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ABSTRACT 
 
The depth averaged Saint-Venant equations are adequate in simulating free surface flows with 
insignificant curvature of streamlines. However, these equations are insufficient when applied to 
flow problems where the effects of non-hydrostatic pressure distribution are predominant. In this 
study, two Boussinesq-type momentum equation models are employed to simulate such types of 
flow problems numerically. Assumptions of uniform and linear variation of the centrifugal term with 
depth are used to develop the models. The effect of these assumptions on the solutions of the models 
is also assessed. Two numerical simulation case studies, flow over a short-crested trapezoidal profile 
weir and a free overfall, are considered. Computed and measured results for flow and bed pressure 
profiles, and pressure distributions at different sections are presented. Good agreement is attained 
between the computed and measured results. The comparison results suggest that the assumed 
distribution shapes for the centrifugal term strongly influences the prediction of the pressure 
profiles, but the effect is minor on the flow profile results. 
 
 
1. INTRODUCTION 
 
The streamlines in rapidly varied free surface flows have considerable curvatures and slopes. These 
cause a departure from hydrostatic pressure and uniform velocity distributions. In engineering 
practice, transcritical flow over hydraulic structures such as spillway and weirs are examples of 
flows having this kind of nature. The common computational flow models, which are based on the 
depth averaged Saint-Venant equations, cannot be used to simulate such types of flow problems. In 
the formulation of the Saint-Venant equations, assumptions of uniform velocity and hydrostatic 
pressure distributions are employed. These assumptions restrict the application of the equations to 
flow situations where the effects of non-hydrostatic pressure distribution are insignificant.  The 
essential vertical flow details of the rapidly varied flow problems determine the use of relatively 
accurate methods for exact description of the flow situations.  

Considerable researches have been done in the past to model free surface curved flow 
problems using different approaches. Boussinesq (1877) was the first to extend the momentum 
equation to incorporate implicitly the effect of curvature of the streamlines using the assumption of a 
linear variation of curvature of streamlines along the depth of flow. More recently Dressler (1978), 
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Hager and Hutter (1984), Hager (1985) and Matthew (1991) have developed higher-order equations 
to model two-dimensional flow problems. Similar to the Boussinesq (1877) equation, however these 
equations are limited to the solution of irrotational flow problems only. For fast flow over the chute 
part of hydraulic structures such as spillways, the assumption of irrotational flow, which was the 
basis of all these governing equations, is questionable. It has also been shown by Fenton (1996) that 
the scaling of the variables introduced into the Dressler equations has an inconsistency. Steffler and 
Jin (1993) developed the vertically averaged and moment (VAM) equations based on the 
assumptions of a linear longitudinal velocity distribution, and quadratic pressure and vertical 
velocity distributions along the depth of flow. However, the resulting equations are very long and 
complex. Khan and Steffler (1996a, b) studied the applicability of these equations. Fenton (1996) 
introduced alternative equations to model flow problems with appreciable curvature of streamline. 
He used the momentum principle along with the assumption of a constant centrifugal term, 

ακ cos/ (κ = curvature and α = angle of inclination of the streamline with the horizontal axis), at a 
vertical section to develop the equations. The distribution shape of this term determines the degree 
of the approximation for the effects of the streamline curvature. Compared to other governing 
equations (for instance, Dressler and VAM equations), the equations are simple to apply in a 
cartesian coordinate system especially for flow problems with continuous flow boundaries. In this 
study, these equations along with the modified version, which are developed based on the 
assumption of a linear variation of centrifugal term along the flow depth, will be employed to 
simulate steady rapidly varied flows. These include transcritical flow over short-crested trapezoidal 
profile weirs and free overfall in a rectangular channel. The free overfall problem has been 
extensively studied numerically (e.g., Khan and Steffler (1996b)). Compared to this, however free 
flow over trapezoidal profile weirs has not been thoroughly investigated numerically using lower- or 
higher-order equation.  

Therefore, the purposes of this paper are: i) to examine the Boussinesq-type equations models 
for simulating steady rapidly varied flows; and ii) to assess systematically the impact of the applied 
distribution shapes for the variation of the centrifugal term on the simulation of pressure and flow 
surface profiles of such flows. 
 
