has been traditionally grown on these soils with low
permeability it is vital to introduce management flexibility that
enables farmers to grow other crops on the same layouts that will
yield better returns and will provide an alternate management
option. However, existing practices for upgrading contour layouts
are guided only by experience and intuitive understanding.

Overseas criteria and experience are not applicable to these
situations as upland crops are not irrigated on contour irrigation
systems. Basin irrigation systems used in other countries are usu-
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ally of single closed basins, which are independent of each other
and not hydraulically connected.

There are many design parameters which influence hydraulic
processes during an irrigation event in contour basin layouts. It is
very difficult to predict and compare the performance of alterna-
tive design layouts without using a physically based simulation
model to describe the process. The development of design guide-
lines and benchmarks for contour basin layouts can only be simu-
lated by modeling all the hydraulic processes involved in an irri-
gation event. This paper describes a two-dimensional simulation
model designed to evaluate the performance of existing layouts
and to provide a design tool that can be used for design of new
layouts and developing general guidelines for design and manage-
ment of contour basin layouts.

Model

The design and management of contour basin layouts for rice and
nonrice crops requires detailed knowledge of the hydraulics of
overland flow, infiltration, and drainage behavior. Several two-
dimensional mathematical models have been developed for simu-
lation of overland flow conditions in basin irrigation�Playan et al.
1994a; Strelkoff et al. 1996; Singh and Bhallamudi 1997�. Playan

et al. �1994a,b� and Singh �1996� developed two-dimensional
basin irrigation models based on shallow water equations using
the Kostiakov–Lewis equation to describe infiltration. Strelkoff
et al. �1996� developed their simulation model based on a zero-
inertia approximation of the two-dimensional shallow water equa-
tions. These models are used for individual closed basins in which
drainage from the basin is ignored. Moreover none of these mod-
els is able to describe typical contour basin systems with the
peculiar characteristics of those found in Southeast Australia such
as presence of toe-furrows, irregular shapes, and multiple basin
operation involving outflow from one basin to another through the
check banks and backflow into the supply channel.

In this study, a two-dimensional simulation model for contour
basin irrigation is developed. The model is based on the zero-
inertia approximation of the Saint–Venant Equations�Chaudhry
1993�. In this model, the equations are transformed into a single
nonlinear advection–diffusion equation, in which friction forces
are described using the Manning equation, and infiltration is de-
scribed using the empirical Kostiakov–Lewis equation or the qua-
sianalytical Parlange equation.

There are many finite-difference and finite-element methods
available for solving nonlinear equations, but most are plagued by
the difficulty in approximating both the advective and diffusive
terms of the equation with comparable accuracy�Holly and
Usseglio-Polatera 1984�. One way of obtaining acceptable accu-
racy is by solving the advection and diffusion terms using differ-
ent methods for each, in a ‘‘split-operator’’ approach. Under this
approach, advection is solved using a characteristic method
whose favourable performance in one and two dimensions has
been demonstrated�Holly and Preissmann 1977; Glass and Rodi
1982; Holly and Usseglio-Polatera 1984�. The method of approxi-
mation of the advection component is accurate when combined
with appropriate cubic spline interpolation�Schohl and Holly
1991�. Here a cubic spline interpolation is used with the method
of characteristics and also for the diffusion component. This ap-
proach provides an alternative to the existing methods for
advection–diffusion type equations with nearly the same accuracy
while improving the efficiency of the solution.

This paper deals with the numerical scheme used for the solu-
tion of governing equations with regular�rectangular� grid discre-
tisations. The model is capable of dealing with point or linear
water inflow and several simultaneous inlet points. The model is
also capable of describing the drainage runoff from one basin to
an adjacent one. Field experiments were conducted on a commer-

Fig. 3. Water flow pattern in contour basin layouts during recession
and outflowFig. 1. Typical layout of contour basin irrigation system

Fig. 2. Water flow pattern in contour basin layouts during inflow and
advance
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cial layout to assess the performance of the existing system and to
validate the models. However, a different numerical scheme was
developed for irregular field shapes and multiple basin operation
and is presented in Paper II by Khanna et al.�2003�.

Governing Equations

Overland flow is described by the depth-averaged flow equations
�Chaudhry 1993�. These equations in hydrodynamic form consist
of the continuity equation and the momentum equation. The two-
dimensional continuity equation for shallow water flow is written
as

�H

�t
�

�qx

�x
�

�qy

�y
�Is�0 (1)

whereqx�uh andqy�vh, discharge per unit width (m2/s) in the
x and y directions respectively;h�water depth�m�; u and v
�velocities in thex and y directions �m/s�; H�h�z0�water
surface elevation above the datum;z0�bottom elevation above
datum �m�; Is�volumetric rate of infiltration rate per unit area
�m/s�; and t�time �s�.

