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Numerical comparisons of wave analysis methods
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JOHN D. FENTON

Department of Mechanical Engineering
Monash University, Clayton, Victoria 3168

Summary: Various wave analysis techniques are numerically compared using steady waves generated by a Fourier method. The
sub-surface pressure data (such as would be acquired from a pressure transducer) is operated upon to derive water surface
elevation data. More traditional global and more recent local methods are presented with the local methods providing greater

accuracy over a wider range of wave and measurement conditions.

1. INTRODUCTION

An ongoing study in the Department of Mechanical
Engineering at Monash University is investigating the
measurement of waves using sub-surface pressure
transducers. In this paper results will be presented from early
numerical testing of various techniques using data generated
from Fenton's [1] steady wave method.

The first method to be tested is the 'traditional' linear spectral
method, utilising a transfer function (TF) derived from linear
wave theory, which has been in use for many years and is
known to have several important limitations. Debate on the
accuracy (and validity) of this method has been drawn out
and lively at times [2, 3]. More recently Kuo and Chiu [4]
have suggested an empirical TF as a substitute for the linear
one mentioned above.

A move to local time domain methods which act upon a short
(meaning less than one wavelength) segment of the pressure
data at each step has occurred since the beginning of the
1980's. Different techniques have been proposed by
Daemrich [5], Nielsen [6, 7, 8], Fenton [9] and Fenton and
Christian [10].

In this paper, the accuracy of the above methods (with the
exception of Daemrich's [5]) will be tested throughout the
region of possible water waves shown in Figure 1 (from
Fenton [11]). Daemrich's method is not discussed as it was
initially developed for manual analysis and Nielsen's initial
investigations [6] are an extension of the concept anyway.

2. GLOBAL METHODS
2.1. Linear Spectral Method

The most common analysis technique used in this area is the
linear spectral method, which has been presented and
comprehensively discussed by Bishop and Donelan [2]. In a
nutshell, the auto spectrum of the water surface elevation,
S,(@) is related to the auto spectrum of the dynamic pressure
at the pressure transducer, S,(®) by:
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Figure 1: The region in which water waves are possible.
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where o is the angular frequency of each Fourier component,
Mw) is an empirical correction factor and K,(@) is the
pressure response factor defined as:

cosh(k(@)y,)
Bile) = @
cosh(k(w)D)

where D is the mean water level (MWL) and y, is the height
of the pressure transducer from the sea bed.

The authors have, for the purpose of this paper set M) to 1
for all ®. Bishop and Donelan consider the presence of M)
as an attempt to compensate for poor measurements,
instruments and/or analysis methods. As the authors are using
‘exact’ nonlinear waves and pressure traces to conduct these
tests none of the above need be considered and only potential
inadequacies in the linear spectral method will be highlighted.

It was necessary to determine a maximum o above which the
pressure response factor was not applied, as doing so would
cause the method to ‘blow-up’ when K,() became small. To
determine this limit, the ratio of the spectral amplitude to
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K, (o) was determined at each ®. When this ratio began to
increase the method had started to ‘blow-up’.

2.2. Empirical Transfer Function

The other global method to be tested is the empirical TF
proposed by Kuo and Chiu [4]. In this method M) is always
set to 1 in (2) and the pressure response factor is replaced
with an empirical TF:

o’(D-y,)
g

K, (0)= exp[-o.svos -0.027 3)

o’ (D-y,)

g

A
within the limits 0.1 < <50 —5 <1429

where g is gravitational acceleration and A is the wavelength
of each Fourier component.

This method is relatively new and untested. The authors have
reservations about the range of applicability of the TF as
published. The above limits were used to set the maximum o
above which K, was applied, not only to obey these limits,
but also to aveid ‘blow-ups’ similar to those of the linear
spectral method.

