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Discussion

A Boussinesq-type model for flow over trapezoidal profile weirs
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The Discusser wishes to congratulate the Authors for their novel
and interesting approach to model curved streamline flows by
taking into account both the curvilinear effects and wall fric-
tion. The novelty of their research lies not only in the theoretical
approach originally due to Boussinesq (1877), but also in a
successful result for flows over trapezoidal weirs. This type
of weir was studied theoretically for low heads Ho/Lw < 0.5
by Montes (1998), whereas Fritz and Hager (1998) considered
higher heads, for which streamline curvature plays a major role.
This discussion aims to (1) add a theoretical background on the
theory of Boussinesq-type models, and (2) a guidance for further
developments clarifying some points of engineering interest.

The Authors have focused their analysis on the use of the
momentum approach, closely following the path established by
Boussinesq (1877). He assumed a linear variation of the velocity
component normal to the channel bed to include the effects of
a non-hydrostatic pressure distribution on the one-dimensional
open channel flow momentum equation, rather than a linear vari-
ation of the streamline curvature, as stated by the Authors. It
should be added that not only the momentum approach was pro-
posed for this type of problem. Another contribution based on the
energy principle was that of Fawer (1937), who also proposed a
Boussinesq-type equation, by taking into account the free surface
and the channel bed curvatures. It is commonly believed that the
Fawer theory is only valid for straight channel bottoms, as a
particular case investigated by Jaeger (1956), which is not true,
however. Fawer (1937) presented a direct comparison between
his energy approach and that of Boussinesq based on the momen-
tum approach for curved streamline flow over a wavy bed. This
was the first attempt to highlight the inherent differences between
the energy and the momentum principles in hydraulics.

Boussinesq’s approach contains the friction slope, while
Fawer includes the slope of the energy grade line. Liggett
(1993) and Montes (1998) have demonstrated that the latter is
equal to the gradient of dissipated energy for steady flows. This
gradient represents the transformation of mechanical into ther-
modynamic energy, implying that the “head-loss” is determined
by the thermal energy state of the system. The friction factor
of the Darcy-Weisbach equation originates from the momen-
tum approach (Keulegan 1942, Montes 1998). It appears that

there exists not yet a theoretically-based thermodynamic equa-
tion quantifying the dissipation of energy inside a fluid mass.
Therefore, the momentum approach should be used when fric-
tional forces are important, such as for long rough channels. This
discussion supports the momentum approach, as did the Authors,
to include the friction effects on flow over trapezoidal-profile
weirs.

However, the question of when the energy approach can be
used remains. As shown by Fawer (1937), Hager and Hutter
(1984), Hager (1985) and Matthew (1991), among others, the
energy principle is an accurate approach when the energy loss
can be neglected and, hence, the total energy line is practically
horizontal. Then, the irrotational flow theory applies and the flow
may be treated as a potential flow. For developing boundary layer
flow, the energy of the free surface streamline remains constant
and the friction effects can be included in the energy equation by
means of the boundary layer displacement thickness, permitting
the use of an energy approach (Montes 1998), without resorting
to any estimation of the energy slope.

In their theoretical approach, the Authors used with Eq. (1)
the implicit assumption of a centrifugal term at a vertical section.
As they are dealing with the fluid flow equations in the Cartesian
coordinate system, the inclusion of “centrifugal terms” does not
seem to be appropriate. In the fluid flow equations the centrifugal
acceleration appears when a system of reference different from
the Cartesian is used. This is the case of the bed-fitted coordinates
proposed by Dressler (1978) or the intrinsic coordinates centred
in a streamline used by Hager and Hutter (1984). In Cartesian
coordinates, no centrifugal forces are present and the deviations
from the hydrostatic pressure distribution in vertical sections are
explained simply in relation to the vertical acceleration, as shown
by Montes (1998), who proposed

p = ρg(η − z) + ρ

∫ η

z

u2 ∂
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u

)
dz (D1)

in which u and v are the velocity components in the x and z

directions. The Authors’ Eq. (2) could have been more correctly
justified from a theoretical point of view by using Eq. (D1). The
Authors’ Eq. (2) is indeed an interesting approach for the pres-
sure distribution in a vertical section. It contains an empirical
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factor ωo, representing the contributions of the bed curvature to
the non-hydrostatic pressure component. Since ωo defines in a
vertical section the “shape” of the pressure curve, it would have
been of interest to study its effect on some of the relevant flow
features. Of particular interest would be the effect of ωo on the
vertical pressure distribution and on other flow features, such as
the free surface profile and the discharge coefficient of the weir.