 
2. GOVERNING EQUATIONS 
 
For steady flow in a rectangular channel, the Boussinesq-type equations developed by Fenton (1996) 
read as 
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in which H  is the depth of flow; '

bZ , ''
bZ  and '''

bZ  are the first, second and third derivatives of the 
bed profile respectively; fS  denotes the friction slope, calculated from the Manning equation or 
smooth boundary resistance law; q is the discharge per unit width; β  refers to the Boussinesq 
coefficient; g is gravitational acceleration; ρ  is the density of the fluid; η  is elevation of the free 
surface; z  is the vertical coordinate of a point in the flow field; p  is the pressure; and 0ω  is a 
weighting factor. Fenton (1996) suggested a value of slightly less than one for 0ω . These equations, 
eqs.1 and 2, will be referred to hereafter as the Boussinesq-type momentum equation of uniform 



ADVANCES IN HYDRO-SCIENCE AND  –ENGINEERING, VOLUME VI  3

centrifugal term (BTMU) model. Following the procedures suggested by Fenton (1996) and 
assumptions of a linear variation of centrifugal term and average horizontal flow velocity, the 
following equations are developed for steady flow in a rectangular channel: 
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These equations in this paper are termed the Boussinesq-type momentum equation linear 

(BTML) model. In the formulation of both models, the curvature at the surface is approximated by 
''22 / bH ZdxHd +≅κ  and at the bed by .''bb Z≅κ  If eq. 4 is compared with the corresponding 

equation, eq. 2, it is noticed that the term, which accounts for the dynamic effect due to the curvature 
of the flow surface, shows a quadratic variation in eq. 4. It should be remarked that eq. 2 predicts a 
linearly vary non-hydrostatic pressure distribution. In this work the two models will be applied to 
simulate flow in the vicinity of rectangular free overfall and flow over short-crested trapezoidal 
profile weirs. The numerical solution procedures for the latter flow problem are described in detail 
in the companion paper (Zerihun and Fenton (2004)) and only the simulation results are presented in 
this paper. A brief discussion of the modelling of the free overfall problem will be given in the 
following section. The simulation results of the two models will be compared with measurements to 
examine the influence of the applied distribution shapes for the variation of the centrifugal term on 
the solutions of the models.  
 
 
3. DEVELOPMENT OF THE NUMERICAL MODEL AND SOLUTION 
 
3.1 Problem Formulation and Boundary Conditions 
 
The computational domain for the numerical solution of the free overfall problem is shown in Figure 
1. In this figure AB is the inflow section, EF is the outflow section and BD is the channel bed. The 
inflow section of the computational domain is located in a region where the flow is assumed to be 
nearly horizontal, with uniform velocity and hydrostatic pressure distributions. This flow condition 
simplifies the evaluation of the boundary values at this section using the gradually varied flow 
equation,  
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from which for the given depth and discharge at the inflow section, the corresponding slope of the 
water surface, HS , can be evaluated numerically. In this equation, Fr is the Froude number and 0S  
is the bed slope. Besides, for the specified elevation of the lower nappe at outflow section, and 
additional two internal boundary conditions (atmospheric bed pressure and known elevation of the 
lower nappe) at the brink section, it is required to determine the upper flow surface profile, ACE, 
and the lower nappe profile, DF. It is also required to compute the pressure distribution at a vertical 
section and bed pressure profile upstream of the end section as part of the solution. For this purpose, 
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the computational domain of the flow problem is discretized into equal size steps in x  as shown in 
Figure 1. 
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Figure 1 Computational domain for a free overfall problem. 
 

3.2 Discretization of the Equations and Solution Procedure 
 
A numerical solution is necessary since closed-form solutions are not available for these nonlinear 
differential equations. The finite difference approximations are used to discretise the above flow 
equations. This formulation is very simple to code and extensively used to solve linear or nonlinear 
differential equations. For discretization purpose, eqs. 1 and 3 can be represented by a simple 
general equation as 
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where 10 , ξξ  and 2ξ  are the nonlinear coefficients associated with the equations. Higher-order 
finite difference approximations are employed here to replace the derivative terms in these equations 
in order to reduce the truncation errors introduced in the formulation due to the finite difference 
quotients (see e.g., Fletcher (1991)). The upwind finite difference approximations (Bickley (1941)) 
for derivatives at node j  in terms of the nodal values at jjj ,1,2 −− and 1+j  are introduced into 
eq. 6 in places of the derivatives. After simplifying the resulting expression and assembling similar 
terms together, the equivalent finite difference equation reads as 
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where h  is the size of the step. Since the value of the nodal point at 0=j  is known, the value of the 
imaginary node at 1−=j  can be determined from the estimated water surface slope, HS , at the 
inflow section. Using a similar discretization equation for the water surface slope at inflow section 
and the expanded form of eq. 7 at 0=j , the explicit expression for the nodal value at 1−=j  in 
terms of values of the nodal point 0 and 1 is 
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The complete simulation of the flow profile of this problem requires the application of both 