The momentum equations for shallow overland flow can be
simplified by neglecting the inertial terms. The effect of these
terms becomes small compared with those describing the effect of
gravity and friction in shallow water flow situations. This is typi-
cal of agricultural fields, where velocities are low due to high
vegetation resistance, small depths�high relative roughness�, flat
slope and low discharge. The momentum equations in thex andy
directions after neglecting inertial terms are given by

�H

�x
�S f x�0

(2)

�H

�y
�S f y�0

whereS f x and S f y�components of friction slope in thex and y
directions. Now the Manning equation is used to relate the dis-
charge vector to the head gradient�negative of friction slope�. In
one-dimensional uniform flow, the dischargeq is described by the
Manning equation as follows:

q�
1

n
h5/3S f

1/2 (3)

wheren�Manning roughness coefficient; andS f�friction slope.
The discharge vector per unit width inx andy directions can be
generalized as follows:

qx�q cos�
(4)

qy�q sin�

where ��tan�1(qy /qx)�angle between the flow direction and
positive x direction. In diffusion flow, the friction slope is as-
sumed to be equal to the slope of water surface, and is calculated
as

S f��� �H

�x � 2

�� �H

�y � 2

(5)

The discharge components in thex and y directions can be ob-
tained by combining Eqs.�2�, �3�, �4�, and�5� which yield
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The overland flow equations can now be transformed into a single
nonlinear adevection–diffusion equation by substituting theqx

andqy from Eq.�6� into the mass conservation Eq.�1�, and solv-
ing by differentiating and separating the coefficients of the time
derivative, the first, second, and mixed spatial derivatives ofH
yields
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whereU andV are given by
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Eq. �7� describes two-dimensional overland flow in advection–
diffusion form including infiltration. The left-hand side of the
equation is the advection component in whichU and V are ad-
vection velocities. The right-hand side is the diffusion component
with D11, D12, andD22 as diffusion coefficients. This is similar
to the advection–diffusion equation for scalar transport. Infiltra-
tion is considered as a sink term on the right hand side of the
equation.

The diffusion coefficientsD11, D12, andD22 are given by
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Overland Flow in Toe-Furrow

Contour basins have a toe-furrow on three sides. Flow into con-
tour basins enters and exits through the toe-furrows. Flow in the
toe-furrow needs special treatment, as the toe-furrow is com-
pletely filled long before the interior of the basin. The depth and
cleanliness of the toe-furrow was observed to significantly affect
the rate of flow at which water advances over the surface of the
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basin. The flow depth in the toe-furrow can thus be considered to
act as a boundary to overland flow from which water advances
over the basin. In this study, flow in the toe-furrow is treated
separately from the interior of the basin as one-dimensional flow
with infiltration.

The derivation of the one-dimensional flow equation for the
toe-furrow is the same as that of Eq.�7� for two-dimensional
overland flow. The advantage of using the same form of equation
is that it can be solved using the same numerical scheme used for
the two-dimensional case.

Infiltration

Two alternative infiltration equations, namely Kostiakov–Lewis
and Parlange equations are used to describe infiltration in the
model.

Kostiakov–Lewis Equation

Many of the earlier surface irrigation models�Clemmens et al.
1981; Playan et al. 1994a,b; Singh and Bhallamudi 1997� have
described infiltration using empirical equations, in particular the
modified Kostiakov�1932� equation. The present model also in-
corporates the empirical infiltration equation given by
Kostiakov–Lewis�Clemmens et al. 1981; Playan et al. 1994a�.
Empirical parameters for this equation are available for some soil
types. Furthermore, this equation is easy to incorporate into the
simulation model and imposes low computational overhead.

This equation is given by

Z�ktop
a �btop (13)

whereZ�cumulative infiltration volume per unit area�m�; a, k,
b�empirical constants; andtop� intake opportunity time, or the
time since the wetting front arrived at the point or node in con-
sideration. The infiltration rate can be determined by differentiat-
ing Eq. �13� with respect to intake opportunity time

Is�
dZ

dt
�aktop

a�1�b (14)

whereIs�volumetric rate of infiltration per unit area�m/s�.

Parlange Equation

Infiltration can also be described using the quasianalytical Par-
lange with three soil characteristic parameters. These parameters
are sorptivity S, hydraulic conductivity parameterK1 , and a
shape parameter� which is related to hydraulic conductivity of
the soil�Parlange et al. 1982�. Sorptivity S is related to soil water
diffusivity. The second parameter,K1�Ks�Ki , is the difference
between the hydraulic conductivity�m/s� at saturation�soil mois-
ture ��� s), and the hydraulic conductivity�m/s� at uniform ini-
tial moisture content�soil moisture��� i).

