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Abstract 
A numerical experiment is carried out to investigate the suitability of a one-dimensional 

Boussinesq-type model for simulating transcritical flow in a channel with simultaneous 
variation of sidewalls and bottom geometries. Two Boussinesq-type momentum equation 
models for such type of flow simulation are considered in this study. These models 
incorporate different degrees of dynamic pressure corrections as a result of the pre-assumed 
uniform and linear variation of centrifugal term at a vertical section. The effect of the pressure 
correction factors on the solutions of the models is also examined. The finite difference 
method is employed to discretise and solve the flow equations. The models are then applied to 
simulate different test cases for flow in such channel with predominant non-hydrostatic 
pressure distribution effects. A comparison of the computed results with the corresponding 
experimental data is presented. Generally speaking, good agreement is attained between the 
computed and measured results from this comparison. Results of the study reveal that the 2-D 
flow structures for such type of flow situation are better described by the proposed model 
which includes a higher-order correction for the effect of the centrifugal pressure. 
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1. INTRODUCTION 
In most open channel flow measuring structures such as venturi flumes, the geometries of 

both the sidewalls and the bed vary along the direction of the flow. It is well-known that such 
geometric changes result in flow transition from subcritical to supercritical state under free 
flow conditions. The significant characteristic of the flow in the vicinity of such transition is a 
strong departure from the hydrostatic distribution of pressure caused by sharp curvatures of 
streamlines. The common computational flow models, which assume hydrostatic pressure 
distribution, do not retain accuracy for such types of flow situations. The essential vertical 
flow details of the flow situations require the use of relatively accurate methods for exact 
description of the flow problems. In this study, a one-dimensional model that incorporates a 
correction for the effect of the centrifugal dynamic pressure due to the curvature of the 



806    September 11~16, 2005, Seoul, Korea 

 

streamline will be employed for the numerical simulation of free flow in such types of flow 
measuring structures. 

Several investigations have been performed in the past to model flow situations that 
involve non-hydrostatic pressure distribution effects using different approaches. Boussinesq 
(1877) was the first to extend the momentum equation to incorporate implicitly the streamline 
curvature effects. Recently, Dressler (1978), Hager and Hutter (1984), Hager (1985) and 
Matthew (1991) have developed higher-order equations to model two-dimensional flow 
problems. Similar to the Boussinesq (1877) equation, however these equations are limited to 
the solution of irrotational flow problems only. For fast flow over the chute part of hydraulic 
structures such as spillways, the assumption of irrotational flow, which was the basis of all 
these governing equations, is questionable. It has also been shown by Fenton (1996) that the 
scaling of the variables introduced into the Dressler equations has an inconsistency. Steffler 
and Jin (199�) developed the vertically averaged and moment (VAM) equations based on the 
assumptions of a linear longitudinal velocity distribution, and quadratic pressure and vertical 
velocity distributions across the depth of flow. However, the resulting equations are very long 
and complex. Khan and Steffler (1996a, b) studied the applicability of these equations. Fenton 
(1996) introduced alternative equations to model flow problems with appreciable curvature of 
streamline. He used the momentum principle along with the assumption of a constant 
centrifugal term, ακ cos/ (κ = curvature and α = angle of inclination of the streamline with 
the horizontal axis), at a vertical section to develop the equations. The distribution shape of 
this term determines the degree of the resulting correction factor for the effects of the 
streamline curvature. Compared to other governing equations (for instance, Dressler and 
VAM equations), the equations are simple to apply in a cartesian coordinate system especially 
for flow problems with continuous flow boundaries. In this study, these equations along with 
the modified version, which are developed based on the assumption of a linear variation of 
centrifugal term with depth, will be employed to simulate steady transcritical flow situation in 
flow measuring structures. These include free flows over trapezoidal profile weirs as well as 
in venturi flumes with and without humps. 

