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ABSTRACT: Flow over embankment shaped weirs commonly encountered in large 2-D flow 
problems cannot be simulated by most of the common flow models which assume uniform velocity 
and hydrostatic pressure distributions. A Boussinesq-type momentum equation, which allows for 
curvature of the free surface and a non-hydrostatic pressure distribution, is considered in this 
paper for the numerical simulation of steady flow over short- and broad-crested trapezoidal profile 
weirs as well as for the establishment of head-discharge relationships under free flow conditions. 
An implicit finite difference scheme is applied. Computed and measured results of flow surface 
profiles and rating curves for these types of weirs are presented. The numerical results of the flow 
surface profiles and rating curves show good agreement with the corresponding experimental data. 
The model results also demonstrate the detailed dependence of the flow characteristics of these 
weirs on the curvature of the streamlines. 

INTRODUCTION 

Flood flows over highway and railway embankments are analogous to flow over short- and broad­
crested weirs. The hydraulic advantage of higher discharge capacity of these trapezoidal profile 
weirs compared to broad-crested weirs with vertical faces makes them very attractive in practice 
as a discharge measuring device. Thus, the development of head-discharge relationships of such 
weirs assumes considerable practical importance. Also in the applications of two-dimensional flow 
models, these weirs often provide important boundary conditions. However, flow over such types 
of weirs cannot be simulated by most of the common flow models, which assume uniform velocity 
and hydrostatic pressure distributions over the depth. These assumptions restrict the application of 
the models to flow simulation problems that involve insignificant curvature of streamlines. These 
models do not retain accuracy for flow situations where the effects of non-hydrostatic pressure 
distribution are significant and essential, such as rapidly varied flows past hydraulic structures. 
The two-dimensional nature of this flow problem requires relatively accurate methods for exact 
simulation of the flow situation. In this study a model based on a higher-order Boussinesq-type 
equation will be employed for the simulation of such types of flow problem numerically. 

A review of the literature shows that little effort has been made to study the numerical modelling 
of flow over trapezoidal profile weirs particularly for the establishment of rating curves. Contrary 
to this, the problem of flow over such weirs has been extensively studied experim�ntally. Most of 
the experimental works were performed towards the understanding of the flow characteristics of 
these weirs and also the determination of the coefficients of discharge under free and submerged 
flow conditions (see e.g. Kindsvater 1964, Fritz & Hager 1998). A simple numerical procedure was 
applied to develop rating curves for flow over broad-crested weirs by incorporating directly the 
discharge coefficients. The procedure was formulated based on the energy equation which assumes 
uniform flow at the gauging station and control section, and constant head between this station and 
section (see Bos 1985 #3.7). This rating procedure provides solution to irrotational flow problems 
with negligible curvature of streamlines since its application is limited by the ratio of the total 
energy head, Ho, to weir crest length, Lw (Ho/Lw ::: 0.50). However, the procedure is inappropriate 
to develop a rating curve for flow over short-crested weirs where the effects of non-hydrostatic 
pressure and non-uniform velocity distributions are significant. More recently Collins & Catalano 
(2001) studied the ability of the DELFT-FLS model to predict accurately the crest-referenced head 
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of a broad-crested weir. The study aimed to explore the capabilities and limitations of the model. The 
discharge rating curves of the weir were simulated for free flow condition and the predicted results 
were compared with the results of the common broad-crested weir formula for the range in which 
this equation estimates the discharge accurately (0.08:::; Ho/ Lw :'S 0.33). However, the study did not 
include flow simulations over short-crested weirs (0.33 < Ho/ Lw :'S 1.50) where the curvature of the 
streamlines above the weir crest has a considerable influence on the head-discharge relationships. 
This review demonstrates that a general model, which includes the effects of the curvature of the 
streamlines implicitly or explicitly, is necessary to provide head-discharge relationships for short­
and broad-crested weirs. In this work a numerical model based on a higher-order equation will be 
used for flow simulation over trapezoidal profile weirs with smooth transition curves introduced 
at the four corners of the profile for the purpose of integrating the equation continuously at these 
points. 

Therefore the main objectives of this paper are: (i) to model transcritical flow over trapezoidal pro­
file weirs using a higher-order equation numerically for establishing head-discharge relationships; 
(ii) to assess the influence of the curvature of the streamlines on the head-discharge relationships
as well as on the flow profile solutions of the governing equation; (iii) to examine the accuracy of 
the model results by a number of laboratory experiments. 