This equation was further modified, by Haverkamp et al.
�1990�, by introducing an additional parameterhstr , that takes
into account the possibility of an infinite diffusivity near satura-
tion. This is the minimal soil pressure value in the wetting cycle
at which a continuous nonwetting phase exists in the porous me-
dium. hstr is constant in time and independent of the changing
boundary condition values. This equation is reformulated through
differentiation and then analytically integrated to obtain an equa-
tion in terms of intake opportunity time with an assumption of
constant positive head over time�Edenhofer and Schmitz 1985;
Schmitz et al. 1985; Singh 1996� to yield

top�
S2�2hstrKs��s�� i�

2��1����Ks�Ki�
2 ln�1��

Ks�Ki

Is�Ki
�
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��S2�2hstrKs��s�� i��2�1���Ks�h�hstr���s�� i�
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2 �

� ln� Is�Ks

Is�Ki
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in which � i� initial soil moisture at the point;� s�saturated soil
moisture content;S�sorptivity (m/�s); hstr�minimum soil
moisture pressure-head value in the wetting cycle�m�; and �
�shape parameter is an indicator of the variation of hydraulic
conductivity with the soil moisture content and is given by the
relation

����s�� i��Ks�Ki����
� i

�s

�Ks�Ki�d� (16)

Eq. �15� can be used to determine infiltration rateIs by iteration
for a given intake opportunity time, depth of flowh and other soil
parameters. Depth of flowh is considered to be invariant with
time for the purpose of calculating infiltration rate�during each
time step�.

Numerical Scheme

The two-dimensional model formulated in this study is based on
the analytical description of the following processes:
1. Surface flow governing equations by a single advection–

diffusion equation, and
2. Subsurface flow described either by the Kostiakov–Lewis

infiltration model or the quasianalytical physically based
Parlange model.

The advection–diffusion equation considers the combined effect
of the advection and diffusion processes, which describe the
physical transport of mass. The solution of this equation can be
performed in two separate stages for the advection terms assum-
ing there is no diffusion and then the diffusion terms. This is
known as the ‘‘split-operator’’ approach, in which advection and
diffusion are computed independently over short time increments
�Komatsu et al. 1985�.

The advantage of the split-operator approach is that it allows
the use of an accurate scheme for each process�Komatsu et al.
1997�. This approach also helps to exploit the advantage of the
hyperbolic nature of the advection–diffusion equation to devise
characteristic-based numerical schemes which allow natural treat-
ment of boundary conditions and provide a framework for a
simple and accurate methodology�Komatsu et al. 1985�. Using
this approach, the solution is obtained in two steps. The results
from the first or intermediate step for solving the advection terms
are added to the diffusion terms based on the values obtained for
the advection term.

Various numerical schemes can be used for the solution of the
advection and diffusion components. These schemes depend on
the form of discretization of the physical domain in either regular
grid �rectangular� or quadrilateral grid�irregular�. In this study,
regular grid discretization is used for contour basins of regular
shape, while quadrilateral or irregular discretization is used for
basins of irregular shape.�A model for irregular shaped basins is
presented in Paper II; see Khanna et al. 2003.�
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Solution of Advection Term

The choice of method for the solution of the advection component
is the method of characteristics described by several earlier au-
thors �Holly and Preissmann 1977; Glass and Rodi 1982; Holly
and Usseglio-Polatera 1984; Holly and Toda 1985; Komatsu et al.
1985; Komatsu et al. 1997�. In this method, neglecting all the
terms on the right hand side of Eq.�7� yields the following ad-
vection equation:

�H

�t
�U

�H

�x
�V

�H

�y
�0 (17)

This equation states that the scalar quantityH of a given fluid
particle does not change along the flow pathline. Such a pathline
is actually a characteristic line for Eq.�17�, and its direction at
any point in the flow domain is given by the following ordinary
differential equations:

dx

dt
�U�x,y ,t �

(18)
dy

dt
�V�x,y ,t �

The characteristic equation that holds along any one of these lines
is

dH

dt
�0 (19)

The solution is carried out by replacing Eq.�17� with the ordinary
differential Eqs.�18� and�19�, which are then integrated numeri-
cally over a space–time grid. The location of the characteristic
lines on a rectangular grid is shown in Fig. 4.

