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Abstract

A numerical experiment is carried out to investigate the suitability of a Boussinesq-type momentum model for simulating transcritical
flows at short length transitions in open channel flow measuring structures. Two one-dimensional Boussinesq-type equation models,
which incorporate different degrees of dynamic pressure corrections, are considered for this purpose. A finite difference method is
employed to discretise and solve the equations. The models are then applied to simulate different test cases for flows in such channels
with predominant non-hydrostatic pressure distribution effects. A comparison of the computed results with the corresponding experi-
mental data is presented. Results of this study reveal that the proposed model, which includes a higher-order correction for the effect
of the centrifugal pressure, describes well even relatively abrupt changes from sub- to super-critical flow state.

© 2005 Published by Elsevier Ltd.
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1. Introduction

In most open channel flow measuring structures such as
venturi flumes, the geometries of both the sidewalls and the
bed vary along the direction of the flow. It is well-known
that such geometric changes result in flow transition from
subcritical to supercritical state under free flow conditions.
The major characteristic of the flow in the vicinity of such
short length transition is a strong departure from the
hydrostatic distribution of pressure caused by the curva-
tures of the streamlines. Common computational flow
models, which assume hydrostatic pressure distribution,
cannot describe such types of flows. The essential vertical
details of the flows require the use of more accurate meth-
ods for description of such flow situations. In this study, a
one-dimensional model that incorporates a correction for
the effect of the centrifugal dynamic pressure due to the
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curvature of the streamline will be employed for the numer-
ical simulation of free flow in such types of flow measuring
structures.

Flow problems related to open channel flow measuring
structures have been extensively studied experimentally.
Most of the experimental works were performed to under-
stand the flow characteristics of these structures as well as
the determination of the coefficients of discharge (see e.g.,
[2]). Compared to previous simulation studies of flow over
a sill, however, free flows in venturi flumes with and with-
out humps have not been thoroughly investigated numer-
ically using a one-dimensional higher-order equation. In
such flumes with short constrictions, the combined effects
of the variation of the sidewalls and bed geometries pre-
dominantly affect the behaviour of the transcritical flows
particularly in the transition region. In this region, the
flows exhibit three-dimensional characteristics with
cross-waves that influence the configuration of the down-
stream (supercritical flow region) flow profile. From a
practical perspective, accurate simulation of the upstream
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Notation

A flow cross-sectional area

B width of the channel

Fr Froude number

g acceleration due to gravity

h step size in the horizontal direction

hy height of a point in the flow field above the bed

H depth of flow measured vertically from the bed

H, total energy head over the crest of the weir

L, crest length of the weir

m total number of nodal points in the solution
domain

p pressure

Po hydrostatic pressure at the bed

0 discharge

St friction slope

SH slope of the flow surface

So slope of the bed

x horizontal coordinate
y transverse coordinate
z vertical coordinate
Zy channel bed elevation
s Zo, Zy derivatives of the bed profile
o angle of inclination to the horizontal
p Boussinesq coefficient
OH; correction depth at node j
n mean elevation of the free surface
K curvature of a streamline
Kp curvature of the bed
Ky curvature of the flow surface
14 non-linear term associated with the flow equa-
tion
0 density of the fluid
N a weighting factor

water surface elevation and/or piezometric head is impor-
tant in order to predict the discharge capacity of these
structures.

Several investigations have been performed in the past
to model flow situations that involve non-hydrostatic pres-
sure distribution effects, using different approaches. Bous-
sinesq [3] was the first to extend the momentum equation
to incorporate implicitly the effect of curvature of the
streamlines using the assumption of a linear variation of
curvature of streamlines from the bed to the free surface.
Recently, Dressler [4], Hager and Hutter [7], Hager [§]
and Matthew [14] have developed higher-order equations
to model two-dimensional flow problems. Similar to the
Boussinesq [3] equation, however these equations are lim-
ited to the solution of irrotational flow problems only.
For fast flow over the chute part of a hydraulic structure
such as a spillway, the assumption of irrotational flow,
which was the basis of all these governing equations, is
questionable. It has also been shown in different studies
(see e.g., [5,17]) that the Dressler equations do not permit
flow regime to change from subcritical to supercritical
state. Steffler and Jin [18] developed the vertically averaged
and moment (VAM) equations based on the assumptions
of a linear longitudinal velocity distribution, and quadratic
pressure and vertical velocity distributions across the depth
of flow. However, the resulting equations are long and
complex. Khan and Steffler [10,11] studied the applicability
of the VAM equations.

