
CHAPTER 46 

A comparison of analysis methods for wave pressure data 

Murray Townsend1 and John D. Fenton2 

ABSTRACT 

A comparison of a range of wave pressure analysis methods has been conducted using 
both numerical data generated by a Fourier steady wave method and experimental 
data gathered in a wave flume. The results show that the local methods (local 
sinusoid approximations and local polynomial approximations) are more accurate than 
the traditional global linear spectral method. A new local polynomial approximation 
method shows improvement compared to similar methods developed previously. 

INTRODUCTION 

Pressure transducers have been used for many years by coastal engineers for 
measuring the wave climate at a site of interest. These instruments are well suited to 
this purpose, being unobtrusive and robust. Problems do occur, however, when the 
surface elevation is inferred from the pressure data. The problem is fundamentally a 
poorly posed one, the subsurface pressure data being an attenuated representation of 
the flow conditions. In addition, the nonlinearity of waves in the coastal zone means 
that the traditional linear analysis methods may be inaccurate for such an application. 
The aim of the present study is to evaluate existing analysis techniques and if possible 
to improve the accuracy and robustness of those that are more suitable. Both 
numerical and experimental data was used in the analysis. 

The methods examined include one global method and several local methods. The 
global method is the linear spectral method, described at length by Bishop and 
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Donelan (1987). The local methods are the first order Local Sinusoidal 
Approximation (LSA) method, the empirical LSA method (Nielsen, 1989), the fully 
nonlinear Local Polynomial Approximation (full LPA) method (Fenton, 1986) and the 
simple LPA method (Fenton and Christian, 1989). A new method, using LPA, is 
presented and tested - the nonlinearly optimised LPA (NOLPA). There is a new local 
Fourier approximation method (Barker and Sobey, 1996) based upon the surface 
method of Sobey (1991), which is being published in these proceedings. 

ANALYSIS METHODS 

Linear spectral method 

The most common analysis technique used in this area is the linear spectral method, 
which has been presented and comprehensively discussed by Bishop and Donelan 
(1987). Briefly, the spectrum of the water surface elevation, Ss(a) is related to the 
spectrum of the dynamic pressure at the pressure transducer, ^(co) by: 

S,(o) = S» , (1) 

where co is the angular frequency of each Fourier component, N(<s>) is an empirical 
correction factor and Kp(m) is the pressure response factor defined as: 

cosh£(co)v_ 
KP(®)=   ,,;;•?• (2) 

coshAr(o))Z) 

where D is the mean water level (MWL) and yp is the height of the pressure 
transducer from the sea bed. 

The authors have, for the purpose of this paper set N{a>) to 1 for all co. Bishop and 
Donelan consider the presence of JV(co) as an attempt to compensate for poor 
measurements, instruments and/or analysis methods. As the authors are using 'exact' 
nonlinear waves and pressure traces to conduct these tests none of the above need be 
considered and only potential inadequacies in the linear spectral method will be 
highlighted. 

It was necessary to determine a maximum co above which the pressure response 
factor was not applied, as doing so would cause the method to 'blow-up' when Kp(a) 
became small. To determine this limit, the ratio of the spectral amplitude to Kp(a>) 
was determined at each co. When this ratio began to increase at frequencies above the 
spectral peak the method had started to 'blow-up'. 
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Local sinusoidal approximation methods 

The first of the computer-based local methods to emerge were the two developed 
simultaneously by Nielsen (1989). Both are known as LSA methods in which a sine 
curve is passed through three points from the pressure data which are adjacent or with 
a small number of intermediate points between them. This sine curve is used to 
determine the 'local' frequency. The water surface elevation at the instant in time of 
the central point can then be calculated by one of two methods. One method applies a 
transfer function derived from stretched linear theory (the first order LSA), the other 
applies a semi-empirical transfer function. 

First order local sinusoidal approximation 
This transfer function is expressed: 

cosh/J £> + ^ 

n„=^ \^, 0) 
pg COShA:„Z 

where f\n is the water surface elevation corresponding to the «th central pressure 
reading, pn is the nth central pressure reading, kn is the «th wave number derived 
from the local frequency calculated from the three pressure readings and p is the 
water density. 

The local frequency is determined by: 

m2 = ~Pn-M + 2P„ ~ P„+m ,^. 

which is an estimate corrected by: 

2 A 2 
C0„ =G)„ 

P„(Msy 

1 +—(co8)2 

12      ' 
(5) 

Empirical local sinusoidal approximation 
Nielsen derived this transfer function from Dean (1974): 

Pg 
J yP     -Pn-U + 2Pn ~ /W \Dl   Pn 

Dj        p„g(M5)2        {      pg   y> 
(6) 
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where M is a positive integer the value of which can be estimated by M » yJD/g/8 

and is a multiplier which smoothes noisy data by selecting more widely spaced points 
instead of adjacent ones in the frequency calculation, 8 is the sampling period of the 
data, and A^pjlS}= 0.67 + 034yp/D and accounts for the height of the pressure 

transducer above the sea bed. 