the pressure and flow profile equations. To simplify the numerical simulation procedures, the 
contribution of the bed slope squared term in eq. 2 is neglected. Therefore, the bed pressure 
equations can be discretized in a general form as the flow profile equations but 0.10 =ω  for the 
BTML model. For the free jet portion of this flow, the pressure at the underside of the nappe is 
atmospheric. Using this condition, the discretized equation for the elevation of the lower nappe of 
the jet, bZ , from the pressure equation reads as 
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At nodal point Jj = , the elevation of the lower nappe is specified as an outflow boundary condition 
and at bJj =  the elevation of this nappe is the same as the elevation of the bed. For the simulation of 
the upper flow profile, an internal boundary condition (atmospheric bed pressure) is imposed at the 
brink section.  Thus, the discretized equation for part of the curvature term of the upper nappe 
profile at this section from the pressure equation becomes 
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The use of eq. 7 at nodal point Jj =  for the upper nappe profile will introduce an unknown nodal 
value external to the computational domain. Using the backward difference approximations in terms 
of nodal points 2,1, −− JJJ … for the derivative terms in eq. 6, the finite difference equation at 
the outflow section after simplifying the resulting expression becomes 
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The solution of the nonlinear flow equation based on a boundary value technique requires an 

initial estimate of the position of the free surface profile. This makes the solution of the flow 
problems relatively more difficult due to the fact that the location of the free surface profile is not 
known a priori. Generally, such problems must be solved by iterative methods, which proceed from 
an assumed initial free surface position. Convergence of the iteration procedure to a final profile that 
satisfies the boundary conditions may be dependent to some extent on the choice of the initial flow 
surface profile. In this work the Bernoulli and continuity equations are employed to obtain the initial 
upper flow surface profile for commencing the iteration solution. Also, the initial lower nappe 
profile is taken as a horizontal continuation of the channel bed. Since the curvature of the fixed bed 
is known, eqs. 7, 8, 10 and 11, with the inflow boundary conditions are solved numerically to 
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simulate the upper flow surface profile. To predict the lower nappe flow profile, eq. 9 together with 
the specified two boundary conditions is solved using similar technique. In each iteration process the 
derivatives of the lower nappe profile are computed numerically. The application of these equivalent 
finite difference equations at different nodal points within the solution domain results a sparse 
system of nonlinear algebraic equations. These equations with the appropriate boundary values at 
the specified sections are solved implicitly using a Newton-Raphson iterative scheme with a 
numerical Jacobian matrix. The convergence of the solution is assessed using the following 
criterion: 

 ,
1

toleranceH
m

j
j ≤δ∑

=

 

where jHδ  is the correction depth to the solution of the nodal point j  at any stage in the iteration; 
m  is the total number of nodes in the solution domain excluding nodes having known values. In this 
study, a tolerance of 10-6 is used for the convergence of the numerical solution.  

For the solution of the pressure equations, a similar finite difference approximation is inserted 
into eqs. 2 and 4 to discretise the derivative term in the equations. Since the nodal flow depth values 
are known from the solution of the flow profile equations, these discretized equations yield the bed 
pressure (for bZz = , where bZ  is channel bed elevation) at different nodal points.  
 
 
4. RESULTS AND DISCUSSION 
 
The one-dimensional numerical models presented in the previous sections are now used for 
simulating steady: i) flow in a free overfall with subcritical approaching flow; and ii) transcritical 
flow over short-crested trapezoidal profile weirs. Since the experiments for both cases were 
performed in Plexiglass laboratory flumes, a smooth boundary resistance law was used to estimate 
the friction slope for the models. For computational simplicity, β  is assumed as unity in both 
models. All numerical results presented here were independent of the effect of spatial step size.  
 