The characteristic line starts at pointP and extends to the node
denoted by (i, j). The solution ofH after advection is given by

H* �xi ,y j ,t����H�xi�Ui, j�,y j�Vi, j�,t � (20)

where��time step. Eq.�20� shows that the advected value ofH
is equal to the value ofH previously at (xi�Ui, j�,y j

�Vi, j�,t).
This implies that if the location of pointP �origin of the char-

acteristic line� at the old time step has been found, the solution of
the advection equation can be completed by determining the value
of H at that point. The key to the characteristic solution, then, is
the accurate interpolation of the internodal values. Holly and Pre-
issmann�1977� used the method of characteristics in conjunction

with Hermite bicubic interpolation to solve the advection part of
the transport equation with minimum numerical damping or os-
cillations. They carried out the interpolation using, not only con-
centration at two nearby points, but also the spatial derivatives
there. This gave good results with fourth-order accuracy in a one-
dimensional scalar transport problem. Glass and Rodi�1982�
modified and extended this method to two-dimensions for simu-
lation of scalar mass transport. Holly and Komatsu�1983� also
modified Holly and Preissmann’s�1977� two-point fourth order
method to an eight-point method. This method had some practical
difficulties in its general implementation�Komatsu et al. 1985�
because each interpolation was based on 64 adjacent points re-
sulting in an overly cumbersome scheme.

Another way of interpolatingH is to construct bicubic-spline-
interpolating polynomials over the entire computational domain at
the old time step. A bicubic spline polynomial, passes through
each data point and is continuous in its zeroth, first, and second
derivatives. Construction of the bicubic spline requires the solu-
tion of a linear algebraic system for the second derivatives
through inversion of a tridiagonal matrix. Implicit in this con-
struction is the imposition of the upstream and downstream
boundary conditions for the second derivatives. Bicubic-spline-
interpolating polynomials were constructed over the entire do-
main �Fig. 5� and used for the estimation ofH at pointP �Shikin
and Plis 1995�. The inner points in the computational domain are
called knots of the grid. The bicubic spline functionF (x,y), over
the entire domain, is defined by

F�x,y �� �
p�0

3

�
q�0

3

cp,q
(i, j)�x�xi�

p�y�y j�
q (21)

and in each cell

Ri j���x,y ��xi	x	xi�1 ,y j	y	y j�1
,

i�0, 1, . . . ,m, j�0,1, . . . ,n (22)

whereRi j represents the entire computational domain. This satis-
fies the conditions

F�xi ,y j��wi j , i�0,1, . . . ,m, j�0,1, . . . ,n (23)

where wi j�value of the function at each node; andcp,q
(i, j)

�spline coefficients. 16 mn coefficientscp,q
(i, j) are needed to con-

struct the bicubic spline. Eq.�23� provides (m�1)(n�1) equa-
tions while additional equations are available in the form of re-

Fig. 4. Discretization of solution domain�rectangular grid�

Fig. 5. Computational domain for bicubic splines

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2003 / 309



strictions on the values of the spline derivatives at the boundary
and corner knots of the grid. The boundary conditions used for
this model require that the following derivatives of the desired
spline be continuous on the linesx�x1 andx�xm�1 :

�S

�x
,
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�y
,
�2S

�x2 ,
�2S
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,
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and the derivatives
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�x�y3 ,
�5S

�x2�y3

be continuous on the linesy�y1 andy�yn�1 . This is known as
the ‘‘not-a-knot’’ condition�de Boor 1978�. Under this condition,
the value of the first and second partial derivatives of the desired
function with respect tox and y need not to be specified on the
boundary knots. A spline satisfying this condition has a greater
than usual smoothness. Once the spline is constructed, its coeffi-
cients are used to interpolate the value ofH at point P.

Solution of Diffusion Term

Nonadvection terms such as diffusion and sources or sinks should
also be estimated in a way compatible with the numerical treat-
ment of advection. The computation of diffusion in the split-
operator approach can be accurately carried out using a variety of
finite difference and finite element numerical schemes�Komatsu
et al. 1997�.

In this model, bicubic splines were again used for calculating
the diffusion terms. The advantage of constructing bicubic splines
is that they also enable the calculation of the second and mixed
derivatives of the function which are required to determine the
diffusion terms at the foot of the characteristic line. These are
calculated at the foot of the characteristic line indicating that the
calculation of the diffusion terms then proceeds along the charac-
teristic line. This approach was found to improve stability. Second
and mixed derivatives ofH are calculated using bicubic splines.