3. LOCAL METHODS
3.1. Local Approximation Methods

The first of the computer-based local methods to emerge were
the two developed simultaneously by Nielsen [6, 7, 8]. The
two are grouped under the umbrella of local approximation
methods. A sine curve is passed through three points from the
pressure data which are adjacent or with a small number of
intermediate points between them. This sine curve is used to
determine the ‘local’ frequency. The water surface elevation
at the instant in time of the central point can then be
calculated by one of two methods. One method applies a TF
derived from stretched linear theory, the other applies a semi-
empirical TF. The former TF, which the authors call
Nielsen'’s first order method is expressed:
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where T, is the water surface elevation corresponding to the
nth central pressure reading, p, is the nth central pressure
reading, k, is the nth wave number derived from the local

frequency calculated from the three pressure readings and p
is the water density.

The local frequency is determined by:
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which is an estimate corrected by:
0) =d |:l+--*(m8) ] (6)

The latter TF Nielsen derived from Dean [12]:

2
ﬁ’,:&[/{yp] Pn-p*2Pn ~ P,,+M[D+p ]] @
rg pﬂg(m) Pg

where M = _ ’% /5 and is a multiplier used to filter noisy

data, & is the sampling period of the data, and
A(yp/D) =0.67 + erc‘lyp /D and accounts for the height of

the pressure transducer above the sea bed.

Both the above are extremely simple to apply with little
computational effort required. In this study M was setto 1 as
no noise was present in the input and the authors felt that this
gave a better indication of the method’s robustness. The
exception to this was when simulated noise was added to the
pressure signal. In this case M was calculated by the above
equation.

3.2. Local Polynomial Approximations

The other two local methods are called local polynomial
approximation (LPA) techniques and were developed by
Fenton [9] and Fenton and Christian [10]. Both utilise the
principle of low-degree polynomial approximation, partly
based on least-squares approximation methods and partly on
solving locally the full nonlinear equations of motion. The
first approach was to approximate the complex velocity
potential as follows:
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where z=x+iy, and the surface elevation is given by
J .
n(x0= Db, (x—ect)’. ©)
j=0
Expansion (6) satisfies Laplace’s equation identi(_:e!lly
throughout the flow and the bottom boundary condition

(v(x,0,/)=0) is satisfied if the coefficients a; and b, are real.

To satisfy the necessary boundary conditions on the free
surface the steady kinematic equation is invoked such that:

y(x—ct,n(x-ct))=-0, (10)



where Q is a constant, and the steady Bernoulli equation:
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where R is the Bernoulli constant and s denotes the surface
y=n.

Bernoulli’s equation is also written about the position (0,y,),
the position of the pressure transducer, expressed as a Taylor
series in x-ct:
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The p; are calculated using a least squares fit across K data
points where X is an odd integer with (K-1)/2 data points each
side of the point of interest. For the above method K=21 was
found to give good results for both smooth and noisy data and
is the value used in these tests.

By manipulation of (8), (9), (10), (11) and (12) and isolating
powers of (x-cf), a system of nonlinear equations in terms of
the unknown g; and b; are obtained. The solution of these
equations is performed for each point in the pressure series
using direct iteration to achieve convergence. The surface
elevation data obtained was then passed though a simple 3-
point smoothing routine. Space does not permit explanation
of the details regarding the solution of these equations for the
a; and b; coefficients for this full nonlinear LPA (referred to
as Full LPA in the following text).

The second local polynomial method (Simple LPA) [10] is
somewhat simpler in that a point value is used to describe
each value of n at a corresponding ¢, as opposed to the
polynomial expansion in the former method [9]. The resulting
solution is much simplified and it is claimed [10] that
accuracy is as good as that of the full local polynomial
solution with K=17.

For both methods little is to be gained by using higher than
4th order polynomials (J=4) as accuracy does not improve
greatly and the resulting nonlinear equations become
extremely cumbersome to manipulate.