Attention should be paid to the definition of the flow depth in
a given Boussinesq type model. In short, the analysis of the Euler
equations in the bed-fitted system of Dressler (1978) yields the
flow depth defined as the normal to the channel bed. The integra-
tion of the Euler equations performed by Hager and Hutter (1984)
defined the flow depth as a vertical projection of an equi-potential
line. The Authors used Cartesian coordinates and the flow depth
was defined vertically, as was also done by Matthew (1991). This
aspect has not been carefully considered, or discussed in the lit-
erature. The selection of the reference system itself to develop a
Boussinesq type model is an important decision, which greatly
depends on the type of flow to be simulated. For a rectangular
channel section as considered by the Authors, the Cartesian sys-
tem appears appropriate. However, to simulate other flows in a
complex channel geometry, like a tunnel spillway with a curved
bed or a complex channel transition in a spillway, the bed-fitted
coordinates are more appropriate permitting a precise definition
of the cross-sectional geometry normal to the channel bed. As an
example, a typical sloping tunnel spillway of circular section and
variable slope presents a non-circular section on a vertical plane,
complicating the analysis if Cartesian coordinates are used.

The authors used equations like those of Gauckler-Manning-
Strickler or Darcy-Weisbach (the latter not being explicitly stated
in the paper) to compute the friction slope. It is well known that
these equations are valid only for fully developed channel flows. It
was shown by Kindsvater (1964) or Montes (1998), that the flow
over broad-crested weirs (Ho/Lw < 0.5) may be explained by the
boundary layer theory. It was further demonstrated that the flow is
composed of a developing boundary layer of thickness δ (Fig. D1)
with a nearly irrotational core flow. While further justification is
necessary as to whether the flow over trapezoidal profile weirs
is fully or partially developed, the use of these equations for
fully developed flows seems to be a good approach, given the
results obtained by the Authors. Note that the frictional effects
are of relevance for low heads (Ho/Lw < 0.5), indicating that
a direct comparison with the boundary layer theory commonly
used in engineering practice is of interest. Also, the assumption
of a constant Boussinesq coefficient β made by the Authors does
not seem necessary, as it could be easily determined with the

Figure D1 Flow features over trapezoidal profile weir

logarithmic velocity profile (Chow 1959), with a scant increase
in the model complexity.

The Authors’ computational approach to the flow equations
using a two-point boundary value technique is noteworthy. How-
ever, in the Discusser’s opinion, this method is by no means
easily accessible to common hydraulic engineers. Therefore, it is
believed that it would be of interest if the authors used their com-
puter program not only to validate their model to determine the
head-discharge relationship, but also to produce a simple design
equation Cd = Cd(Ho/Lw) as a salient result to be used by
practicing civil engineers. As a complement, other relevant flow
features such as the minimum bottom pressure and its position
could then also be obtained, to complement the work developed
for round-crested weirs (Hager 1991). It would be useful to obtain
information regarding the effect of the downstream weir slope ZD

on the discharge characteristics of the weir using the Boussinesq-
type momentum model. Any variation of ZD would result in a
change of the brink depth Hb (Weyermuller and Mostafa 1976)
and, hence, in a modification of the discharge coefficient, as
can be seen from the historical data of Bazin (Tracy 1957). A
decrease in ZD causes a reduction in Hb resulting in a stronger
curved flow pattern over the crest domain, with the corresponding
increase in the discharge coefficient. This flow phenomenon was
also observed for spillway flows (Hager 1991) and in the transi-
tion from a mild to a steep slope (Montes 1994). The upstream
weir slope ZU also affects Cd as it influences the streamline pat-
tern of the approach flow. The upstream slope further influences
the development of a separation bubble at the grade break, which
precludes a clear boundary layer development over the crest if
no crest rounding is used. Of particular interest could be the dis-
charge reduction caused by corner eddies, which is not yet studied
to the Discusser’s knowledge.
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Reply by the Authors

The authors acknowledge the discussion. Interesting issues are
raised from a theoretical point of view for Boussinesq-type mod-
els and discharge characteristics of trapezoidal profile weirs. Only
the main points of the discussion will be considered.