Fenton [5] introduced alternative equations to model
flow problems with appreciable curvature of streamline.
He used the momentum principle along with the assump-
tion of a constant centrifugal term, x/cosa (x = curvature
and o = angle of inclination of the streamline with the
horizontal axis), at a vertical section to develop the equa-

tions. The vertical distribution of this term determines the
degree of the resulting correction factor for the effects of
the streamline curvature. Compared to other governing
equations (for instance, Dressler and VAM equations),
the equations are simple to apply in a cartesian coordi-
nate system especially for flow problems with continuous
flow boundaries. In this work, these equations along with
the modified version, which are developed based on the
assumption of a linear variation of centrifugal term with
depth, are investigated for simulating steady transcritical
flow situation with short length of transitions in open
channel flow measuring structures. These include free
flows over trapezoidal profile weirs as well as in venturi
flumes with and without humps, and free overfall in a
rectangular channel. The study also aims to assess system-
atically the impact of the pressure correction factors on
the simulation of pressure and flow surface profiles of
such flows.

In the following sections the governing equations are
presented and the main features of the computational
model, namely the spatial discretisation of the equations
and the solution procedure for the resulting non-linear dis-
cretised equations are outlined. The inclusion of the
boundary conditions in this procedure is also discussed.
The results of the simulation for several steady flow test
cases are verified by comparing them with experimental
data.

2. Governing equations

As discussed above, Fenton [5] presented a simple
method that incorporates the possible variation of the
width of the channel. For steady flow in a rectangular
channel, this method yields the following equations:
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in which H is the depth of flow; Z}', Z; and Z;/ are the first,
second and third derivatives of the bed profile respectively;
St denotes the friction slope, calculated from the Manning
equation or smooth boundary resistance law; Q is the dis-
charge; A is flow cross-sectional area; B is the width of the
channel; f refers to the Boussinesq coefficient; g is gravita-
tional acceleration; p is the density of the fluid; # is the
mean elevation of the free surface; z is the vertical coordi-
nate of a point in the flow field; p is the pressure; and w is a
weighting factor. Fenton [5] suggested a value of slightly
less than 1 for wq. These Egs. (1) and (2), will be referred
to hereafter as the Boussinesq-type momentum equation
with uniform centrifugal term (BTMU) model. Following
the procedures suggested by Fenton [5] and assumption
of a linear variation of the centrifugal term with depth,
the following equations are developed for steady flow in
a rectangular channel:
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These equations in this paper are termed the Bous-
sinesq-type momentum equation linear (BTML) model.
In the formulation of both models, the curvature at the sur-
face is approximated by ry = d*H /dx* + Z; and at the bed
by xy = Zp. If Eq. (4) is compared with the corresponding
equation, Eq. (2), it is noticed that the term which accounts
for the dynamic effect due to the curvature of the flow sur-
face shows a quadratic variation in Eq. (4). It should be
remarked that Eq. (2) predicts a linearly varying non-
hydrostatic pressure distribution. In this work, the two
models will be applied to simulate transcritical flows over
curved beds with and without lateral contractions. The
simulation results of the two models will be compared with

measurements to examine the influence of the pressure cor-
rection factors on the solutions of the models.

3. Problem formulation and boundary conditions

The computational domain for the numerical solution of
the flow problem is shown in Fig. 1. In this figure AB and
CD are the inflow and outflow sections respectively, and
BD is the curved flow boundary. The inflow and outflow
sections of the computational domain are located in a
region where the flow is assumed to be nearly uniform, with
hydrostatic pressure distribution. This quasi-uniform flow
condition simplifies the evaluation of the boundary values
at these sections using the gradually-varied flow equation,

dH  So—S¢
= — = 5
dx 1—pR*’ )

where Fr is the Froude number and S, is the bed slope.
From this, for given depth and discharge at the inflow sec-
tion, the corresponding slope of the water surface Sy, can
be evaluated numerically. For given boundary values at the
inflow and outflow sections, and discharge at the inflow
section, it is required to determine the flow surface profile,
AC, and the bed pressures along the flow boundary BD.
For this purpose, the computational domain of the flow
problem is discretised into equal size steps in x as shown
in Fig. 1.