4. TEST CONDITIONS

As previously stated, pressure traces for nonlinear waves
have been generated using a Fourier approximation method
for accurately solving steadily progressing wave problems.
These pressure traces were used as input data for the above
methods and the output of computed water surface elevation
was compared to the corresponding solution from the
program for accuracy.

Wave data was generated across a rectangular grid within the
region of possible waves in Figure 1. Intervals of 0.1 on the
horizontal axis (log,, (A/D)) and the vertical axis (H/D) were

used, resulting in a total of 107 points in that region. In
addition six different values of y,/D were tested, from 0 to 0.5
in steps of 0.1. Only a small selection of the total output is
shown here. There are 64 points per wave length with a
further 5 points added to each end of the test wave.

5. RESULTS

Figures 2 to 7 display results from the methods mentioned
above for three different A/D ratios. A/D ratios of 6.31, 10 and
19.95 at an H/D ratio of 0.6 and y,/D of 0 are presented. In
addition for A/D=10 at y,/D=0 a pressure signal contaminated
with simulated electronic noise is shown along with
uncontaminated data at y,/D =0.5. The legend shown in
Figure 2 is valid for figures 2 to 7. Additional results are
described in the captions for the figure in which they appear.

All figures but Figure 4 show results for all methods except
Kuo & Chiu’s empirical spectral method. This was excluded
as accuracy was extremely poor and nothing was to be gained
by including it. This was found to be the case for all y,/D=0
tests, even when the test waves were within the limits
imposed upon the method (A/D=6.31,10).

Figure 2 shows results for a A/D of 6.31 , H/D of 0.6 and
y/D=0. This A/D ratio seemed to be a lower limit for
reasonable results in general. Nielsen’s two methods lie
almost on top of one another and provide an accurate estimate
of the H/D ratio although the calculated shape of the profile is
quite poor. Nielsen’s methods provide a remarkably

accurate estimates of the wave crest and trough but elsewhere
are prone to inaccuracy. Neither the linear spectral or simple
LPA methods provide very good results for such a short
wave. The full LPA provides an accurate estimate of the
profile but underestimates the crest. '

Figure 2: D =6.31, H/D = 0.6, y,/D = 0.

Figure 3 has a A/D ratio of 10 with the same H/D and y,/D
values as Figure 2. Nielsen’s methods behave in a similar
manner to previous results and the linear spectral method has
provided a good estimate of the crest but an extremely poor
estimate of the trough. This occurs because of the large
number of frequency components needed to adequately
describe both a sharp crest and a long, flat trough. The linear
TF becomes so small that the method blows up before the
trough can be smoothed. The simple LPA method provides a
generally good estimate of the wave profile but falls short of
the crest, with the full LPA providing a good fit overall.
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Figure 3: D =10.0, H/D = 0.6, y,/D = 0.

An improvement in accuracy for the LPA, linear spectral and
Kuo & Chiu’s methods occurs when the same wave as Figure
3 is measured further up the water column, at y,/D=0.5
(Figure 4). The LPA’s are extremely accurate in both profile
and height estimates, while all other methods overestimate the
crest slightly. Both spectral methods fail to adequately
describe the trough, the manner of their failure has been
discussed in the previous paragraph.
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Figure 4: D = 10.0, H/D = 0.6, y,/D = 0.5. Kuo & Chiu’s
method (—O—).

Figure 5 is again the same wave as in Figure 3 (y,/D=0) but
with simulated random noise added to the pressure signal. To
do this a random number generation routine was used to
cause a fluctuation about the true pressure reading with a
maximum error H, of + 0.025H,, where H, is the height of
the pressure signal from trough to crest. Very little change in
the accuracy of the simple LPA occurs but the linear spectral
method fails badly and both Nielsen’s methods (for M=6)
amplify the noise while maintaining their overall positions.
Nielsen’s first order method with M set to 1 is included to
show the considerable smoothing effect of the multiplier M.