4.1 Free Overfall 
 
In this work, the Rajaratnam and Muralidhar (1968) experimental data for free overfall in a 
rectangular channel were used for the verification of the model results. The computed flow surface 
profiles for subcritical approaching flow is compared with the experimental results in Figure 2. 
Upstream of the brink section, the results of both models agree well with the experimental data. 
Although the observation was taken for short length of the flow domain, the BTMU model simulates 
the upper nappe profile of the jet more accurately than the BTML model. The BTML model result 
starts to deviate from the measured data for this part and shows very steep water surface slope at the 
brink section. For this flow situation, the brink depth is an important parameter for estimating the 
flow rate. This depth is predicted accurately by the BTMU model with an error of less than 3%. 
Figure 3 shows the bed pressure profile upstream of the end section. In this figure the non-
dimensional bed pressure at any section, 0/ ppb  ( bp = bed pressure, gHp ρ=0 ) is shown versus the 
normalized distance from the brink, Hx / . As can be seen from this figure, the predicted results 
compared very well with the experimental data. Both models predict similar bed pressure profiles. 
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Figure 2 Flow surface profile in a free overfall with subcritical upstream flow. 
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Figure 3 Bed pressure profile in a free overfall with subcritical upstream flow. 
 

Figure 4 plots the non-dimensional pressure distribution upstream of the fall, 0/ pp ( p  = 
pressure at height, sh , above the bed) versus the non-dimensional height above the bed, Hhs / . In 
this figure, the computed pressure distributions are compared with the experimental results. It can be 
seen from this figure that the result of the BTMU model shows internal atmospheric pressure at the 
brink section due to the pre-assumed constant centrifugal term at a vertical section. Contrary to this, 
the BTML model predicts the maximum pressure at the end section accurately. However, the 
numerical solution indicates some deviation for the location of the maximum pressure. This 
difference between the numerical and experimental results is about 27% of H . In general, the 
prediction of the pressure distribution profile using the BTML model is satisfactory and follows a 
similar pattern with the observed values. Also, this model predicts the pressure distributions more 
accurately at vertical sections, 5.72 cm and 11.43 cm to the left of the free overfall, where the flow 
has considerable streamline curvature. At a distance of 17.15 cm from the end section the curvature 
of streamline is negligible; both models provide similar results which agree very well with the 
experimental data. This comparison suggests that a higher-order pressure equation should be used to 
simulate accurately the pressure distribution of a flow with pronounced curvature of streamlines. 
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Figure 4 Pressure profiles in a free overfall at different sections. 
 
4.2 Flow Over Short-crested Trapezoidal Profile Weirs 
 
Experiments on flow over trapezoidal profile weirs were conducted for validating the results of the 
models. Details of the experimental system can be found in Zerihun and Fenton (2004). To assess 
the effect of the streamline curvature on the solution of the models, transcritical flow over 
trapezoidal profile weirs with different wLH /0  ( 0H = total energy head over the weir crest, wL = 
weir crest length) values were considered. The computed flow surface and bed pressure profiles for 
this flow situation are compared with experimental results in Figures 5 and 6. The BTMU and 
BTML models solutions for flow surface profile show excellent agreement with the measured data. 
Both models predict similar flow surface profiles with steep flow surface slope on the crest of the 
weir. A minor discrepancy between the results of the two models for bed pressure profiles can be 
seen from these figures. In general, the overall qualities of the numerical solutions of the bed 
pressure are good and show good agreement with the experimental data.  

The comparisons for the above two flow situations indicate that the assumed shapes for the 
distribution of the centrifugal term has little effect on the flow surface profile solutions of the 
models.  
 
 
5. CONCLUSIONS 
 
Two one-dimensional Boussinesq-type momentum equation models were investigated for 
simulating free overfall in a rectangular channel and transcritical flow over short-crested trapezoidal 
profile weirs. Uniform and linear distribution shapes for the variation of the centrifugal term were 
used to develop the equations. Finite difference approximations were employed to discretise the 
flow equations. The resulting nonlinear algebraic equations were solved using the Newton-Raphson 
technique with a numerical Jacobian matrix. The comparison result for flow surface profiles shows 
that the BTMU model provides better agreement with the measurement than the BTML model for 
the simulation of free overfall flow problem. For the transcritical weir flow situation, the agreement 
between the experimental and numerical results is good and no significance differences are observed 
between the computational results of the two models for the entire flow region. For both cases of the 
flow problems, the dynamic pressure simulation of the BTML model is much better than the BTMU 
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model particularly in the flow region where the effect of non-hydrostatic pressure distribution is 
predominant. This numerical experiment demonstrates that the pressure profile results are very 
sensitive to the applied approximations for the variation of the centrifugal term, but the flow profile 
solutions are little affected by these approximations. 
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Figure 5 Flow surface and bed pressure profiles for free flow situation (Lw=10 cm). 
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Figure 6 Flow surface and bed pressure profiles for free flow situation (Lw=15 cm). 
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