Sn

4. Computational model development

Numerical solution is necessary since closed-form solu-
tions are not available for these non-linear differential
equations. Finite difference approximations are used here
for their solution. This formulation is simple to code and
extensively used to solve linear or non-linear differential
equations. For the purpose of discretisation, Egs. (1) and
(3) can be represented by a simple general equation as

3 2
v aS e gva=0, ©)
where &, &;, & and &3 are the non-linear coefficients asso-
ciated with the model equation and the corresponding
expressions can be obtained by comparing this equation
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Fig. 1. Computational domain for transcritical flow problem.
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with the respective flow equations. Higher-order finite dif-
ference approximations are employed to replace the deriv-
ative terms in these third-order differential equations in
order to reduce the truncation errors introduced in the for-
mulation due to the finite difference quotients (see e.g., [6]).

Upwind finite difference approximations [1] for deriva-
tives at node j in terms of the nodal values at j — 2, j — 1,
jand j+ 1 are introduced into Eq. (6). After simplifying
the resulting expression and assembling similar terms
together, the equivalent finite difference equation becomes
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where /£ is the step size, and p;, u, and u3 are constants re-
lated to the model equations and are given in Table 1. Since
the value of the nodal point at j = 0 is known, the value of
the imaginary node at j = —1 can be determined from the
estimated water surface slope, Sy, at the inflow section.
Using a similar discretisation equation for the water sur-
face slope at inflow section and the expanded form of
Eq. (7) at j =0, the explicit expression for the nodal value

at j = —1 in terms of values of the nodal point 0 and 1 is
-1
H,=—F7—=]|H Hy¥
I
+ I1(6hSy; — 3H — 2H ) + 6&30h°), (8)
where
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Egs. (7) and (8) constitute the one-dimensional finite dif-
ference scheme corresponding to the third-order ordinary
differential equation, which is to be solved as a two-point
boundary value problem. Generally, such problems must
be solved by iterative methods, which proceed from an
assumed initial free surface position. For the iterative pro-
cedure, the required computational effort is dependent on
the choice of the initial flow surface profile. In this work,
the Bernoulli and continuity equations are employed to
obtain the initial flow surface profile estimate. Then, to
simulate the flow surface profile, Eq. (7) is applied at differ-
ent nodal points within the solution domain and results in a

Table 1

Values of the constant parameters for the model equations

Model Hi Ho 13 ¢
BTMU equations 4 1/2 o 1+22
BTML equations 3 2/3 1 1

sparse system of non-linear algebraic equations. These
equations together with Eq. (8), and the two boundary val-
ues at the inflow and outflow sections, are solved by the
Newton-Raphson iterative method with a numerical Jaco-
bian matrix. The convergence of the solution is assessed
using the following criterion:

<Z|8H_,-|/ZH_,-> < tolerance,
J=1 J=1

where 8H; is the correction depth to the solution of the
nodal point j at any stage in the iteration; m is the total
number of nodes in the solution domain excluding nodes
having known values. In this study, a tolerance of 10~° is
used for the convergence of the numerical solution. The
above described computational scheme is superior to the
method employed by Fenton [5] which was based on the
shooting technique and showed parasitic numerical
instability.

For the solution of the pressure equations, a similar
finite difference approximation is inserted into Eqgs. (2)
and (4) to discretise the derivative term in the equations.
Since the nodal flow depth values are known from the
solution of the flow profile equations, these discre-
tised equations yield the bed pressure (for z= 2,
where Z, is the channel bed elevation) at different nodal
points.

5. Simulation results and discussion

The steady one-dimensional flow models, presented in
the previous section, were used for simulating: (i) transcrit-
ical flow over trapezoidal profile weirs; (ii) free flow in ven-
turi flumes; (iii) transcritical flow over a curved bed
combined with sidewall curvature; and (iv) a free overfall
in a rectangular channel with subcritical approach flow.
Experiments were performed for all cases in plexiglass lab-
oratory flumes, and a smooth boundary resistance law was
used to estimate the friction slope for the models. For com-
putational simplicity, f was assumed as unity in both
models.

For each test case, the influence of step size refinement
on the solutions of the models was assessed for step sizes
20 mm, 25 mm, 30 mm, 50 mm and 100 mm. Due to space
limitation only the results of the BTML model for free flow
over a trapezoidal profile weir with H,/L,, =0.79 (H, =
total energy head over the weir crest, L,, = weir crest
length) are depicted in Fig. 2. When the step size exceeded
30 mm, the solutions of the models were affected by the dis-
cretisation errors. The finest discretisation (4 < 30 mm)
gave good flow profile simulation results without any sur-
face undulation in the upstream subcritical flow region.
As the discretisation became coarser, the models slightly
underestimated the flow surface profile in the supercritical
flow region. At the coarsest discretisation considered, how-
ever the bed pressure profile prediction was significantly
affected.
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Fig. 2. Comparison of predictions for various step sizes: (a) flow surface
profile; (b) bed pressure.