Flow problems related to open channel flow measuring structures have been extensively 
studied experimentally. Most of the experimental works were performed to understand the 
flow characteristics of these structures as well as for the determination of the coefficients of 
discharge (see e.g., Bos, 1978). However, little attempt has so far been made to model such 
flows numerically using a higher-order flow equation. From a practical perspective, accurate 
simulation of the flow particularly the upstream water surface elevation and/or piezometric 
head is very important in order to predict the discharge capacity of these structures under free 
flow conditions.  

Therefore, the purposes of this paper are: i) to investigate the Boussinesq-type equations 
models for simulating transcritical flow situation in a channel with simultaneous variation of 
sidewalls and bed geometries; and ii) to assess systematically the impact of the pressure 
correction factors on the simulation of pressure and flow surface profiles of such flows. 
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2. GOVERNING EQUATIONS 
As discussed above, Fenton (1996) presented a simple method that incorporates the 

possible variation of the channel width. For steady flow in a rectangular channel, this method 
yields the following equations: 
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in which H  is the depth of flow; '
bZ , ''

bZ  and '''
bZ  are the first, second and third derivatives of 

the bed profile respectively; fS  denotes the friction slope, calculated from the Manning 

equation or smooth boundary resistance law; Q is the discharge; A is flow cross-sectional 
area; B  is the width of the channel; β  refers to the Boussinesq coefficient; g is gravitational 
acceleration; ρ  is the density of the fluid; η  is the mean elevation of the free surface; z  is the 
vertical coordinate of a point in the flow field; p  is the pressure; and 0ω  is a weighting factor. 
Fenton (1996) suggested a value of slightly less than one for 0ω . These equations, Eqs. (1) 
and (2), will be referred to hereafter as the Boussinesq-type momentum equation of uniform 
centrifugal term (BTMU) model. Following the procedures suggested by Fenton (1996) and 
assumption of a linear variation of centrifugal term with depth, the following equations are 
developed for steady flow in a rectangular channel: 
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These equations in this paper are termed the Boussinesq-type momentum equation linear 
(BTML) model. In the formulation of both models, the curvature at the surface is 
approximated by ''22 / bH ZdxHd +≅κ  and at the bed by .''bb Z≅κ  If Eq. (4) is compared with 

the corresponding equation, Eq. (2), it is noticed that the term, which accounts for the 
dynamic effect due to the curvature of the flow surface, shows a quadratic variation in Eq. (4). 
It should be remarked that Eq. (2) predicts a linearly varying non-hydrostatic pressure 
distribution. In this work, the two models will be applied to simulate transcritical flows over 
curved beds with and without lateral contractions. The simulation results of the two models 
will be compared with measurements to examine the influence of the pressure correction 
factors on the solutions of the models. 
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3.   PROBLEM FORMULATION AND BOUNDARY CONDITIONS 
The computational domain for the numerical solution of the flow problem is shown in Fig.  

1. In this figure AB and CD are the inflow and outflow sections respectively, and BD is the 
curved flow boundary in which the first and second derivatives are continuous. The inflow 
and outflow sections of the computational domain are located in a region where the flow is 
assumed to be nearly horizontal, with hydrostatic pressure distribution. This flow condition 
simplifies the evaluation of the boundary values at these sections using the gradually varied 
flow equation,  

2
0

1 Fr
SS

dx
dHS f

H β−

−
== ,  (5) 

from which for the given depth and discharge at the inflow section, the corresponding slope of 
the water surface, HS , can be evaluated numerically. In this equation, Fr is the Froude 
number and 0S  is the bed slope. For the given boundary values at the inflow and outflow 
sections, and discharge at the inflow section, it is required to determine the flow surface 
profile, AC, and the bed pressures along the flow boundary BD. For this purpose, the 
computational domain of the flow problem is discretised into equal size steps in x  as shown 
in Fig. 1. 