The addition of noise highlighted the fragility of the full LPA.
The authors originally used 17 points per computational panel
but the method failed to converge when dealing with the
noisy data. Several different values of K were then tested with
failures occurring with several other noise free data sets. This
indicated that the full LPA method does not always converge
for all values of K and furthermore that these occurrences
may be case dependent. This would be a major drawback for
this method. For 21 points or more the method was reliable
and accurate.

Figure 6 is a somewhat longer wave than previously
displayed, at A/D=19.95. However the behaviour of the
methods shown is similar to that of Figure 3, with the most
obvious difference being Nielsen’s methods’ tendency to
slightly overestimate the crest. Kuo & Chiu’s method is no
longer valid at this A/D ratio, the limit being A/D <14.29.
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Figure 5: A/D = 10.0, H/D = 0.6, y,/D = 0. Random noise
added to pressure signal, H, = 0.05H,,. Nielsen’ empirical,
M=6 (—O—) and Nielsen’s first order, M=6 (—g——).
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Figure 6: A/D = 19.95, H/D = 0.6, y,/D = 0.

All the above waves are extreme examples of steady waves at
H/D=0.6. A more commonly encountered example may be an
H/D =0.3 such as in Figure 7. In this case A/D=10 and
y,/D=0. All methods barring Kuo & Chiu’s behave quite well
with Nielsen’s empirical method overestimating the crest
slightly and the LPA’s underestimating. The linear spectral
method estimates the wave height well but the profile is
poorer than the other methods.
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Figure 7: D = 10.0, H/D=0.3, y,/D = 0.



6. CONCLUSIONS

A comprehensive numerical comparison of a variety of global
and local wave analysis methods has been conducted. The
aim was to compare the accuracy of these methods for
determining wave surface elevation data from sub surface
pressure readings.

Overall the local methods are more effective in dealing with
highly nonlinear steady waves than are the global methods.
Unsurprisingly, all methods provided better results with
higher y,/D ratios.

Kuo & Chiu’s empirical spectral TF behaved extremely
poorly when the pressure data was taken at the bottom of the
water column and only gave what the authors consider to be
acceptable results when y,/D=0.5. In addition, this method is
claimed to only be valid at or below A/D=14.29 which
limits its range of applicability compared to the others tested.

The linear spectral method performed better for moderate
waves but behaves poorly when the waves are steep and y,/D
is small. Of the global methods tested, the linear spectral
method provided more consistent and accurate results than
Kuo & Chiu’s method.

Both Nielsen’s local methods behaved similarly, generally
predicting wave heights well but not estimating the wave
profile accurately. Nielsen’s methods did not deal very well
with the noise added to the pressure signal although a post
analysis smoothing routine would probably result in fairly
smooth curves. Of the two, Nielsen’s empirical method is the
simpler to apply, without sacrificing any accuracy compared
to the first order method. However a disadvantage of
Nielsen’s methods is the total failure just above the trough or
the ‘shoulder’ of the wave. The inability of these methods to
determine a local frequency in these areas is a significant
problem.

The simple LPA method does not perform as well as
Nielsen’s methods when predicting wave heights from
pressure readings at low y,/D values but generally describe
the wave profile with more accuracy than all other methods
(with the exception of the full LPA) and is extremely accurate
when y,/D is high. It is able to deal with noise in a
satisfactory manner, better in fact than the full LPA method.
In addition to this, the simple LPA is much easier to derive
and program than the full LPA.

The apparent fragility of the full LPA method is unfortunate
as its accuracy is higher than all other methods if no noise is
present. This fault and the necessity for some form of
smoothing to be performed on the output poses a real
problem for the implementation of this method.

This paper has not investigated these methods when used
with experimental data. A programme of experimental testing
is the next stage in this ongoing study, which will include
both periodic and irregular sea states. Surface elevation,

pressure and fluid velocity will be measured simultaneously
and the applicability of the various methods will be tested.
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