2 GOVERNING EQUATION 

Fenton (1996) developed a Boussinesq-type momentum equation based on the assumption of a 
constant centrifugal term at a vertical section to model relatively short length scale flow problems. 
For steady flow in a rectangular channel, the equation reads as 

(1) 

in which H is the depth of flow; Z�, z; and z;' are the first, second and third derivatives of the 
bed profile respectively; Sf denotes the friction slope, calculated from the Manning equation or 
smooth boundary resistance law; q is the discharge per unit width; f3 refers to the Boussinesq 
coefficient; g is gravitational acceleration; and wo is a constant factor to reflect the effect of the 
bed in determining the elevation of the surface and the associated dynamic pressures due to slow 
moving flow near the bottom of the flow boundary. Fenton (1996) suggested a value of slightly less 
than one for wo. In the formulation of this equation, the curvature, K, at the surface is approximated 
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byK�d H/dx +zb and at the bed byK�Z. 
This equation implicitly includes the effect of the vertical acceleration to model two-dimensional 

flow problems where more vertical details are significant and essential. For the case of weakly 
curved free surface flow with negligible curvature of streamlines in a constant slope channel, -
the flow surface and bed curvatures terms vanish to zero. Under this flow condition, the above 
equation reduces to the gradually varied flow equation. Equation (1) will be used in this study to 
simulate transcritical flow over trapezoidal profile weirs for the purpose of developing discharge 
rating curves. These weir profiles are characterized by the presence of discontinuous bed geometry 
properties at the four corner points. Smooth transition curves should be fitted at these points in 
order to integrate equation (1) continuously within the solution domain. A simple curve described 
by a polynomial function of degree five was used. The length of this curve was fixed based on 
the criteria that the error associated with the prediction of the bed profile elevation around the 
discontinuous point is less than 5%. 

3 PROBLEM FORMUL.:A..TION 

The computational domain for the numerical solution of the weir flow problem is shown in Figurel .  
In this figure AB is the inflow section, CD is the outflow section and BM is the approaching channel 
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Figure 1. Computational domain for flow over weir. 

bed. Also, MUVN is the trapezoidal profile weir. The inflow section of the computational domain 
is located in a region where the flow is assumed to be nearly horizontal, with uniform velocity and 
hydrostatic pressure distributions. This pseudo-uniform flow condition before the inflow section 
of the solution domain simplifies the evaluation of the boundary values at this section using the 
gradually varied flow equation, equation (2). Thus, for a given depth at the inflow section the slope 
of the water surface, dH / dx, can be evaluated from the following equation 

dH 
dx 

So-Sf 

1 - f3Fr2
'

(2) 

in which Fr is the Froude number; and So is the bed slope. For the subcritical flow upstream 
of the weir, the Froude number squared is sufficiently small and can be neglected. Using this 
approximation, the curvature of the flow surface, Ks , at inflow section after differentiating equation 
(2) with respect to x becomes

-2q2B2 dK dH
Ks = K3 dH dx' (3) 

where K is the conveyance factor, can be determined from the Manning equation; B is the width ofthe channel. Similarly, the gauging station GS should be situated sufficiently far upstream of theweir to avoid the influence of the curvature of the water surface on the magnitude of the estimatedoverflow depth. According to Bos et al. (1984 p. 36) this section is located at a distance of the largerof the following two values: (i) between two and three times the maximum crest referenced headfrom the upstream edge of the weir crest; (ii) the maximum crest referenced head from the heelof the embankment shaped weir. From the computational point of view, however, the maximumoverflow head is not known a priori to fix the position of the gauging station. For this numericalsimulation problem, the overflow head corresponding to the given discharge at the heel of theembankment shaped weir will be used to locate approximately the gauging station. For the given flow depth, AB, and discharge at the inflow section, it is required to determine theflow surface profile, AC, and the corresponding overflow head at the gauging station GS. For thispurpose, the computational domainACDNVUMB is discretized into equal size steps in x as shownin Figure l. 

4 DEVELOPMENT OF THE NUMERICAL MODEL 

Finite difference approximations are used to replace the derivative terms in the above flow equation. 
This formulation is very simple to code and extensively used to solve linear or non-linear differen­
tial equations. For the purpose of discretization, equation (1) can be represented by a simple general 
equation as 

(4) 
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where 50, 51 and 52 are the non-linear coefficients associated with the equation. It is a third-order differential equation which needs to employ third- or higher-order accurate methods to solve the equation numerically. This is necessary in order to reduce the truncation errors introduced in the formulation due to the finite difference approximation of the derivative terms of the equation (see Abbott 1979 #4.12). Therefore, five point finite difference approximations are employed here to replace the derivative terms in the governing equation. The upwind finite-difference approximations (Bickley 1941) for derivatives at node j in terms of the nodal values atj-3,j-2,j- l ,j and,}+ 1 are introduced into equation (4) for the purpose of discretising the equation. After simplifying the resulting expression and assembling similar terms together, the equivalent finite difference equation reads as 
H.i-3 (12 - 250,Jh - 251,;h2) + H.i-2 (-72 + 850,Jh + l251,;h2) 