Combining the advected values ofH with the values of the
second and mixed derivatives ofH calculated using the bicubic
splines with respect tox andy , the values ofH at the new time
step are calculated as

Hi, j� t����Hi, j ,t* �� D11

�2Hi, j

�x2 ��D12

�2Hi, j

�x�y

��D22

�2Hi, j

�y2 �Is � (24)

Initial and Boundary Conditions

The methodology used for the numerical solution is explicit in
nature, requiring initial and boundary conditions. Att�0, a finite
value of water depthH �Bed elevation�10�8 m) is assigned at
each node, to start the computation and avoid a numerical singu-
larity. This method does not introduce significant errors�Playan
et al. 1994a; Singh and Bhallamudi 1997�. Infiltration depth is set
to zero at all the nodes at timet�0. The land surface elevation,
z0(x,y) is an initial condition and an input to the model.

Inflow Boundary

A distinct feature of contour basin irrigation in Southeast Austra-
lia is that inflow to the basin occurs as overflow from the side
supply channel as well as from the toe-furrows. Water first enters
from the supply channel and into the toe-furrows, and once all the
toe-furrows are filled water overflows onto the field.

In the computational scheme, the depth of water in the supply
channel is considered to act as a boundary condition to the over-
land flow in the basin. In a multiple basin system, the depth of
flow in the supply channel drops when the water supply is di-
verted onto the second basin upon completion of irrigation in the
first basin. The depth of flow in the supply channel is thus im-
posed as a boundary condition during inflow to the basin as
shown in Fig. 6. This is termed a line inflow boundary condition.
The line inflow boundary condition is defined as a flow depth and
specified as

H�xB ,yB ,t ��h�xB ,yB ,t ��z0�xB ,yB ,t � (25)

whereH(xB ,yB ,t)�water surface elevation at the boundary line-
inflow node; h(xB ,yB ,t)�depth of flow at the boundary line-
inflow node;z0(xB ,yB ,t)�bed elevation at the same point; and
xB and yB�values ofx and y that define the location of these
points on a fixed boundary. The model also incorporates the pres-
ence and effect of a toe-furrow along the basin check bank. The
depth of flow in the toe-furrow acts as a flow boundary to the
overland flow over the basin. The depth of flow in the toe-furrows
is described by assuming one-dimensional flow and this condition
is applied to three sides of the basin�two-side check banks and
bottom check bank�. The one-dimensional flow equation for toe-
furrows is also solved using the ‘‘split-operator’’ approach.

Internal Boundary Condition

The solution of the overland flow problem in undulating basins
causes mass balance errors due to varying soil surface elevations.
The problem arises when a node is characterized by a bottom
elevation higher than the water surface elevation in a neighboring
node. In this case, flow would occur outward from the dry node,
which is a physical impossibility. This problem causes errors in
the estimation of final mass balance�Zapata and Playan 2000�.
This problem was reported by Strelkoff et al.�1996� who sug-

Fig. 6. Line and point inflow boundary
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gested a procedure to overcome the problem by specifying an
internal boundary condition as a practical means of dealing with
an undulating basins surface. At each time step, the model checks
dry and wet nodes�a wet node is defined as one with a minimum
depth of 1 mm�. If the water surface slopes away from a dry node
the advected velocities and diffusion coefficients at that node are
set to zero. This problem is more acute at nodes near the toe-
furrow due to the difference in bed elevations.

Determining Infiltration

Infiltration in Eq. �24� is determined by using the empirical
Kostiakov–Lewis expression given by Eq.�14� or by the quasi-
analytical Parlange Eq.�15�. As the computation progresses, it is
possible that when the advance front reaches a node, the calcu-
lated infiltrated depth could be larger than the depth of flow avail-
able or alternatively the wetting front may not yet have reached
that node. Therefore a procedure is introduced that only allows
infiltration to start when a node is wet, which is characterized by
a flow depth equal or greater than 10�3 m. If the depth of flow at
a wet node is less than the infiltrated depth, then flow depth is
reset to 10�8 m to avoid computation of a negative flow depth.
This procedure introduces a small mass balance error due to vio-
lation of the continuity equation. This mass balance error is mini-
mized by equating the infiltration depth to the flow depth avail-
able at that node and determining the new intake opportunity time
corresponding to this new infiltration depth by inversely solving
the Kostiakov–Lewis equation�Playan et al. 1994a; Singh and
Bhallamudi 1997�.

If Parlange’s equation is used, a new intake opportunity time is
calculated at a wet node for each time step using Eq.�15�. The
equation is then solved iteratively using a Newton–Raphson tech-
nique for a given value ofh and intake opportunity time.