Both the above are extremely simple to apply with little computational effort required. 
In this study M was set to 1 when used with numerically generated data as no noise 
was present in the input and the authors felt that this gave a better indication of the 
method's robustness. With real dataM was calculated by the above equation. 

Local polynomial approximations 

The other two local methods are LPA techniques and were developed by Fenton 
(1986) and Fenton and Christian (1989). Both utilise the principle of low-degree 
polynomial approximation, partly based on least-squares approximation methods and 
partly on solving locally the full nonlinear equations of motion. 

Fully nonlinear local polynomial approximation 
The approach followed for the full LPA (Fenton, 1986) was to approximate the 
complex velocity potential as follows: 

w(x,y,t) = <\>(x - ct,y) + i\\i(x - ct,y) 
j at = c(z-ct)+'z-?-{z-cty+l, (7) 

where z=x+iy, ce is the Eulerian current and the surface elevation is given by 

TI(X,0 =£*/(*-<*)'• (8) 
, = 0 

From equation (7) 4> satisfies Laplace's equation identically throughout the flow and 
the bottom boundary condition (v(x,0,/)=0) is satisfied if the coefficients a, and b} are 
real. 

To satisfy the necessary boundary conditions on the free surface the steady kinematic 
equation is invoked such that: 

y(x~ct,y\(x-ct)) = -Q, (9) 
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where Q is a constant, and the steady Bernoulli equation: 

2 

dw 
2 

+ n, (io) 
d(z - ct) 

where R is the Bernoulli constant and 5 denotes the surfacey=r\. 

Bernoulli's equation is also written about the position (0j>p), the position of the 
pressure transducer, expressed as a Taylor series in x-ct: 

p{o,yP,t) = R-\ 
dw 

d(z-ct) 
-yP=I,Pj(-cOJ- (11) 

y, J=° 

The pj are calculated using a least squares fit across K data points where K is an odd 
integer greater than or equal to J + 3 with (K - 1 )/2 data points each side of the point 
of interest. For the above method K = 21 was found to give good results for both 
smooth and noisy data and is the value used in these tests. J = 4 was found to be the 
optimum degree of approximation. 

By manipulation of equations (7), (8), (9), (10) and (11) and isolating powers of (x- 
ci), a system of nonlinear equations in terms of the unknown a, and bs is obtained. 
The solution of these equations is performed for each point in the pressure series 
using direct iteration to achieve convergence. The surface elevation data obtained 
was then passed though a simple 3-point smoothing routine. Space does not permit 
explanation of the details regarding the solution of these equations for the a, and bj 
coefficients. 

Simple local polynomial approximation 
The simple LPA (Fenton and Christian, 1989) is somewhat simpler in that a point 
value is used to describe each value of r\ at t = 0 as opposed to the polynomial 
expansion across the window in the former method. The resulting solution is much 
simplified with the extraction of a system of quite manageable nonlinear equations. 
Unfortunately, there are only 6 equations in that set with a total of seven unknowns. 
It was necessary to introduce more equations to be able to find a solution. The first 
assumption required is that the wave speed c is given by long wave theory: 

c=ylgr\, (12) 

and the second is that the main fluid velocity component a0 is given by: 

a0 = -c (13) 
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For the results that follow the value of K was set to 17. 

Nonlinearly optimised local polynomial approximation 
This method (NOLP A) was developed using some of the ideas mentioned in the two 
sections above. The same basic idea of approximating the velocity potential by a low 
degree polynomial over a small window of data remains, but the method of solving 
this nonlinear problem is quite different. 

The velocity potential 4> is represented by equation (7) and substituted into Bernoulli's 
equation at the pressure transducer 

£-(x,yp,t) = R-^(u2
p+vp)-gyp, (14) 

where up and vp are the horizontal and vertical velocities (dfyldx and 
dfy I dy respectively) at the pressure transducer (y=yP). Neglecting the kinematic 
boundary condition, this equation can be solved across K pressure points (K is an odd 
integer greater than or equal to J+3) using a nonlinear least squares solver such as the 
Levenberg-Marquardt method (Grace, 1994). The actual function to be optimised by 
this method is written 

K 

k=i 

r,       1     2 1     2 Pk (15) 

The initial estimates of the unknowns RJgD, c I *Jgd , a0 - a3 were set to the still 
water values {1.5, 1, -1, 0, 0, 0, 0} and the time vector 4 (embedded in the velocity 
equations) was scaled such that the temporal length of the window was between -1 
and +1. This, along with the appropriate rescaling if the system on equations 
approximates orthogonality in the velocity potential (Fenton, 1994), a property not 
held by the polynomial chosen. 