 
4. COMPUTATIONAL MODEL DEVELOPMENT  

A numerical solution is necessary since closed-form solutions are not available for these 
nonlinear differential equations. The finite difference approximations are used to discretise 
the above flow equations. This formulation is very simple to code and extensively used to 
solve linear or nonlinear differential equations. For discretisation purpose, Eqs. (1) and (�) 
can be represented by a simple general equation as 

 

 
Fig. 1 Computational domain for transcritical flow problem 
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where 210 ,, ξξξ  and �ξ  are the nonlinear coefficients associated with the equations. Higher-
order finite difference approximations are employed here to replace the derivative terms in 
these equations in order to reduce the truncation errors introduced in the formulation due to 
the finite difference quotients (see e.g., Fletcher, 1991). The upwind finite difference 
approximations (Bickley, 1941) for derivatives at node j  in terms of the nodal values at 

jjj ,1,2 −− and 1+j  are introduced into Eq. (6) in places of the derivatives. After 
simplifying the resulting expression and assembling similar terms together, the equivalent 
finite difference equation reads as 
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where h  is the size of the step, and 21, µµ  and �µ  are constants related to the model equations 
and are given in Table 1. Since the value of the nodal point at 0=j  is known, the value of the 
imaginary node at 1−=j  can be determined from the estimated water surface slope, HS , at 
the inflow section. Using a similar discretisation equation for the water surface slope at inflow 
section and the expanded form of Eq. (7) at 0=j , the explicit expression for the nodal value 
at 1−=j  in terms of values of the nodal point 0 and 1 is 
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Eqs. (7) and (8) constitute a one-dimensional finite difference hydrodynamic model.  
The solution of the non-linear flow equation based on the two-point boundary value 

technique requires a known initial position of the free surface profile. This makes the solution 
of the flow problems relatively more difficult due to the fact that the location of the free 
surface profile is not known a priori. Generally, such problems must be solved by iterative 
methods, which proceed from an assumed initial free surface position. The computational 
effort for the iteration procedure may be dependent to some extent on the choice of the initial 
flow surface profile. In this work, the Bernoulli and continuity equations are employed to 
obtain the initial flow surface profile for commencing the iteration solution. To simulate the 
flow surface profile, Eq. (7) is applied at different nodal points within the solution domain 
and this results in a sparse system of non-linear algebraic equations. These equations together 
with Eq. (8), and the two boundary values at the inflow and outflow sections, are solved by 
the Newton-Raphson iterative method with a numerical Jacobian matrix. The convergence of 
the solution is assessed using the following criterion:  

,tolerance
1

≤δ∑
=

m

j
jH  

where jHδ  is the correction depth to the solution of the nodal point j  at any stage in the 

iteration; m  is the total number of nodes in the grid excluding nodes having known values. In 
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this study, a tolerance of 10-6 is used for the convergence of the numerical solution. This 
computational scheme is superior to the method employed by Fenton (1996) which was based 
on the shooting technique and showed parasitic numerical instability.  

For the solution of the pressure equations, a similar finite difference approximation is 
inserted into Eqs. (2) and (4) to discretise the derivative term in the equations. Since the nodal 
flow depth values are known from the solution of the flow profile equations, these discretised 
equations yield the bed pressure (for bZz = , where bZ  is the channel bed elevation) at 
different nodal points.  
 

Table 1. Values of the constant parameters for the model equations 
Model µ1 µ2 µ� ϕ 

BTMU equations 4 1/2 0ω  2'1 bZ+  
BTML equations � 2/� 1 1 

 

5. SIMULATION RESULTS AND DISCUSSION 
The one-dimensional numerical models presented in the previous section are now used for 

simulating steady: i) transcritical flow over trapezoidal profile weirs; ii) free flow in venturi 
flumes; and iii) transcritical flow over a curved bed combined with sidewall curvature. Since 
the experiments for all test cases were performed in plexiglass laboratory flumes, a smooth 
boundary resistance law was used to estimate the friction slope for the models. For 
computational simplicity, β  is assumed as unity in both models. All numerical results 
presented here were independent of the effect of spatial step size. 

 
5.1 FLOW OVER TRAPEZOIDAL PROFILE WEIRS 

Experiments on flow over trapezoidal profile weirs were conducted to validate the results 
of the models at the Michell Laboratory of the University of Melbourne. The flume was 7100 
mm long, �80 mm high, and �00 mm wide. The flume and the trapezoidal profile weirs were 
made of plexiglass. Symmetrical trapezoidal profile weirs of 150 mm high, crest lengths 100 
mm, 150 mm and 400 mm respectively and side slope 1V: 2H were tested at different 
discharges. The flow surface and bed pressure profiles were measured respectively by a point 
gauge and piezometers. Details of the experimental system can be found in Zerihun and 
Fenton (2004b).  