Model Validation

The computer model was validated using field data obtained from
an experiment conducted on a commercial farm during the irriga-

tion season 1998–1999 at Wyanda, New South Wales, Australia.
Field experiments were carried out with a side ditch layout�Fig.
7� in which detailed monitoring of waterfront during advance and
recession, flow depth, inflow and outflow was carried out. Field
and grid nodes were mapped using a global positioning system
�GPS�. The GPS was also used to monitor the advance of the
waterfront over the field by regularly walking along the water-
front. Inflow and outflow were monitored using a flow meter in-
stalled in flumes in the supply channel and at the outlet points
�Figs. 2 and 3�. The rectangular experimental bay was 384 m long
by 78 m wide (�3 ha). The basin which was sown to subclover
had been laser leveled in both directions about 5 years earlier
although it still has local undulations due to movement of sheep
and vehicles. The contour map of the field was obtained from a
survey based on 12.8 m�12.5 m grid spacing. The basin was
nearly dead level with slopes of about 0.013 and 0.065% along
the length and width of the basin, respectively.

A combination of three sources of data were used to validate
the model. These are:

1. Basin monitoring data including advance, recession and flow
depth were collected during the actual field experiments on a
commercial layout;

2. Infiltration and roughness parameters obtained from the lit-
erature on experiments conducted on similar soils in the vi-
cinity of the experimental area�Maheshwari and Jayaward-
ane 1992; Maheshwari and McMahon 1992; Hume 1993�;
and,

3. Basic soil characteristics data collected from the experimen-
tal basins.

It is important to note that no parameter in the model was cali-
brated during the validation process. Instead, the model was in-
dependently validated using that outlined above. The validation
variables used were cumulative area wetted during advance, wa-
terfront advance pattern, and advance water balance. The model
using the Kostiakov–Lewis infiltration equation was validated
against field data collected from the first irrigation whereas the
model using Parlange’s quasianalytical infiltration equation was

Fig. 7. Layout of single rectangular contour basin with line and point inflow
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validated against data collected during the second irrigation. The
model validation was carried out using a 2 s time step which
proved to yield the best model performance taking into account
stability and accuracy.

Model Validation Using Kostiakov–Lewis Infiltration
Equation

In the first irrigation, a contour basin with a toe-furrows on three
sides and a supply channel was irrigated using line inflow from
the side supply channel with an average discharge of 0.15 m3/s
for 8.33 h �actual supply discharge varied from 0.12 to
0.18 m3/s). Outflow was allowed from the supply side of the
basin into the supply channel after the inflow was cutoff.

The parameter of the Kostiakov–Lewis equation were taken as
k�0.055 m/s0.026; a�0.026; andb�3.0 mm/h. At the time of the
experiment, the soil was completely dry and heavily cracked.
Manning’s roughness coefficient was taken as 0.29 based on pre-
vious experimental results obtained from similar soil conditions
�Maheshwari and McMahon 1992�. Actual ground elevation data
were used in the simulation. The contour basin was discretised on
a 6.25 m�6.4 m grid inx andy directions, respectively, yielding
a total of 806 nodes, 62 in thex direction and 13 in they direc-
tion. The elevations of additional intermediate nodes were deter-
mined using linear interpolation of the observed data�only 217
node elevations were obtained during the survey of the field�. The
model was run for the total simulation time of 43 h until the
lateral flow ceased. Recession was very slow as outflow was al-
lowed only as backflow into the supply channel through the toe-
furrows. In common practice farmers allow water to drain into the
supply channel as well as into downstream basin through check
gates located on the check bank. These gates are normally located
near the inlet end of the basin.

Field monitoring of the recession was hampered by the fur-
rowing effect of the tillage equipment, movement of sheep and
small-scale topographical effects. These microtopography effects
could not be accounted for with the grid spacing used for the
discrete model.

Cumulative Area Wetted During Advance

Basin overland flow is a two-dimensional flow problem. In order
to take this into account, model outputs were contrasted against

field observed advance data. Fig. 8 shows a comparison of area
wetted during advance computed by the model and field observed
data. It can be observed that the modeling results satisfactorily
match the field observations. Variations between the observed and
predicted data can be ascribed to spatial variation in topography
caused by sheep and vehicle traffic, spatial variation in soil infil-
tration characteristics and the variation in actual inflow rates. The
spatially varying factors are not accounted for by the model given
that the discretization scale exceeds the scale of resolution re-
quired to account for these effects.