+ H.i-1 (144 + 1250,Jh - 3651,Jh2) + H.i (-120 - 4050,Jh + 2051,Jh2)
+ H.i+1(36 + 2250,Jh + 651,Jh2) + 2452,;h3 = 0, (5) 

where his the size of the step. In the solution domain, equation ( 5) is applied to evaluate nodal values at different points. However, the use of equation (5) at}= 1 and} =J will introduce unknowns external to the computational domain. Using the backward difference approximations in terms of nodal points}, J-1, j-2, ... for the derivative terms in equation (4), the finite difference equation at the outflow section after simplifying the resulting expression becomes 
H.i-4 (36 + 2250,Jh + 651,;h2

) + H.i-3 (-168 - 11250,;h - 3251,;h2
) 

+ H.i-2 (288 + 22850,Jh + 7251,;h2) + H.i-1 (-216 - 20850,Jh - 9651,;h2
) 

+ H.i ( 60 + 7050,Jh + 5051,;h2) + 2452,;h3 = 0. (6) 
Since the value of the nodal points at j = 0 is known, the values of the imaginary nodes at j = -1 and j = -2 can be determined from the estimated water surface slope, S H, and curvature of the free surface, KH, at the inflow section. Using similar discretization equations as above for the water surface slope and curvature at inflow section and the expanded form of equation (5) at}= 0, the explicit expressions for the nodal value at j = -l and j = -2 are 

where: 

H-2 = 6hSH + l2H-1 - l5Ho + 4H1 - 6h2KH, (7) 
H-1 = (-1 -) (A (24hSH - 80Ho + 21H1 - 36h2KH) + B (6hSH - 15Ho))' (8) <I> - Q + B (4H1 - 6h2KH) +H1E +Hof+ Y 

A= 6h251,o + 22h50,o + 36; B = 20h2ho - 40h50,o - 120; 
Q = 36h251,o + 12h50,o + 144; <I> = -54A - 12B; E = -2h251,o - 2h50,o + 12; 
r = I2h2ho + 8h50,o - 72; Y = 24h352,o. 

The solution of the non-linear flow equation based on a boundary value technique requires an initial estimate of the position of the free surface profile. This makes the solution of the flow problems relatively more difficult due to the fact that the location of the free surface profile is not known a priori. Generally, such problems must be solved by iterative methods, which proceed from an assumed initial free surface position. Convergence of the iteration procedure to a final profile that satisfies the boundary condition may be dependent to some extent on the choice of the initial flow surface profile. In this work the Bernoulli and conti1:mity equations are employed to obtain the initial flow surface profile for commencing the iteration solution. To simulate the flow surface profile, equations ( 5) and ( 6) are applied at different nodal points within the solution domain and this results a sparse system of non-linear algebraic equations. These equations together with equations (7) and (8), and a boundary value at the inflow section, are solved by the Newton-Raphson iterative method 
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with a numerical Jacobian matrix. The convergence of the solution is assessed using the following 
criterion: 

m 

L j8Hjj :'.S tolerance,

J=I 

where 8Hj is the correction depth to the solution of the nodal point} at any stage in the iteration; m
is the total number of nodes in the solution domain excluding nodes having known values. In this 
case study, a tolerance of 1 o-6 is used for the convergence of the numerical solution. The overflow
head at the gauging station can be determined from the predicted flow depth at this station and a 
known height of the trapezoidal profile weir above the upstream floor level. In this model equations 
(5), (6), (7) and (8) constitute the one-dimensional finite difference equivalent equations. 

5 EXPERIMENTAL SET-UP AND PROCEDURE 

The experiments were performed in a horizontal flume 7100 mm long, 3 80 mm high, and 3 00 mm 
wide in the Department of Civil and Environmental Engineering at the University of Melbourne. 
The flume and the trapezoidal profile weirs were made of Plexiglass. The water was supplied to the 
head tank from a sump through 115 mm diameter pipe with a valve for controlling the discharge. 
Various flow improving elements were provided upstream of the trapezoidal profile weirs to obtain 
a smooth flow without large-scale turbulence. Symmetrical trapezoidal profile weirs of 150 mm 
high, crest length 100 mm and 400 mm respectively and side slope 1 V:2H were tested at different 
discharges. 