Accordingly, the computations for all simulation results
presented in this paper were carried out using a uniform
spatial step size of 20 mm.

5.1. Flow over trapezoidal profile weirs

Experiments on flow over trapezoidal profile weirs were
conducted to validate the results of the models at the Mic-
hell Laboratory of the University of Melbourne, Australia.
The flume was 7100 mm long, 380 mm deep, and 300 mm
wide. The flume and the trapezoidal profile weirs were
made of plexiglass. Water was supplied to the head tank
from a sump through 115 mm diameter pipe with a valve
for controlling the discharge. Various flow improving ele-
ments were provided upstream of the trapezoidal profile
weirs to obtain a smooth flow without large-scale turbu-
lence. Symmetrical trapezoidal profile weirs of 150 mm
height, crest lengths 100 mm, 150 mm and 400 mm respec-
tively, and side slope 1V:2H were tested at different dis-
charges. The general set-up of the experiment is shown in
Fig. 3.

A volumetric tank system was used to measure the dis-
charge. The system consisted of a tank with plan dimen-
sions of 200 cm by 150 cm and depth of 450 cm, and an
inclined manometer (56.62° to the horizontal) for water
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Fig. 3. Experimental set-up for flow over a trapezoidal weir.

level measurement in the tank. Tank filling time longer
than 1 min was used to minimise errors associated with
the starting and stopping of the stopwatch. The longitudi-
nal flow surface profile was observed with a manual point
gauge of reading accuracy 0.10 mm. For recording the bed
pressure, steel pressure taps of external diameter 3 mm
were fixed along the centreline of the weir model with max-
imum horizontal spacing of 80 mm, but the spacing was
much closer near the edges of the weir crest. These pressure
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E
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Fig. 4. Flow surface and bed pressure profiles for flow over a broad-
crested weir.
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taps were connected to vertical water piezometers of read-
ing accuracy 1 mm by long plastic tubes that passed
through a hole at the centreline of the flume bed. For each
experiment, the base reading for the pressure taps was
obtained immediately after the flow was shut off. Accord-
ing to the criteria given by Ranga Raju et al. [16], the effects
of viscosity and surface tension on the experimental results
were negligible.

For assessing the effect of the streamline curvature on
the solution of the models, transcritical flow over such
weirs with different H,/L,, values were considered. The
computed flow surface and bed pressure profiles for this
flow situation are compared with experimental results in
Figs. 4 and 5. The BTMU and BTML models solutions
for flow surface profile show excellent agreement with the
measured data, with maximum errors in the simulated flow
profiles of only 1%. Both models predict similar flow sur-
face profiles and steep flow surface slope on the crest of a
short-crested weir. A minor discrepancy between the results
of the two models for bed pressure profiles can be seen
from these figures. In general, the overall qualities of the
numerical solutions of the bed pressure are good and show
good agreement with the experimental data (mean
errors = 3.6% and 4% for the BTML and BTMU models,
respectively). It is important to note that the observed
bed pressure particularly in the downstream supercritical
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Fig. 5. Flow surface and bed pressure profiles for flow over a short-crested
weir.

flow region might have some systematic errors due to tur-
bulence effects.

5.2. Free flow in venturi flumes

5.2.1. Ye and McCorquodale’s [19] experiment

Ye and McCorquodale [19] carried out an experiment in
a Parshall flume model at the University of Windsor. This
flume consisted of three sections: a converging inlet section
with a horizontal bed and variable widths to create the crit-
ical depth; a throat section with parallel sidewalls and a
sloping bed in which supercritical flow occurred; and a
diverging outlet section with an adverse sloping bed and
variable widths. Results for the flow surface profile mea-
surements from this test were used for the verification of
the model solutions.

Fig. 6 shows the computational results from the two
flow models for transcritical flow in a Parshall flume. This
figure compares the cross-channel averaged experimental
and numerically predicted flow surface profiles along the
centreline of the flume. The two models accurately simulate
the flow transition from sub- to super-critical state for this
flow condition. For the upstream flow region (x < 0.8 m),
the agreement between the experimental and numerical
results is good, and no significant differences are observed
between the computational results of the two models over
the entire flow region. However, a minor discrepancy
between the models and experimental results can be seen
from this figure in the supercritical flow region downstream
of the diverging section of the flume (x > 0.8 m). In this
flow region, the models slightly underestimate the flow sur-
face elevation. As a one-dimensional model, these models
do not describe the existence of cross-waves downstream
of the end of the throat section.