Waterfront Advance

Figs. 9 and 10 show the waterfront configuration obtained from
the model and field observed advance at 2 and 4 h, respectively,
during the advance phase with inflow occurring only from the
supply channel. The direction of flow is from left to right. It can
be observed from these figures that the waterfront advance simu-
lated by the model matches satisfactorily with field data. These

Fig. 8. Area wetted during advance for single rectangular contour basin with line inflow

Fig. 9. Comparison of waterfront advance with model prediction
after 2 h�arrows indicate direction of flow�
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results indicate that the model has the capability of simulating the
behavior of overland flow with satisfactory accuracy. These re-
sults the capacity of the model to simulate satisfactory accuracy
using a line inflow boundary condition.

Advance Volume Balance

The comparison of water volume predicted from the model and
observed in the field is shown in Fig. 11. The volume of water
during advance obtained from the model is compared with the
volume of inflow from the supply channel. The predicted volume
of water during advance consists of overland volume and infil-
trated volume. The absolute deviation between observed and pre-
dicted volume at the end of advance was about 8%. The main
source of deviation can be attributed to the uniform infiltration
parameters adopted for the whole basin as spatial variability of
infiltration parameters was not considered in the present study.

Validation of Simulation Model Using Parlange
Infiltration Equation

The quasianalytical Parlange infiltration equation is based on pa-
rameters depending on soil properties, depth of overland flow and
time. The use of this equation requires the determination of soil
saturated hydraulic conductivity, unsaturated hydraulic conductiv-
ity, initial and final volumetric soil moisture content, sorptivity
and soil parameters� and hstr . Some of these parameters were
obtained by monitoring soil moisture before and after the irriga-
tion event and measuring the basic soil properties in the labora-
tory and field. The values of initial and final soil moisture were
measured during the field experiments. The values of other pa-
rameters such as unsaturated hydraulic conductivityKi , saturated
hydraulic conductivityKs , and sorptivityS were drawn from a
field monitoring study conducted on a similar soil in the experi-
mental area�Smith 1999�. The values of parameter� and hstr

suggested by Haverkamp et al.�1990� were used in the simula-
tion. Table 1 shows a summary of all the equation parameters
used in the computation of infiltration.

During the second irrigation of the season, the basin was irri-
gated from the side supply channel with an average discharge of
0.2 m3/s for 4 h. An additional point inflow�drainage runoff�
from the upstream basin was also included. The average rate of
the point inflow was taken as 0.025 m3/s, which is the same as
the value observed during the trial. After the inflow was cut off,
outflow was allowed back into the supply channel and into the
downstream basins through the check bank.

Fig. 10. Comparison of waterfront advance with model prediction
after 4 h�arrows indicate direction of flow�

Fig. 11. Comparison of volume of water as predicted and observed during advance phase

Table 1. Values of Parameters of Parlange Infiltration Equation

Parameter Value

� i 0.38
�s 0.47
Ki 5.67�10�16 m/s
Ks 2.29�10�6 m/s
S 2.64�10�4 m/�s
� 0.95

hstr �0.02 m
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Manning’s coefficient for the simulation of this irrigation
event was taken as 0.065�Maheshwari and McMahon 1992�
given that the soil was wet and all the cracks were closed indi-
cating less resistance to flow compared to the first irrigation. The
model was run for a total of simulation time of 24 h. Cumulative
area wetted during advance, configuration of the waterfront ad-
vance and advance water balance obtained from the model simu-
lation were used against field observed data to test model accu-
racy.

Cumulative Area Wetted During Advance

Fig. 12 shows the comparison of wetted area during advance ob-
tained from field observations and modeling results using the Par-
lange infiltration equation. It can be observed that the model re-
sults compare well with the experimental data. The error in
predicting the cumulative time employed to cover the basin area
after completion of the advance phase is 7%. Deviations in the
trajectory of wetted area prediction are due to the same reasons
mentioned earlier such as soil variability, minor topographic un-
dulations, spatial variability of infiltration and the variation in
actual inflow rates which cannot be accounted for in the model.

Waterfront Advance

Figure 13 shows the waterfront advance pattern obtained from the
simulation model using Parlange infiltration equation after 30 min
of elapsed time. This run also incorporates inflow from the supply
channel�line inflow� and drainage runoff from the upstream basin
�point inflow�. The direction of flow of water for line inflow was
from left to right as indicated in Fig. 13.

The modeling results obtained with the Parlange’s infiltration
equation compare well with the observed pattern of waterfront
advance. These results also indicate that the model is capable of
incorporating drainage runoff inflow from the upstream basin
which starts at the same time as inflow from the supply channel.

Advance Volume Balance

Fig. 14 shows the observed water balance during the advance
phase and that predicted by the model using Parlange infiltration
equation. The cumulative volume of water during advance pre-
dicted by the model shows good agreement for the whole of the
advance phase. This good accuracy of prediction can be attributed

to the fact that Parlange infiltration equation includes the effect of
surface flow depth which is an important factor once water has
reached a point in the field and depth begins to increase and later
recede over time. It has been shown in earlier surface irrigation
models�Singh 1996� that for different values of sorptivityS and
saturated hydraulic conductivityKs the inclusion of surface flow
depth in the infiltration calculation affects the overall irrigation
simulation results.