1 Governing equations

As the discusser stated, two approaches - the momentum and
energy approach - are commonly used to derive the governing
open channel flow equations. Strelkoff (1969) pointed out that
equations based on the momentum principle are inherently dif-
ferent from those derived based on the energy approach. The
energy approach incorporates a term to account for internal losses
and is completely different from that included in the momentum
equation for external resistance. For modeling free surface flows
with significant streamline curvature, Boussinesq-type energy
and momentum equations were developed in the past based on
different simplifying assumptions. Zerihun (2004) pointed out
the links between the different forms of such equations, and
described thoroughly the impact of the simplifying assumptions
on their application. Jaeger (1957) presented Fawer’s equation
for steady curved flow. Contrary to the discusser’s opinion, this
equation does not have any terms that account for bed curvature
effects. It is believed that it would be of interest if the discusser
presented the generalized form of the Fawer’s equation.

The discusser raised issues regarding the choice of the ref-
erence system. Numerous attempts have been made to develop
flow equations for rapidly varied flow situations using different
coordinate systems. An orthogonal bed-fitted curvilinear coor-
dinate system was used by Dressler (1978), Berger and Carey
(1991) and Dewals et al. (2006). Hager and Hutter (1984) and
Hager (1985) developed methods that employed projected depth

rather than true vertical depth of the flow which was employed
by Matthew (1991). A Cartesian coordinate system in the ver-
tical and longitudinal directions was employed by Steffler and
Jin (1993) and Jin and Li (1996). The choice of this coordinate
system for such depth-averaging method significantly reduces
the computational complexity by reducing the flow equations
into a one-dimensional. Other advantages of the Cartesian coor-
dinate system that employs vertical flow depth for developing
higher-order equations are given by Matthew (1991).

For an arbitrary channel section, the governing equation can
be written as (Zerihun 2004)
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in which d is the centroidal depth below the free surface, B

channel width, and z the vertical coordinate. For steady, curved
free surface flow in a rectangular channel, Eq. (R1) reduces to
Eq. (1). From the practical point of view, Eq. (R1) can be used
to solve real life flow problems rather than flow through an ideal
structure.

The momentum correction coefficient β reflects the effect of
non-uniform velocity distribution. In curved free surface flow, the
streamline curvature strongly influences the velocity distribution
over flow depth. In addition to channel geometry, channel rough-
ness affects the magnitude of β (e.g. Li and Hager, 1991). This
suggests that β varies from section to section for non-uniform
open channel flows and its value must be determined based on
a known distribution of flow velocity before applying Eq. (1). A
numerical procedure was applied to estimate β using measured
velocity data (Zerihun 2004). The influence of β on the accuracy
of the model was examined and the result was presented in sec-
tion 8.1 of the original paper. The discusser should carefully read
this section rather than commenting the authors’ approach.

The nature of the pressure equation (2) can be understood
by examining the first step of the derivation procedure, rather
than using unrelated Eq. (13), as suggested by the discusser.
It is important to note that different methods employ differ-
ent assumptions for developing flow equations. By integrating
Euler’s equation, the vertical pressure gradient can be written as
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(Zerihun 2004, Fenton and Zerihun 2007)

1

ρ

∂p

∂z
= −g − β

Q2

A2

κ

cos θ
. (R2)

Equation (15) implies that the centrifugal term (κ/cosθ), which
is a function of the streamline curvature parameters, strongly
influences the magnitude of the second term. Based on different
assumptions for the variation of this term at a vertical section,
the authors’ method yields equations that incorporate different
degrees of dynamic pressure corrections (e.g. Zerihun and Fenton
2006).

2 Weighting parameters and bed pressure

The effect of the weighting factor ω0 on the prediction of the
proposed model depends on the bed profile. For flow over trape-
zoidal profile weirs or curved flow in a constant slope channel
(Z′′

b = Z′′′
b = 0), ω0 does not affect the model results. For flow

over curved beds, however, the value of ω0 significantly affects
the model results for pressure and free surface profiles especially
in the regions where the boundary curvature is substantial. For
such cases, the model results are in good agreement with the
experiments if ω0

∼= 0.95 (e.g. Zerihun 2004, Zerihun and Fen-
ton 2006). Zerihun (2004) has also studied the variation of the
bed pressure for transcritical flow over trapezoidal profile weirs
for different H0/Lw values. The result for flow over short- and
broad-crested weirs showed that only one absolute minimum bed
pressure occurs near the downstream edge of the weir crest. In
this region, the supercritical flow possesses a higher centrifugal
acceleration due to the negative curvature of the flow surface.

The discusser highlighted the effect of the upstream and
downstream side slopes of the trapezoidal profile weirs on the
weir discharge characteristics. As mentioned in section 1 of the
original paper, this issue is beyond the scope of this research.
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