For assessing the effect of the streamline curvature on the solution of the models, 
transcritical flow over trapezoidal profile weirs with different wLH /1  ( 1H = total energy head 
over the weir crest, wL = weir crest length) values were considered. The computed flow 

surface and bed pressure profiles for this flow situation are compared with experimental 
results in Figs. 2 and �. The BTMU and BTML models solutions for flow surface profile 
show excellent agreement with the measured data. Both models predict similar flow surface 
profiles and steep flow surface slope on the crest of a short-crested weir. A minor discrepancy 
between the results of the two models for bed pressure profiles can be seen from these figures. 
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In general, the overall qualities of the numerical solutions of the bed pressure are good and 
show good agreement with the experimental data.  

 

  
Fig. 2 Flow surface and bed pressure profiles for flow over a broad-crested weir 

 

  
Fig. � Flow surface and bed pressure profiles for flow over a short-crested weir 

 
5.2 FREE FLOW IN VENTURI FLUMES 

 
5.2.1 Ye and McCorquodale's (1997) Experiment 
Ye and McCorquodale (1997) carried out an experiment in a Parshall flume model at the 

University of Windsor. This flume consists of three sections: a converging inlet section with a 
horizontal bed and variable widths to create the critical depth; a throat section with parallel 
sidewalls and a sloping bed in which supercritical flow occurs; and a diverging outlet section 
with an adverse sloping bed and variable widths. Result of the flow surface profile 
measurement of this test was used for the verification of the model solutions. 

Fig. 4 shows the computational results of the two flow models for transcritical flow in a 
Parshall flume. This figure compares the cross-channel averaged experimental and 
numerically predicted flow surface profiles along the centreline of the flume. The two models 
accurately simulate the flow transition from sub- to super-critical state for this flow condition. 
For the upstream flow region ( m8.0≤x ), the agreement between the experimental and 
numerical results is good, and no significance differences are observed between the 
computational results of the two models for the entire flow region. However, a minor 
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discrepancy between the models and experimental results can be seen from this figure in the 
supercritical flow region downstream of the diverging section of the flume ( m8.0>x ). In this 
flow region, the models slightly underestimate the flow surface elevation. As a one-
dimensional model, these models do not describe the existence of cross-waves downstream of 
the end of the throat section. 

 

 
Fig. 4 Comparison of computational and experimental results for flow in a Parshall flume 

 
5.2.2 Khafagi's (1942) Experiment 
The experimental results of Khafagi (1942) are invoked to test the ability of the model to 

simulate transcritical flow in a venturi flume. The test flume with horizontal bed consists of 
three sections: a converging inlet section with a rounded constriction (Radius = 545 mm) to 
create critical depth; a short throat section with parallel sidewalls; and a diverging outlet 
section (side slope 1:8) with a gradually varied width. The uncontracted width of the flume 
was �00 mm. A series of experiments were conducted using this flume. The flow surface and 
pressure profiles measurements of these tests were used to validate the models. Fig. 5 shows 
comparisons between measured and computed flow surface profiles along the centreline of 
the flume for transcritical flow with supercritical outflow condition downstream of the throat 
section. It can be seen from this figure that the two models simulate similar flow surface 
profiles for the entire flow region which agree very well with experimental data. In both cases, 
the flow transition is accurately simulated.  