Once this solution has been obtained, the location of the surface can be calculated. 
Bernoulli's equation at the unknown surface r\ 

is a nonlinear equation in one unknown and can be solved at any time within -1 and 
+1. In the results that follow the surface estimates shown were calculated in the 
middle of the window (t = 0). 
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When dealing with experimental data each window was smoothed using an equally 
weighted moving average filter which was made larger or smaller depending upon the 
quality of the pressure data used. K = 11 was used for numerically generated smooth 
data while K = 17 was used for real data. As with the other LPA method it was found 
to be unnecessary to use a degree of approximation greater then J= 4. 

It was sometimes required, when analysing extreme waves, such as in Figure 4, that 
the length of the window be made a smaller proportion of the wavelength than was 
normally used to allow convergence of the least squares routine. To give an adequate 
number of data points in the smaller window, the number of points actually used in the 
solution was increased by cubic spline interpolation, adding data points in between the 
originally sampled data, in a similar manner to Sobey (1991) with his surface based 
local Fourier method. 

Methodology 

The methods described above were tested with data from a Fourier method for 
generating steady waves (Fenton, 1988) and with experimental data obtained in a 
wave flume. The input from the Fourier method was generated for three different 
wavelengths, A./Z)=6.31, 10 and 19.95 all with 64 data points per wavelength plus 5 
extra points at each end of the data. The waves shown are extreme with a 
height/depth ratio {HID) of 0.6. The gathering of the experimental data is described 
below. 

Experimental Procedure 

Experiments were performed in the large wave flume in the Department of 
Mechanical Engineering at Monash University. The facility is 52m long, 2.5 m wide 
with two working sections of 4m and 2.5m connected by a ramp. The shallower 
working section was modified for a working depth of 1.5m with a false floor. It is 
capable of generating both regular and irregular waves using a feedback system to 
obtain the desired sea state. There is a wave absorbing beach at the far end which 
allows less than 10% reflection across the range of working frequencies. 

Four pressure transducers were set into a false wall in the flume at ypID ratios from 0 
to 0.5. Two more transducers were mounted further 'downstream' atyp/D of 0 and 
0.5 to obtain phase data if required. The surface elevation above the first column of 
transducers was measured using a capacitance wave probe. 
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Results 

Numerically generated data 

Figure 1 shows results for a short wave with XID = 6.31, HID = 0.6 with the pressure 
measured on the bed (yp/D = 0). It seems that LPA methods should not be used for 
waves shorter than this, the full LPA and the NOLPA underestimating the crest. The 
traditional linear spectral method and the simple LPA do not perform at all well. 
Considering the considerably attenuated signal that occurs with such a short wave it 
is significant that the two LSA methods are almost identical and predict the wave 
height well although the wave shape is poor. Note the failure of the LSA methods on 
the wave "shoulder". 

Figure 2 shows a longer wave with XID =10 and all other properties the same as the 
previous figure. At this wavelength/depth ratio, the level attenuation of the pressure 
signal is much less and the quality of the output from all methods is higher. Only the 
simple LPA underestimates the crest while the full LPA and the NOLPA perform 
extremely well. The LSA methods perform in a similar manner to the previous figure 
and the linear spectral method does not describe the trough of the wave very well. 
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Figure l:XID = 6.31, HID = 0.6,ypID = 0 
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t(g/D)Al/2 

Figure 2: X/D = 10.0, HID = 0.6, y,JD = 0 

The wave in Figure 3 is identical to that in the previous figure, the difference being 
that the pressure was sampled higher in the water column, at yJD = 0.5. The most 
noticeable improvement is the result from the linear spectral method, the higher 
measurement position detecting the higher frequency components required to describe 
the trough of the wave. The performance of the simple LPA is much improved, while 
all other methods are similar in their performance to Figure 2. 

t(g/D)Al/2 

Figure 3: X/D = 10.0, HID = 0.6,yJD = 0.5 
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Figure 4 is a longer wave again, with XID = 19.95 but with the pressure, once again 
measured at the bottom. Once again the linear spectral method cannot describe both 
the sharp crest of the wave and the long flat trough, as the high frequency 
components attenuate completely before reaching the sea bed. The LSA methods 
predict both the profile and the height well, with a slight overprediction of the crest, 
as does the NOLPA. The simple LPA underpredicts the crest, as could be expected, 
while the full LPA performs very well. 

t(g/D)Al/2 

Figure 4: X/D = 19.95, HID = 0.6, yJD = 0 

Experimental data 

The irregular wave results shown in this section were generated from a JONSWAP 
spectrum with the properties: peak frequency, /0 = 0.4 Hz, D = 1.55 m, Stokes 
current, cs= 0, and a sampling rate of 20 Hz. The exception is Figure 7 where there is 
an Eulerian current, ce, = 0.134 m/s in the direction of wave propagation. This peak 
frequency corresponds to a X/D ration of approximately 6 in this water depth, a 
condition where the LPA methods are not expected to perform at their best. 
Unfortunately the flume is not capable of generating irregular waves with a lower 
peak frequency. 