5.2.2. Khafagi’s [9] experiment

The experimental results of Khafagi [9] are invoked to
test the ability of the model to simulate transcritical flow
in a venturi flume. The test flume with horizontal bed con-
sisted of three sections: a converging inlet section with a
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% 0251 — BTMU model
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-0.50 T T T T
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Fig. 6. Comparison of computational and experimental results for flow in
a Parshall flume.
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rounded constriction (radius = 545 mm) to create critical
depth; a short throat section with parallel sidewalls; and
a diverging outlet section (side slope 1:8) with a gradually
varied width. The uncontracted width of the flume was
300 mm. The flow surface and pressure profiles measure-
ments of different tests were used to validate the numerical
models. Fig. 7 shows comparisons between measured and
computed flow surface profiles along the centreline of the
flume for transcritical flow with supercritical outflow con-
dition downstream of the throat section. It can be seen
from this figure that the two models simulate similar flow
surface profiles for the entire flow region which agree very
well with the experimental data. In both cases, the flow
transition is accurately simulated.

In order to examine the influence of the applied correc-
tions for the effect of the dynamic pressure in the simula-
tion of local flow characteristics, the pressure
distributions at the end of the converging (x = 30 cm)
and at the beginning of the diverging (x = 35 cm) sections
of the flume were simulated using these models. Fig. 8
shows the comparison of the experimental data and the
numerical predictions of these models for the pressure dis-
tributions. In this figure the non-dimensional pressure dis-
tribution at a section, p/py (p = pressure at height, 7,
above the bed, py = pgH) is shown versus the non-dimen-

0.3
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Fig. 7. Comparison of predicted and measured flow surface profiles for
free flow situation.

sional height above the bed, i,/H. In both cases of pressure
distribution simulations, the results of the BTML model
show a slightly better agreement with measurements than
the predictions of the BTMU model. The maximum differ-
ences between the experimental data and the corresponding
numerically simulated values for the BTML and BTMU
models are only 3.3% and 5.9%, respectively.

5.3. Flow in a channel with curved bed and sidewall

The results of the experiments conducted by Law [12]
were selected to test the predictions of the models. A
16 m long recirculating glass wall flume was used to con-
duct the experiment. An obstacle made of plexiglass was
installed at the middle of the flume to bring on simulta-
neous geometric changes in the bottom and sidewall of
the flume. Due to this obstacle, the width of the channel
was reduced to a minimum of 94 mm and the bed was ele-
vated to a maximum height of 63 mm. The staggered dis-
tance between the maximum contraction and the
maximum height of the hump was 200 mm. A point gauge
of reading accuracy 0.30 mm was used to observe the flow
profiles at the middle of the cross-section. Further details
of the experimental set-up and procedures are given in
Law [12].

A numerical simulation result based on the shooting
method was reported by Law [13] for this flow problem.
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Fig. 8. Comparison of computational and experimental results for
pressure distributions.
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Similar to the Fenton [5] solution, however, Law’s simula-
tion result suffered from strong parasitic numerical instabil-
ity besides the effects of bed profile discontinuity. In this
work, smooth transition curves at both ends of the
hump were introduced for smoothing the existing discon-
tinuities.

Fig. 9 shows the comparison of the experimental data
with the numerical predictions of the models for low and
high flow cases. In the flow regions upstream of the mini-
mum width of the flume (x <0) and downstream of the
maximum height of the hump, the BTML and BTMU
models simulate similar flow profiles for both flow cases
and are in good agreement with measurements. However,
some differences are observed between the solutions of
these models in the transition region where the combined
effects of the curvatures of the bed and sidewall are sub-
stantial. In this region (0 < x < 0.20 m), the performance
of the BTML model (maximum error = 1.8%) is margin-
ally better than the BTMU model (maximum error =
3.5%). As can be seen from this figure, the predictions of
these models slightly depart from measurements for high
flow condition. This is probably due to the influence of
the horizontal curvature of the streamline which is more
significant in the transition region especially at higher
discharge.
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Fig. 9. Comparison of predicted and measured flow profiles for trans-
critical flow over a hump with lateral contraction.

5.4. Free overfall simulation

The experimental data, consisting of flow depth and
pressure distributions, for a free overfall in a rectangular
channel were obtained from Rajaratnam and Muralidhar
[15]. The experiments were performed in a plexiglass flume
457 mm wide, 381 mm deep and 6.1 m long. Flow surface
profiles and pressure distributions at different sections up
to the upstream control sections were measured for a few
runs of these experiments. The results of run 1A were used
for validating the prediction of the proposed models.