In order to examine the influence of the applied corrections for the dynamic pressure in the 
local flow characteristics, the pressure distributions at the end of the converging ( cm�0=x ) 
and at the beginning of the diverging ( cm�5=x ) sections of the flume are simulated using 
these models. Fig. 6 shows the comparison of the experimental data and the numerical 
predictions of these models for the pressure distributions. In this figure the non-dimensional 
pressure distribution at a section, 0/ pp ( p  = pressure at height, sh , above the bed, gHp ρ=0 ) 
is shown versus the non-dimensional height above the bed, Hhs / . In both cases of pressure 

distribution simulations, the results of the BTML model show a slightly better agreement with 
measurements than the predictions of the BTMU model. 
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Fig. 5 Comparison of predicted and measured flow surface profiles for free flow situation 

 

 
Fig. 6 Comparison of computational and experimental results for pressure distribution 

 
5.3 FLOW IN A CHANNEL WITH CURVED BED AND SIDEWALL 

The results of the experiments conducted by Law (1985) are selected to test the predictions 
of the models. A 16 m long recirculating glass wall flume was used to conduct the experiment. 
An obstacle made of plexiglass was installed at the middle of the flume to bring on 
simultaneous geometric changes in the bottom and sidewall of the flume. Due to this obstacle, 
the width of the channel was reduced to a minimum of 94 mm and the bed was elevated to a 
maximum height of 6� mm. The staggered distance between the maximum contraction and 
the maximum height of the hump was 200 mm. A point gauge of reading accuracy 0.�0 mm 
was used to observe the flow profiles at the middle of the cross-section. Further details of the 
experimental set-up and procedures are given in Law (1985). 

A numerical simulation result based on the shooting method was reported by Law (1997) 
for this flow problem using the Fenton's equation. Similar to the Fenton (1996) solution, 
however, Law’s simulation result suffered from strong parasitic numerical instability besides 
the effects of bed profile discontinuity. In this work, smooth transition curves at both ends of 
the hump were introduced for smoothing the existing discontinuities. 

Fig. 7 shows the comparison of the experimental data with the numerical predictions of the 
models for low and high flow cases. In the flow regions upstream of the minimum width of 
the flume ( 0<x ) and downstream of the maximum height of the hump, the BTML and 
BTMU models simulate similar flow profiles for both flow cases and are in good agreement 
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with measurements. However, some differences are observed between the solutions of these 
models in the transition region where the combined effects of the curvatures of the bed and 
sidewalls are substantial. In this region ( m20.00 ≤≤ x ), the performance of the BTML 
model is marginally better than the BTMU model. As can be seen from this figure, the 
predictions of these models slightly depart from measurements for high flow condition. This 
is probably due to the influence of the horizontal curvature of the streamline which is more 
significant in the transition region especially at higher discharge.  

 

 
Fig. 7 Comparison of predicted and measured flow profiles for transcritical flow situation 

 
As already indicated, the assumed distribution shapes of the centrifugal term determine the 

degrees of the resulting corrections for the effect of the non-hydrostatic pressure distribution. 
The overall simulation results of this study demonstrate that the proposed approximations for 
these corrections have only a marginal effect on the predictions of flow surface and bed 
pressure profiles. However, the pressure distribution simulation results of the considered flow 
problems are very sensitive to these approximations. Zerihun and Fenton (2004a) pointed out 
that the influence of such approximations for the effects of the centrifugal pressure is more 
significant in the prediction of local flow characteristics of a curved flow than the global flow 
characteristics. 

 
6. SUMMARY AND CONCLUSIONS 

Two one-dimensional Boussinesq-type momentum equation models were investigated for 
simulating transcritical flow over curved beds with and without the effect of lateral 
contractions. Uniform and linear distribution shapes for the variation of the centrifugal term 
were used to develop the equations. Finite difference approximations were employed to 
discretise the flow equations. The Newton-Raphson iterative method with a numerical 
Jacobian matrix was applied for the solutions of the resulting nonlinear algebraic equations. 
Comparison of the numerical prediction results with experimental data was also presented.  

A good agreement was observed between the predicted and measured values. Results of 
this investigation reveal that the 2-D flow structures for the transcritical flow situation are 
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better described by the proposed model which incorporates a higher-order correction for the 
effect of the centrifugal pressure. The results also demonstrate the superior performance of the 
current computational scheme compared to a previous scheme based on the shooting method 
for the solutions of such equations. This study suggests that a higher-order pressure equation 
should be used when accurate simulation of the pressure distribution of a flow with 
pronounced curvatures of streamlines is sought. 
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