The full LPA method is not shown in these results. This method was shown to be 
extremely sensitive to noisy data in an earlier, numerical comparison (Townsend and 
Fenton, 1995), where convergence appeared to be case dependent with regard to the 
number of data points per window. 
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The almost identical performance of the two LSA methods was shown in the previous 
section and due to the more cluttered appearance of the experimental results, the first 
order LSA has not been included. The empirical LSA has also proved to be more 
robust when dealing with noisy data. 

t(g/D)Al/2 

Figure 5: yJD = 0, cs = 0 

Figure 5 shows a zero Stokes current condition with the pressure measured at the 
floor of the flume. The effect cf the noise in the pressure signal is evident, with the 
linear spectral method providing the smoothest output due to its inherent low pass 
filtering. The empirical LSA performs well, with the exception of the expected 
occasional failure, while the simple LPA and the NOLPA perform almost identically, 
which is well considering the shortness of the waves. 

The wave trace shown in Figure 6 is the same as in Figure 5 except that the pressure 
data was measured almost halfway up the water column (ypID = 0.484). All methods 
exhibited an improvement with this data, with the signal to noise ratio being more 
favourable. 

Figure 7 shows a wave train with a superimposed Eulerian current of 0.134 m/s. In 
this case the first order LSA differs from the empirical LSA in that, like the linear 
spectral method, it can be modified to account for the current. The linear spectral 
method and the first order LSA were modified by including the current in the wave 
number calculation. The LPA methods already had the current included in the 
expression for § (equation 7). Surprisingly the differences between the first order 
LSA and the empirical LSA are quite small. The current level is the highest that can 
be generated in the wave flume but it seems that it is not high enough to have a 
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significant effect on the wave properties.  All other methods performed in a manner 
similar to the other irregular wave traces 

t(g/D)Al/2 

Figure 6: yJD = 0.484, cs = 0 

t(g/D)Al/2 

Figure 7: yJD = 0, ce = 0.134 m/s 

Figure 8 shows a moderately long regular wave with wave period, T= 4.1s and zero 
stokes current. This gives a X/D ratio of approximately 12 in the wave flume. All 
methods perform well with this moderately long and high wave, although it can be 
seen that the empirical LSA is affected by the noise in the pressure signal. 
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t(g/D)Al/2 

Figure 8: regular wave, T= 4. Is, yJD = 0, cs = 0, X/D » 12 

Conclusions 

A comprehensive comparison of a variety of global and local wave analysis methods 
has been conducted. The aim was to compare the accuracy of these methods for 
determining wave surface elevation data from sub-surface pressure readings. Overall 
the local methods are more effective in dealing with highly nonlinear steady waves 
than is the global linear spectral method. Unsurprisingly, all methods provided better 
results with pressure readings taken higher up in the water column. 

The linear spectral method performed better for moderate waves but behaved poorly 
when the waves were steep and y/D was small. Both the LSA methods behaved 
similarly, generally predicting wave heights well. These methods were affected by 
noise although a post analysis smoothing routine would result in fairly smooth curves. 
Of the two, the empirical LSA is the simpler to apply, without sacrificing any 
accuracy compared to the first order method. However a disadvantage of the LSA 
methods is the failure just above the trough or the 'shoulder' of the wave. 

The simple LPA method does not perform as well as the LSA methods when 
predicting wave heights from pressure readings at low y/D values but generally 
describe the wave profile with greater accuracy and is reasonably accurate when y/D 
is high. It is able to deal with noise in a satisfactory manner, better in fact than the full 
LPA method. In addition to this, the simple LPA is much easier to derive and 
program than the full LPA. The fragility of the full LPA method is unfortunate as its 
accuracy is higher than all other methods if no noise is present. 
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Many of these shortcomings have been addressed by the nonlinearly optimised local 
polynomial approximation. Accuracy is comparable to the full LPA, it is simple to 
develop the theory and it is possible to deal with noise in a relatively simple manner. 
As with all the LPA methods, it performs better when dealing with longer waves, due 
to the polynomial form of the velocity potential. As a rational nonlinear method these 
results are promising and there is potential for further development to determine the 
full wave kinematics. 
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