This test case was first presented by Khan and Steffler
[11] who used the one-dimensional VAM equations and
obtained results that are in good agreement with experi-
mental data. In this work, the nature of the solutions of
the BTMU and BTML models for the free overfall prob-
lem were examined. Detailed description of the numerical
simulation procedures for this flow problem (based on
the proposed models) can be found in Zerihun and Fenton
[20]. For this simulation problem, the origin of the coordi-
nate system was set at the brink section.

The computed flow surface profiles for subcritical
approach flow are compared with the experimental results
in Fig. 10. Upstream of the brink section, the results of
both models agree well with the experimental data.
Although the observation was taken for a short length of
the flow domain, the BTMU model simulates the upper
nappe profile of the jet more accurately than the BTML
model. The BTML model result starts to deviate from
the measured data for this part and shows relatively steep
water surface slope at the brink section. For this flow situ-
ation, the brink depth is an important parameter for esti-
mating the flow rate. This depth is predicted very well by
the BTMU model with an error of only 2.6%.

Fig. 11 plots the non-dimensional pressure distribution
upstream of the overfall, p/p,, versus the non-dimensional
height above the bed, //H for both numerical and experi-
mental cases. It can be seen that the result of the BTMU
model shows atmospheric pressure right across the brink sec-
tion due to the pre-assumed constant centrifugal term at a
vertical section. Contrary to this, the BTML model predicts
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Fig. 10. Comparison of predicted and measured flow profiles in a free
overfall (Fro = 0.95).
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Fig. 11. Comparison of predicted and measured pressure profiles
(Fro=10.95).

the maximum pressure at the end section accurately, with an
error of only 2%. However, it indicates some deviation for
the location of the maximum pressure, about 27% of H. In
general, the prediction of the pressure distribution profile
using the BTML model is satisfactory and follows a similar
pattern to the observed values. Also, this model predicts
the pressure distributions more accurately at vertical sec-
tions, 5.72 cm and 11.43 cm to the left of the brink section,
where the flow has considerable streamline curvature. At a
distance of 17.15 cm from the end section, the curvature of
the streamline is negligible; both models provide similar
results which agree very well with the experimental data. This
comparison suggests that a higher-order pressure equation
should be used for accurate simulation of the pressure distri-
bution of a flow with pronounced curvature of streamlines.

For all simulation cases, both models required almost
equal simulation run-time to converge to a final solution
starting from the assumed initial position of the free sur-
face. A typical computational time for the problem of flow
in a channel with curved bed and sidewall was 18 s and 20 s
respectively for the BTML and BTMU models using a Pen-
tium-IV 2.0 GHz based personal computer.

As already indicated, the assumed distribution shapes of
the centrifugal term determine the degrees of the resulting
corrections for the effect of the non-hydrostatic pressure
distribution. The overall simulation results of this study
demonstrate that the proposed approximations for these
corrections have only a marginal effect on the predictions
of flow surface and bed pressure profiles. However, the
pressure distribution simulation results of the considered
flow problems are very sensitive to these approximations.

6. Summary and conclusions

Two one-dimensional Boussinesq-type momentum
equation models, which incorporate different degrees of
correction for the effects of the curvature of the streamline,
were investigated for simulating transcritical flows at short
length transitions in open channel flow measuring struc-
tures. These models—the Boussinesq-type momentum

equation uniform (BTMU) model and the Boussinesq-type
momentum equation linear (BTML) model—were devel-
oped based on the assumptions of uniform and linear var-
iation of the centrifugal term at a vertical section. Finite
difference approximations were employed to discretise the
flow equations. The Newton—-Raphson iterative method
with a numerical Jacobian matrix was used for the solution
of the resulting non-linear algebraic equations. The models
then simulated different test cases for flows in channels with
predominant non-hydrostatic pressure distribution effects.
Comparison of the numerical prediction results with exper-
imental data was also presented.

Generally speaking, good agreement was observed
between the predicted and measured data. Results of this
investigation reveal that the 2-D flow structure for the
transcritical flow situations are better described by the
BTML model. The results also demonstrate the superior
performance of the current computational scheme com-
pared to a previous scheme based on the shooting method
for the solutions of such equations. This study suggests
that a higher-order pressure equation should be used when
accurate simulation of the pressure distribution of a flow
with pronounced curvatures of streamlines is sought.
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