The inclusion of flow depth alters the overall water balance
more significantly that it does the advance trajectory. Therefore, it
appears to be important to include the effect of flow depthh on
the infiltration prediction while simulating irrigation. One disad-
vantage of using Parlange equation is a fivefold increase in com-
putation time due to the iterative method used to calculate depth
of infiltration using a Pentium-II-333 MHz based personal com-
puter. With the availability of faster personal computers, this dis-
advantage becomes less significant.

Figs. 12–14 indicate that the simulation model using the Par-
lange infiltration equation is capable of simulating the various
phases of an irrigation event with satisfactory accuracy. The use

Fig. 12. Wetted area during advance for second irrigation using Parlange infiltration equation

Fig. 13. Waterfront advance pattern after 30 min during second irri-
gation �arrows indicate direction of flow�
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of this infiltration model depends on the availability of the soil
and infiltration parameters. With the availability of these param-
eters the user has a choice of selecting either the Parlange infil-
tration equation or the empirical Kostiakov–Lewis equation. The
results indicate that while both these equations do not affect the
simulation result significantly in terms of advance time and pat-
tern, the use of Parlange infiltration equation can provide a more
accurate water balance approximation. It can also be speculated
that the use of Parlange infiltration equation can better represent
soil moisture condition as it takes into affect of soil moisture into
the prediction of infiltration. However such a comparison was not
undertaken in this study.

Conclusions

A two-dimensional mathematical computer simulation model was
developed to simulate the hydraulic processes involved in the
irrigation of contour basin layouts in southeast Australia. The
model is based on the zero-inertia approximation of the shallow
water flow equations, leading to a two-dimensional advection–
diffusion equation including infiltration sink term. The model
handles infiltration using either the empirical Kostiakov–Lewis
equation or the quasianalytical Parlange equation. The two-
dimensional advection–diffusion equation was found to be ca-
pable of describing shallow water flow in contour basin irrigation
systems accurately over a range of flow and layout configurations.
This single equation was solved by the method of characteristics
coupled with bicubic splines for rectangular grid discretization.

The computer simulation model was validated against field
data collected on a commercial contour basin layout. The vari-
ables used for the validation of the model were cumulative wetted
area during advance, waterfront advance pattern and volume bal-
ance during advance. Modeled and observed cumulative wetted
area and waterfront advance patterns were in good agreement
barring minor variations which can be ascribed to local undula-
tions caused by sheep tracks and vehicle movement, spatial varia-
tion of infiltration and variation in inflow rates which are not
included in the present scale of modeling.
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Notation

The following symbols are used in this paper:
a � infiltration empirical constant;
b � infiltration empirical constant;

D11,D22,D12� diffusion coefficients;
g � acceleration due to gravity (m/s2);
H � water surface elevation above datum�m�;
h � water depth�m�;

hstr � minimum soil moisture pressure value on
wetting cycle�m�;

Is � volumetric rate of infiltration per unit area
�m/s�;

Ki � soil hydraulic conductivity at initial
moisture content�m/s�;

Ks � soil hydraulic conductivity at saturation
�m/s�;

k � empirical infiltration constant;
ML � Megaliter (1,000 m3);

n � Manning roughness coefficient;
q � discharge vector (m2/s);

qx � component of discharge vector per unit
width in x direction (m2/s);

qy � component of discharge vector per unit
width in y direction (m2/s);

S � sorptivity (m/�s);
S f � friction slope;

S f x � component of friction slope inx direction;
S f y � component of friction slope iny direction;

t � time �s�;
top � intake opportunity time, or time since

wetting front is arrived at point or node�s�;
U � advected velocity inx direction �m/s�;
u � velocity in x direction �m/s�;
V � advected velocity iny direction �m/s�;
v � velocity in y direction �m/s�;

x,y � Cartesian coordinates�m�;
xB ,yB � value ofx andy on fixed boundary;

z0 � bottom elevation above datum�m�;
� � time step�s�;
� � shape parameter related to conductivity of

soil;
� � angle between flow direction andx axis;

� i � initial soil moisture; and
� s � soil moisture at saturation.

Fig. 14. Water balance during advance phase as predicted by Parlange infiltration equation
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Subscripts
B � boundary nodes;

i, j � location of node on computation grid; and
x,y � Cartesian coordinates.
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