A volumetric tank system was used to measure the discharge. The system consists of a tank with 
plan dimensions of200 cm by 150 cm and depth of 450 cm, and an inclined manometer (56.62° to 
the horizontal) for water level measurement in the tank. Tank filling time longer than one minute was 
used to minimize errors associated with the starting and stopping of the stopwatch. The longitudinal 
flow surface profile was observed with a manual point gauge of reading accuracy ±0.10 mm. For 
recording the bed pressure, steel pressure taps of external diameter 3 mm were fixed along the 
centreline of the weir model with maximum horizontal spacing of 100 mm, but the spacing was 
much closer near to the edges of the weir crest. These pressure taps were connected to vertical 
water piezometers of reading accuracy to 1 mm by long plastic tubes. For each experiment, the 
base reading for the pressure taps was obtained immediately after the flow was shut off. According 
to the criteria given by Ranga Raju et al. ( 1990), the effects of viscosity and surface tension on the 
experimental results were negligible. 

6 RESULTS AND DISCUSSION 

In this work the numerical model, which was developed in the previous section, is used to simulate 
steady flow over short- and broad-crested trapezoidal profile weirs for transcritical flow situation. In 
order to assess the effect of the streamline curvature on the solution of the model, free flow situations 
with different Ho/Lw values were considered. The magnitude of this ratio directly measures the 
degree of the curvature of the flow over the crest of the weir. For Ho/ Lw :'.S 0.50, the curvature of 
the streamline over the crest is insignificant except near to the edges of the weir crest (see e.g. 
Bos 1978 p. 15). Since the experiment was performed in a laboratory flume, a smooth boundary 
resistance law was applied to estimate the friction slope for the numerical model. For computational 
simplicity f3 is taken as unity in the above flow equation. All computational results presented here 
were independent of the effect of spatial step size. 

The comparison of the computed and experimental free surface profiles for transcritical flow 
over short- and broad-crested trapezoidal profile weirs is shown in Figures 2-3. A good agreement 
is seen between the observed and predicted free surface profiles in both the subcritical and super­
critical flow regions, and for all cases of curvatures of the flow surface over the crest of the weirs. 
This numerical experiment indicates that the model simulates the weir flow problem accurately 
irrespective of the degree of curvature of the streamlines. It also suggests that the effect of the 
curvature approximation on the numerical solutions of the equation is insignificant. 
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Figure 2. Flow surface profiles for free flow over short-crested weir. 

The computed head-discharge curves obtained for the case of flow over trapezoidal profile 
weirs is compared with the experimental results in Figure 4. The numerical solutions demonstrate 
good agreement with the experimental data for both weirs. This figure also compares the simulated 
discharge rating curves of the short- and broad-crested type of trapezoidal profile weirs. Depending 
on the magnitude of Ho/ Lw, the same type weir can act as a broad-crested or a short-crested weir. At 
low flow rates the rating curve for the short- and broad-crested type of trapezoidal profile weirs are 
identical; indicating the insignificance of the influence of the curvature of the streamlines on the 
discharge characteristics of both weirs at this level of the flow rates (see Fig. 4). As the discharge 
increases, clear differences between the head-discharge curves of the broad-crested and short­
crested weirs are observed. This difference is due to the large increase of curvature of the streamlines 
of the flow over the crest of the short-crested trapezoidal profile weir. It can be observed from Figure 
4 that in the region of relatively high flow rate, the overflow depth required to pass the given discharge 
over the broad-crested weir is larger than the corresponding overflow depth for the short-crested 
weir. This implies that less energy is required to pass a given flow over the short-crested types than 
the broad-crested weirs. This result suggests that the curvature of the streamlines of the flow over 
the crest of the trapezoidal profile weir has significant impact on the discharge capacity of the weir. 

7 CONCLUSIONS 

A numerical model has been developed using a higher-order Boussinesq-type momentum equation 
to simulate transcritical flow over short- and broad-crested trapezoidal profile weirs as well as to 
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Figure 3. Flow surface profiles for free flow over broad-crested weir. 
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predict the upstream overflow depths for the given discharges for the purpose of establishing head­
discharge relationships for these weirs. It should be emphasized that this one-dimensional model 
is capable of treating free flow over any type of weir profile providing the profile does not have 
vertical faces. Analysis of numerical and experimental results was also presented. Good agreement 
was observed between the predicted and measured values. The model predicts accurately the free 
surface profiles regardless of the curvature of the streamlines. The model result also shows the 
influence of the curvature of the streamlines on the discharge characteristics of the trapezoidal 
profile weirs. The existing flow model for developing discharge rating curves under free flow 
condition, which is valid only for broad-crested weir, was extended using the Boussinesq-type 
momentum equation model. 
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